1
|
Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, Fiore LA, Scioscia G, Mirijello A, Saponara A, Sperandeo M. A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians. Diagnostics (Basel) 2023; 13:855. [PMID: 36899998 PMCID: PMC10001275 DOI: 10.3390/diagnostics13050855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ultrasound (US) is acoustic energy that interacts with human tissues, thus, producing bioeffects that may be hazardous, especially in sensitive organs (i.e., brain, eye, heart, lung, and digestive tract) and embryos/fetuses. Two basic mechanisms of US interaction with biological systems have been identified: thermal and non-thermal. As a result, thermal and mechanical indexes have been developed to provide a means of assessing the potential for biological effects from exposure to diagnostic US. The main aims of this paper were to describe the models and assumptions used to estimate the "safety" of acoustic outputs and indices and to summarize the current state of knowledge about US-induced effects on living systems deriving from in vitro models and in vivo experiments on animals. This review work has made it possible to highlight the limits associated with the use of the estimated safety values of thermal and mechanical indices relating above all to the use of new US technologies, such as contrast-enhanced ultrasound (CEUS) and acoustic radiation force impulse (ARFI) shear wave elastography (SWE). US for diagnostic and research purposes has been officially declared safe, and no harmful biological effects in humans have yet been demonstrated with new imaging modalities; however, physicians should be adequately informed on the potential risks of biological effects. US exposure, according to the ALARA (As Low As Reasonably Achievable) principle, should be as low as reasonably possible.
Collapse
Affiliation(s)
- Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Michela Salvemini
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Tuccari
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Grazia Mastrodonato
- Department of Basic Medical Science, Neuroscience and Sensory Organs, Institute of Sports Medicine, University “Aldo Moro” of Bari, 70122 Bari, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, Institute of Internal Medicine, Liver Unit, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Lucia Angela Fiore
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Antonio Mirijello
- Department of Internal of Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Marco Sperandeo
- Unit of Interventional and Diagnostic Ultrasound of Internal Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
2
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Indirect Structural Muscle Injuries of Lower Limb: Rehabilitation and Therapeutic Exercise. J Funct Morphol Kinesiol 2021; 6:jfmk6030075. [PMID: 34564194 PMCID: PMC8482242 DOI: 10.3390/jfmk6030075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle injuries are the most common trauma in team and individual sports. The muscles most frequently affected are those of the lower limb, and in particular hamstrings, adductors, rectus femoris and calf muscles. Although several scientific studies have tried to propose different rehabilitation protocols, still too often the real rehabilitation process is not based on scientific knowledge, especially in non-elite athletes. Moreover, the growing use of physical and instrumental therapies has made it increasingly difficult to understand what can be truly effective. Therefore, the aim of the present paper is to review proposed therapeutic algorithms for muscle injuries, proposing a concise and practical summary. Following a three-phase rehabilitation protocol, this review aims to describe the conservative treatment of indirect structural muscle injuries, which are the more routinely found and more challenging type. For each phase, until return to training and return to sport are completed, the functional goal, the most appropriate practitioner, and the best possible treatment according to current evidence are expressed. Finally, the last section is focused on the specific exercise rehabilitation for the four main muscle groups with a structured explanatory timetable.
Collapse
|
4
|
Yan JX, Liao X, Tang LZ, Chang HY, Jiang X, Lu JQ, Li SH, Liu HW, Xie S, Xie GH. Carbon Arc Lamp Therapy Enhances the Repair Potential of Chronic Soft Tissue Injury in Rats Compared with the Ability of Photobiomodulation Therapy. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:311-320. [PMID: 33872063 DOI: 10.1089/photob.2020.4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: The effects of photobiomodulation therapy (PBMT) and carbon arc lamp therapy (CALT) on the repair of chronic soft tissue injury were compared. Background data: PBMT improves soft tissue repair of chronic injury. However, there has been no research on the effect of CALT. Methods: Human umbilical vein endothelial cells (HUVECs) were irradiated using PBMT and CALT at 2 J/cm2 to observe their effects on cell proliferation and migration. The effects of PBMT and CALT on soft tissue injury repair were assessed using a chronic gastrocnemius injury model of the posterior limb in rats. The malondialdehyde (MDA), superoxide dismutase (SOD), and prostaglandin E2 (PGE2) were examined by biochemical analyses. The degree of tissue damage repair was evaluated by the immunohistochemical method [CD45, CD34, vascular endothelial growth factor (VEGF), and actin] and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results: Treatment by PBMT and CALT significantly accelerated the proliferation and migration of HUVECs. Moreover, significant decreases in the contents of MDA and PGE2 were observed in the PBMT and CALT groups, while SOD activity was increased. The histological assessment shows that the content of inflammatory cells and apoptotic cells significantly decreased in the CALT group. However, the microvascular density, VEGF content, and actin content were increased in the CALT group. Conclusions: The results demonstrate that CALT has a stronger effect on promoting chronic soft tissue injury repair in comparison with PBMT.
