1
|
Mongalo NI, Raletsena MV. Bioactive Molecules, Ethnomedicinal Uses, Toxicology, and Pharmacology of Peltophorum africanum Sond (Fabaceae): Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:239. [PMID: 39861592 PMCID: PMC11768249 DOI: 10.3390/plants14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Peltophorum africanum Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on P. africanum, using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others. Further data was obtained from several scholarly theses, dissertations, and books on general plant sciences, ethnomedicine, and other pertinent ethnobotanical topics. The plant species possess very important pharmacological activities in vitro, which includes antimicrobial, anti-HIV, antioxidant, anticancer, antidiabetic, and other activities. Phytochemically, the plant possesses various classes of compounds, dominated by flavonols, which may well explain its wider range of pharmacological activities. Although the plant is promising anti-HIV activity, the mode of action and safety profiles of the plant also need to be explored as its extracts exerted some degree of mutagenicity. It is also important to further explore its ethnoveterinary use against a plethora of nematodes that infects both wild and domestic animals. Given its potent pharmacological activity, the further in vivo studies need to be explored to ascertain the comprehensive toxicology of the plant species, thereby developing possible medications. The plant species may further be elevated to a potent pharmaceutical product against plethora of infections.
Collapse
Affiliation(s)
- Nkoana I. Mongalo
- College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa;
| | | |
Collapse
|
2
|
Belén Valdez M, D Jonsiles MF, Avigliano E, Palermo JA. Unlocking the Potential of Glutinol: Structural Diversification and Antifungal Activity against Phytopathogenic Fusarium Strains. JOURNAL OF NATURAL PRODUCTS 2024; 87:2055-2067. [PMID: 39101318 DOI: 10.1021/acs.jnatprod.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Unlike most common pentacyclic plant triterpenes, glutinol has a methyl group at position C-9 and a Δ5 double bond. At the same time, it lacks a methyl at C-10. These features significantly modify its chemical behavior compared to other triterpenes, particularly under oxidative conditions. Although the isolation of glutinol from various plant species has been documented, its chemistry remains largely unexplored. In this study, glutinol was isolated from the bark of Balfourodendron riedelianum as a starting material for top-down strategies of structural diversification, which included ring fusion, oxidation, aromatization, and ring cleavage reactions. Glutinol, together with a library of 22 derivatives, was evaluated for antifungal activity against three phytopathogenic Fusarium strains, F. solani, F. graminearum, and F. tucumaniae. Some of the derivatives displayed antifungal activity; in particular, compound 12, featuring a triazine ring, displayed the best fungicidal properties against F. solani and F. graminearum, while the ring B cleavage product 23 showed the best activity against F. tucumaniae. This study highlights the potential of glutinol as a scaffold for structural diversification, and these results may contribute to the design of novel fungicidal agents against phytopathogenic strains.
Collapse
Affiliation(s)
- María Belén Valdez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Buenos Aires, C1428EGA, Argentina
| | - María Fernanda D Jonsiles
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Buenos Aires, C1428EGA, Argentina
| | - Esteban Avigliano
- Centro de Investigaciones Antonia Ramos (CIAR). Fundación Bosques Nativos Argentinos. Camino Balneario s/n, Villa Bonita, Misiones, B1640, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-UB, Av. Chorroarín 280, CABA, C1427CWO, Argentina
| | - Jorge A Palermo
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
3
|
Sandhu M, Irfan HM, Arshad L, Ullah A, Shah SA, Ali H. Friedelin and Glutinol induce neuroprotection against ethanol induced neurotoxicity in pup's brain through reduction of TNF-α, NF-kB, caspase-3 and PARP-1. Neurotoxicology 2023; 99:274-281. [PMID: 37939858 DOI: 10.1016/j.neuro.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ethanol administration triggers an inflammatory response that leads to a complex series of immune responses including the release of an excessive amount of inflammatory mediators particularly tumor necrosis factor (TNF-α) and nuclear factor-kB (NF-KB) which produce a large amount of reactive oxygen species. The inflammatory-induced cytotoxicity is increased when the PI3-kinase/Akt pathway is inhibited. Some studies have also shown that ethanol suppresses the PI3-kinase signaling pathway induced by receptor activation. Friedelin and Glutinol belong to pentacyclic triterpenoid class and are known for their anti-inflammatory and antioxidant properties. The present study was aimed to elucidate the effects of these phytoconstituents on one of the key ethanol-induced neuronal damage pathways. The pups having (5-7 g average body weight) were used and randomly divided into groups. The control and ethanol treated pups were administered 0.9% normal saline while treated pups received glutinol and friedelin (30 mg/kg subcutaneously) respectively. After four hours all the experimental animals were sacrificed and their brains were collected carefully for protein expression analysis of p-Akt, TNF-α, NF-KB, caspase-3 and PARP-1 employing immunoblotting technique. Hemolytic, DNA protection, chelating power and β-carotene assays results revealed that freidelin and glutinol are safe for parenteral administration. Glutinol administration with ethanol significantly abridged the ethanol induced over expression of TNF-α, caspase-3 and PARP-1 in pup's brain. Similarly, freidelin attenuated the neurodegeneration by inhibiting the ethanol induced p-JNK and NF-kB expression in pups' brain. This protection may be attributed to the revival of p-Akt signaling for cell survival. It is concluded that the present study demonstrates the neuro-protective effects of friedelin and glutinol via modulating the capase-3 and PARP-1 expression and modulating the neuronal apoptotic pathways.