Collapse
Affiliation(s)
- Jian-Xin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Ling-Zhi Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Han-Yu Chang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Jin-Qiang Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Sheng-Hong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Shan Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Guang-Hui Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
5
|
Niu J, An G, Gu Z, Li P, Liu Q, Bai R, Sun J, Du Q. Analysis of sensitivity and specificity: precise recognition of neutrophils during regeneration of contused skeletal muscle in rats. Forensic Sci Res 2020; 7:228-237. [PMID: 35784418 PMCID: PMC9245985 DOI: 10.1080/20961790.2020.1713432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this report, we applied the TissueFAXS 200 digital pathological analysis system to rapidly and accurately identify neutrophils during regeneration of contused skeletal muscle, and to provide information for follow-up studies on neutrophils to estimate wound age. Rat injury model was established, and skeletal muscle samples were obtained from the control group and contusion groups at 1, 1.5, 2, 3, 4, and 6 h, as well as at 1, 3, 5, and 15 d post-injury (n = 5 per group). The expression of nuclei and neutrophils was detected by hematoxylin and eosin (HE) staining and immunohistochemical (IHC) staining. A total of 20 injury site areas of 0.25 mm2 (0.5 mm × 0.5 mm) were then randomly selected at all time points. A TissueFAXS 200 digital pathological analysis system was used to identify the positive and negative numbers. Knowledge of five professional medical workers were considered the gold standard to measure the false positive rate (FPR), false negative rate (FNR), sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) curves. As a result, with a staining area of neutrophils from 8 µm2 to 15 µm2, the FPR was 4.28%–12.14%, the FNR was 12.42%–64.08%, the sensitivity was 35.92%–87.58%, the specificity was 87.86%–95.72%, the Youden index was 0.316–0.754, the accuracy was 82.80%–88.30%, and the AUC was 0.771–0.826. The AUC was largest when the cut-off value of the staining area was 12 µm2. Our results show that this software-based method is more accurate than the human eye in evaluating neutrophil infiltration. Based on the sensitivity and specificity, neutrophils can be accurately identified during regeneration of contused skeletal muscle. The TissueFAXS 200 digital pathological analysis system can also be used to optimize conditions for different cell types under various injury conditions to determine the optimal cut-off value of the staining area and provide optimal conditions for further study. Furthermore, it will provide evidence for forensic pathology cases.
Collapse
Affiliation(s)
- Jiajia Niu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Zhen Gu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Peng Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiqing Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
- Criminal Investigation Brigade, Zhuji Public Security Bureau, Zhuji, China
| | - Rufeng Bai
- 2011 Cooperative Innovation Center of Judicial Civilization, Beijing, China
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
6
|
Bisciotti GN, Volpi P, Amato M, Alberti G, Allegra F, Aprato A, Artina M, Auci A, Bait C, Bastieri GM, Balzarini L, Belli A, Bellini G, Bettinsoli P, Bisciotti A, Bisciotti A, Bona S, Brambilla L, Bresciani M, Buffoli M, Calanna F, Canata GL, Cardinali D, Carimati G, Cassaghi G, Cautero E, Cena E, Corradini B, Corsini A, D'Agostino C, De Donato M, Delle Rose G, Di Marzo F, Di Pietto F, Enrica D, Eirale C, Febbrari L, Ferrua P, Foglia A, Galbiati A, Gheza A, Giammattei C, Masia F, Melegati G, Moretti B, Moretti L, Niccolai R, Orgiani A, Orizio C, Pantalone A, Parra F, Patroni P, Pereira Ruiz MT, Perri M, Petrillo S, Pulici L, Quaglia A, Ricciotti L, Rosa F, Sasso N, Sprenger C, Tarantola C, Tenconi FG, Tosi F, Trainini M, Tucciarone A, Yekdah A, Vuckovic Z, Zini R, Chamari K. Italian consensus conference on guidelines for conservative treatment on lower limb muscle injuries in athlete. BMJ Open Sport Exerc Med 2018; 4:e000323. [PMID: 29862040 PMCID: PMC5976114 DOI: 10.1136/bmjsem-2017-000323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Provide the state of the art concerning (1) biology and aetiology, (2) classification, (3) clinical assessment and (4) conservative treatment of lower limb muscle injuries (MI) in athletes. Seventy international experts with different medical backgrounds participated in the consensus conference. They discussed and approved a consensus composed of four sections which are presented in these documents. This paper represents a synthesis of the consensus conference, the following four sections are discussed: (i) The biology and aetiology of MIs. A definition of MI was formulated and some key points concerning physiology and pathogenesis of MIs were discussed. (ii) The MI classification. A classification of MIs was proposed. (iii) The MI clinical assessment, in which were discussed anamnesis, inspection and clinical examination and are provided the relative guidelines. (iv) The MI conservative treatment, in which are provided the guidelines for conservative treatment based on the severity of the lesion. Furthermore, instrumental therapy and pharmacological treatment were discussed. Knowledge of the aetiology and biology of MIs is an essential prerequisite in order to plan and conduct a rehabilitation plan. Another important aspect is the use of a rational MI classification on prognostic values. We propose a classification based on radiological investigations performed by ultrasonography and MRI strongly linked to prognostic factors. Furthermore, the consensus conference results will able to provide fundamental guidelines for diagnostic and rehabilitation practice, also considering instrumental therapy and pharmacological treatment of MI. Expert opinion, level IV.
Collapse
Affiliation(s)
- Gian Nicola Bisciotti
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | - Piero Volpi
- Istituto Clinico Humanitas, Milano, Italy
- FC Internazionale, Milano, Italy
| | | | | | | | | | | | - Alessio Auci
- UOS Angiografia e Radiologia Interventistica, Ospedale delle Apuane, Massa-Carrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Emanuele Cena
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Biagio Moretti
- Azienda Ospedaliero-Universitaria “Policlinico”, Bari, Italy
| | - Lorenzo Moretti
- Azienda Ospedaliero-Universitaria “Policlinico”, Bari, Italy
| | | | | | | | | | - Federica Parra
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | | | | | | | | | - Luca Pulici
- Istituto Ortopedico Gaetano Pini, Milano, Italy
| | | | - Luca Ricciotti
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | | | | | | | | | | | - Fabio Tosi
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | | | | | - Ali Yekdah
- FAF Jenia Centre Med Sport, Algeri, Algeria
| | - Zarko Vuckovic
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| | - Raul Zini
- Maria Cecilia Hospital, Cotignola, Italy
| | - Karim Chamari
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| |
Collapse
|
7
|
Sun JH, Zhu XY, Li SQ, Dong TN, Du QX. Measuring temporal expression, systematic response, and post-mortem stability to assess potential markers for estimating wound age: an example of Fosl1 in contused skeletal muscle. AUST J FORENSIC SCI 2017. [DOI: 10.1080/00450618.2017.1334824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun-hong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xi-yan Zhu
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - San-qiang Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ta-na Dong
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
8
|
Zhu XY, Du QX, Li SQ, Sun JH. Comparison of the homogeneity of mRNAs encoding SFRP5, FZD4, and Fosl1 in post-injury intervals: Subcellular localization of markers may influence wound age estimation. J Forensic Leg Med 2016; 43:90-96. [DOI: 10.1016/j.jflm.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/05/2016] [Accepted: 07/27/2016] [Indexed: 01/28/2023]