Collapse
Affiliation(s)
- Marva Sandhu
- College of pharmacy, University of Sargodha, Sargodha, Pakistan; Drugs control and traditional medicines division, NIH Islamabad, Pakistan
| | | | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Ferozpur Road Lahore, Pakistan
| | - Aman Ullah
- Department of Pharmacy, Saba Medical Center, P.O. Box 20316, Abu Dhabi, United Arab Emirates
| | - Shahid Ali Shah
- Department of Biology, The University of Haripur, Pakistan; Neuro Molecular Medicines Research Center (NMMRC), Peshawar, Pakistan
| | - Hussain Ali
- Drugs control and traditional medicines division, NIH Islamabad, Pakistan
| |
Collapse
|
4
|
Ahmad FM, Zafar A, Ahmed M, Akhtar N, Hasan MMU, Abdel-Maksoude MA, Aufy M. Quercus floribunda Lindl. Ex A. Camus; a tremendous remedy against inflammation and associated symptoms. Fitoterapia 2023; 170:105628. [PMID: 37517557 DOI: 10.1016/j.fitote.2023.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Crude extracts prepared from aerial parts and nut galls of Quercus floribunda Lindl. Ex. A. Camus were evaluated for phytochemical screening, in vitro antioxidant, and in vivo analgesic, anti-inflammatory and antipyretic activities. Various solvents including methanol (M), acetone (A), distilled water (DW), distilled water + methanol (DWM) were used for extraction. Highest total phenolic (66.9 ± 0.05 μg GAE/mgE) and flavonoid content (38.4 ± 0.72 μg QE/mgE) were measured in QFAA extract by colorimetric methods. Cumulative maximum concentrations of polyphenols were quantified in QFMG, QFAA, and QFMA extracts i.e. 19.036, 15. 574 and 11.647 μg/mg of extract by RP-HPLC analysis. From aerial parts extracts, apentacyclic tritepenoid, glutinol was isolated using column chromatography techniques and structure was elucidated using spectroscopic techniques. QFDWMA (205.5 ± 0.56 μg AAE/mg of extract) showed highest total reducing power while highest total antioxidant capacity (207.1 ± 0.49 AAE/mg of extract) and free radical scavenging potential (96.1 ± 0.42%) were observed in QFAA extract. QFAA extract showed significant (p ≤ 0.001) analgesic potential in different pain models i.e. hot plate method, cold plate method, Haffner's tail clip method and acetic acid induced writhing assay having 50.20%, 62.07%, 57.26% and 70.49% analgesia respectively at 300 mg/kg. QFAA extract showed maximum anti-inflammatory activity in croton oil induced edema (68.83%) and in carrageenan induced paw edema models (72.32%) at 300 mg/kg concentration. QFAA extract markedly reduced the rectal temperature at 300 mg/kg concentration, in brewer's yeast induced pyrexia model. Detailed investigations can be executed in future to determine the molecular mechanisms of these pharmacological attributes.