|
9
|
Deane MN, Gregory M, Mars M. The creation of a measurable contusion injury in skeletal muscle. J S Afr Vet Assoc 2014; 85:1031. [PMID: 25686259 DOI: 10.4102/jsava.v85i1.1031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/29/2013] [Accepted: 02/07/2014] [Indexed: 11/01/2022] Open
Abstract
The effect that compressed air massage (CAM) has on skeletal muscle has been ascertained by the morphological and morphometric evaluation of healthy vervet monkey and rabbit skeletal muscle. How CAM may influence the process of healing following a contusion injury is not known. To determine how CAM or other physiotherapeutic modalities may influence healing, it is necessary to create a minor injury that is both reproducible and quantifiable at the termination of a pre-determined healing period. An earlier study described changes in the morphology of skeletal muscle following a reproducible contusion injury. This study extended that work in that it attempted to quantify the 'severity' of such an injury. A 201 g, elongated oval-shaped weight was dropped seven times through a 1 m tube onto the left vastus lateralis muscle of four New Zealand white rabbits. Biopsies were obtained 6 days after injury from the left healing juxta-bone and sub-dermal muscle and uninjured (control) right vastus lateralis of each animal. The tissue was fixed in formal saline, embedded in wax, cut and stained with haematoxylin and phosphotungstic haematoxylin. The muscle was examined by light microscopy and quantification of the severity of injury made using a modified, 'in-house' morphological index and by the comparative morphometric measurement of the cross-sectioned epimysium and myofibres in injured and control muscle. The results showed that a single contusion causes multiple, quantifiable degrees of injury from skin to bone - observations of particular importance to others wishing to investigate contusion injury in human or animal models.
Collapse
|
10
|
Barbosa HHS, Nascimento Filho JHD, Nonato DTT, Almeida MJMD, Silva FS, Abreu BJ, Vieira WHDB. Efeito do ultrassom terapêutico sobre as propriedades mecânicas do gastrocnêmio em ratos. REV BRAS MED ESPORTE 2014. [DOI: 10.1590/1517-86922014200201312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUÇÃO: Apesar de algumas controvérsias quanto à sua utilização, o ultrassom terapêutico (UST) é um recurso comumente aplicado na reabilitação desportiva para aceleração do reparo tecidual de lesões musculares. Sabe-se que lesões musculares influenciam negativamente as propriedades mecânicas da musculatura estriada esquelética e algumas evidências demonstram que o UST poderia ter efeitos benéficos sobre o reparo muscular e, consequentemente, sobre suas propriedades mecânicas.OBJETIVO: Analisar o efeito do UST no reparo tecidual por meio das propriedades mecânicas musculares de ratos após trauma por criolesão.MÉTODOS: Foram utilizados no estudo 30 ratos da linhagem Wistar, os quais foram divididos em três grupos: grupo controle intacto (GC), grupo lesionado sem tratamento (GL), e grupo lesionado e estimulado com UST (frequência de 1 MHz; intensidade de 0,5 W/cm2; ciclo de trabalho de 50%; por quatro minutos diários), durante sete dias consecutivos (GLUST). As propriedades mecânicas obtidas através de ensaio mecânico de tração foram avaliadas em uma máquina universal de ensaios.RESULTADOS: Foram analisados estatisticamente, com nível de significância de 95% (P<0,05). Após sete sessões de tratamento, houve melhora estatisticamente significativa nas propriedades mecânicas de carga no limite de proporcionalidade, carga no limite máximo e resiliência para o GLUST em relação ao GL (p<0,05).CONCLUSÃO: O UST foi eficaz no processo de reparo tecidual, conferindo ao tecido muscular maior resistência à tração e absorção de energia.
Collapse
|
11
|
Abrunhosa VM, Soares CP, Batista Possidonio AC, Alvarenga AV, Costa-Felix RPB, Costa ML, Mermelstein C. Induction of skeletal muscle differentiation in vitro by therapeutic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:504-512. [PMID: 24412173 DOI: 10.1016/j.ultrasmedbio.2013.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 06/03/2023]
Abstract
Therapeutic ultrasound (TU) has been used for the last 50 y in rehabilitation, including treatment of soft tissues. Ultrasound waves can be employed in two different modes of operation, continuous and pulsed, which produce both thermal and non-thermal effects. Despite the large-scale use of TU, there are few scientific studies on its biologic effects during skeletal muscle differentiation. To better analyze the cellular effects of TU, we decided to follow cells in vitro. The main purpose of this study was to evaluate the effects of TU in primary chick myogenic cell cultures using phase contrast optical microscopy and immunofluorescence microscopy, followed by image analysis and quantification. Our results indicate that TU can stimulate the differentiation of skeletal muscle cells in vitro, as measured by the thickness of multinucleated myotubes, the ratio of mononucleated cells to multinucleated cells and expression of the muscle-specific protein desmin. This study is a first step toward a metrologic and science-based protocol for cell treatment under different ultrasound field exposures.