Collapse
Affiliation(s)
- Fazilat Mehboob Ahmad
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Mohtasheem Ul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan.
| | - Mostafa A Abdel-Maksoude
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Fantoukh OI, Al-Hamoud GA, Nasr FA, Almarfadi OM, Hawwal MF, Ali Z, Alobaid WA, Binawad A, Alrashidi M, Alasmari F, Ahmed MZ, Noman OM. Revisiting the Flora of Saudi Arabia: Phytochemical and Biological Investigation of the Endangered Plant Species Euphorbia saudiarabica. Metabolites 2023; 13:metabo13040556. [PMID: 37110214 PMCID: PMC10144502 DOI: 10.3390/metabo13040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Euphorbia plants have a significant place in traditional medicine due to their numerous therapeutic properties, including their anti-tumor effects, which have been observed in several species. In the current study, a phytochemical investigation of Euphorbia saudiarabica methanolic extract led to the isolation and characterization of four secondary metabolites from the chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, which are reported for the first time in this species. One of the constituents, saudiarabicain F (2), is a rare C-19 oxidized ingol-type diterpenoid that has not been previously reported. The structures of these compounds were determined by extensive spectroscopic (HR-ESI-MS, 1D and 2D NMR) analyses. The anticancer properties of the E. saudiarabica crude extract, its fractions and its isolated compounds were examined against several cancer cells. The active fractions were evaluated for their effects on cell-cycle progression and apoptosis induction using flow cytometry. Furthermore, RT-PCR was employed to estimate the gene-expression levels of the apoptosis-related genes. It was demonstrated that the E. saudiarabica CHCl3 and EtOAc fractions suppressed the proliferation of the cancer cells. The MCF-7 cells were the most sensitive to both fractions, with IC50 values of 22.6 and 23.2 µg/mL, respectively. Notably, both fractions caused cell-cycle arrest in the G2/M phase of the treated MCF-7 cells. The inhibition of the MCF-7 cells' proliferation was also linked with apoptosis induction by flow-cytometry analysis. Additionally, the activation of apoptosis by both fractions was demonstrated by an increase in the ratio of Bax to Bcl-2, with an increase in the expression of caspase-7. Among the isolated compounds, glutinol (1) showed potent activity against the MCF-7 cell line, with an IC50 value of 9.83 µg/mL. Our findings suggest that E. saudiarabica has apoptosis-inducing effects and shows promise as a potential source of new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Omer I Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gadah A Al-Hamoud
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Waleed A Alobaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Binawad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Menwer Alrashidi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol. Processes (Basel) 2022. [DOI: 10.3390/pr10081492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized to discover probable glutinol target genes after ADMET analysis with the pkCSM software. DAVID tools were also used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes. We also uploaded the targets to the STRING database to obtain the protein interaction network at the same time. Then, we performed some molecular docking using glutinol and targets. Finally, we used Cytoscape to visualize and evaluate a protein–protein interaction network and a drug-target-pathway network. Glutinol has good biological activity and drug utilization, according to our findings. A total of 32 target genes were discovered. Bioinformatics and network analysis were used, allowing the discovery that these target genes are linked to carcinogenesis, diabetes, inflammatory response, and other biological processes. These findings showed that glutinol can operate on a wide range of proteins and pathways to establish a pharmacological network that can be useful in drug development and use.
Collapse
|
7
|
Jongkon N, Seaho B, Tayana N, Prateeptongkum S, Duangdee N, Jaiyong P. Computational Analysis and Biological Activities of Oxyresveratrol Analogues, the Putative Cyclooxygenase-2 Inhibitors. Molecules 2022; 27:molecules27072346. [PMID: 35408774 PMCID: PMC9000610 DOI: 10.3390/molecules27072346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a large family of naturally occurring phytochemicals. Herein, oxyresveratrol was isolated from ethanolic crude extracts of Artocarpus lacucha Buch.-Ham., and chemically modified to derive its lipophilic analogues. Biological screening assays showed their inhibitory potency against cyclooxygenase-2 (COX-2) with very low cytotoxicity to the MRC-5 normal cell lines. At the catalytic site of COX-2, docking protocols with ChemPLP, GoldScore and AutoDock scoring functions were carried out to reveal hydrogen bonding interactions with key polar contacts and hydrophobic pi-interactions. For more accurate binding energetics, COX-2/ligand complexes at the binding region were computed in vacuo and implicit aqueous solvation using M06-2X density functional with 6-31G+(d,p) basis set. Our computational results confirmed that dihydrooxyresveratrol (4) is the putative inhibitor of human COX-2 with the highest inhibitory activity (IC50 of 11.50 ± 1.54 µM) among studied non-fluorinated analogues for further lead optimization. Selective substitution of fluorine provides a stronger binding affinity; however, lowering the cytotoxicity of a fluorinated analogue to a normal cell is challenging. The consensus among biological activities, ChemPLP docking score and the binding energies computed at the quantum mechanical level is obviously helpful for identification of oxyresveratrol analogues as a putative anti-inflammatory agent.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Boonwiset Seaho
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (B.S.); (S.P.)
| | - Ngampuk Tayana
- Drug Discovery and Development Center, Office of Advance Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Saisuree Prateeptongkum
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (B.S.); (S.P.)
| | - Nongnaphat Duangdee
- Drug Discovery and Development Center, Office of Advance Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
- Correspondence: (N.D.); (P.J.)
| | - Panichakorn Jaiyong
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (B.S.); (S.P.)
- Correspondence: (N.D.); (P.J.)
| |
Collapse
|
8
|
Unprecedented Insights on Chemical and Biological Significance of Euphorbia cactus Growing in Saudi Arabia. PLANTS 2022; 11:plants11050681. [PMID: 35270151 PMCID: PMC8912717 DOI: 10.3390/plants11050681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Euphorbia cactus Ehrenb ex Boiss. is a plant species reported from central Africa and the southern Arabian Peninsula, belonging to the family of Euphorbiaceae. The plant has ethnobotanical values and is well-known for its milky latex, which has been turned into medicine to treat various ailments. To the best of our knowledge, there have been no literature reports available on phytochemical constituents and antiproliferative mechanism of E. cactus. In the current study, the phytochemical investigation of E. cactus methanolic extract (ECME) resulted in the isolation and characterization of four secondary metabolites, which are reported for the first time from this plant species. In addition, the results of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and ferrous ion chelating (FIC) assays expressed maximum antioxidant activity by ECME and the isolated phytochemicals. Furthermore, ECME exerted a promising antiproliferative effect against different cancer cell lines, and the A549 lung cancer cells were the most sensitive with an IC50 value of 20 µg/mL. The antiproliferative action of ECME in A549 cells was associated with cell accumulation in the G2/M phase and an increase in early and late apoptosis. In addition, RT-PCR and western blot analysis revealed that ECME decreased the anti-apoptotic (Bcl-2) expression, while the expression of pro-apoptotic (Bax) and caspase-3 were increased. This study provides the first insight into the phytochemical constituents and the antiproliferative mechanism of ECME, implying that it could be exploited as a promising natural source for developing new cancer therapies. Further preclinical research is warranted to support the current results.
Collapse
|
9
|
Nur-e-Alam M, Ahmed S, Yousaf M, Khan SI, Mothana RA, Al-Rehaily AJ. Isolation and characterization of cytotoxic and anti-inflammatory constituents fromScoparia dulcisL. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519819901100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Scoparia dulcis L. is one of the edible widely distributed Scropholariaceae species in Asia, Africa and America. It is used in the treatment of respiratory and inflammatory diseases, diabetes, hypertension, cancer, hepatitis and tuberculosis. A phytochemical investigation on S. dulcis led to the isolation of two new acyclic diterpenes Acetic acid 6-hydroxy-2-(6-hydroxy-4-methyl-hex-4-enylidene)-4,8-dimethyl-undeca-4,8-dienyl ester (1) and Acetic acid 8-hydroxy-2-(6-hydroxy-4-methyl-hex-4-enylidene)-6,10-dimethyl-undeca-5,9-dienyl ester (2) in addition to eight known compounds (3–10), namely scopadulciol (3), 4- epi-scopadulcic acid B (4), dulcidiol (5), scopadulcic acid B (6), hymenoxin (7), glutinol (8), eupatilin (9) and 5-demethylnobiletin (10). The structures elucidation was performed using spectroscopic means, including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrum spectrometric analysis. Furthermore, the isolated compounds were investigated for their anti-inflammatory activity through the determination of inhibition of nuclear factor-kappa B activity in human chondrosarcoma (SW1353) cells, the inhibition of inducible nitric oxide synthase mouse macrophages (RAW264.7) and the decrease in cellular oxidative stress in HepG2 cells. Moreover, the cytotoxic activity was investigated against four cancer and two kidney cell lines. Among the isolates, 3, 5 and 10 showed anti-inflammatory activity in terms of inhibiting nuclear factor-kappa B and inducible nitric oxide synthase. Compounds 3–5 were the most cytotoxic towards cancer cell lines (IC50: 3.8 µM to 42.3 µM) followed by 10 (IC50: 30.9- > 64.4 µM). Cytotoxicity of compounds 3–5 was comparable to the activity of doxorubicin.
Collapse
Affiliation(s)
- Mohammad Nur-e-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Yousaf
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Diteba Laboratories Inc., Mississauga, ON, Canada
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
- Department of Biomolecular Science, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|