Collapse
Affiliation(s)
- Viviane Mendes Abrunhosa
- Laboratório de Ultrassom, Diretoria de Metrologia Científica e Industrial (DIMCI), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carolina Pontes Soares
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - André Victor Alvarenga
- Laboratório de Ultrassom, Diretoria de Metrologia Científica e Industrial (DIMCI), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, RJ, Brazil
| | - Rodrigo P B Costa-Felix
- Laboratório de Ultrassom, Diretoria de Metrologia Científica e Industrial (DIMCI), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, RJ, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Dekeyser GJ, Clary CR, Otis JS. Chronic alcohol ingestion delays skeletal muscle regeneration following injury. Regen Med Res 2013; 1:2. [PMID: 25984321 PMCID: PMC4376340 DOI: 10.1186/2050-490x-1-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/21/2012] [Indexed: 12/17/2022] Open
Abstract
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18–20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Collapse
Affiliation(s)
- Graham J Dekeyser
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30322 USA
| | | | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30322 USA
| |
Collapse
|
13
|
Du QX, Sun JH, Zhang LY, Liang XH, Guo XJ, Gao CR, Wang YY. Time-dependent expression of SNAT2 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Forensic Sci Med Pathol 2013; 9:528-33. [PMID: 24045877 DOI: 10.1007/s12024-013-9482-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
To estimate the age of skeletal muscle contusion, the expression of SNAT2 mRNA in contused skeletal muscle of rats was detected by real-time polymerase chain reaction (PCR). In total, 78 Sprague-Dawley male rats were divided into control and contusion groups. At 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h (n = 6) after contusion, the rats were sacrificed with a lethal dose of pentobarbital. Another 24 rats received contusion injuries at 6, 12, 18, and 24 h (n = 6) after death. Total RNA was isolated from muscle specimens using the TRIzol reagent and reverse-transcribed into first-strand cDNA. Sequence-specific primers and TaqMan fluorogenic probes for SNAT2 mRNA and RPL13 mRNA were designed using the AlleleID 6 software, and the expression levels of SNAT2 mRNA were determined by real-time PCR. At 4, 16, 20, and 24 h after contusion, expression levels of SNAT2 mRNA normalized to RPL13 mRNA increased by 2.07 (P < 0.05), 2.53 (P < 0.05), 2.68 (P < 0.05), and 2.06 fold (P < 0.05) respectively, versus that in the control group. However, there was no significant change in the expression level of SNAT2 mRNA from 24 to 48 h (P > 0.05) after contusion, when normalized to RPL13 mRNA. There was no change in the expression level of SNAT2 mRNA between the normal skeletal muscle from the left limb of the same injured rat and the control. Also, no degradation of SNAT2 mRNA was detected in the postmortem samples (P > 0.05). This result suggests that the determination of SNAT2 mRNA levels by real-time PCR may be useful for estimating wound age.
Collapse
Affiliation(s)
- Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Souza JD, Gottfried C. Muscle injury: review of experimental models. J Electromyogr Kinesiol 2013; 23:1253-60. [PMID: 24011855 DOI: 10.1016/j.jelekin.2013.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/03/2013] [Accepted: 07/15/2013] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the most abundant tissue in the human body. Its main characteristic is the capacity to regenerate after injury independent of the cause of injury through a process called inflammatory response. Mechanical injuries are the most common type of the skeletal muscle injuries and are classified into one of three areas strain, contusion, and laceration. First, this review aims to describe and compare the main experimental methods that replicate the mechanical muscle injuries. There are several ways to replicate each kind of mechanical injury; there are, however, specific characteristics that must be taken into account when choosing the most appropriate model for the experiment. Finally, this review discusses the context of mechanical injury considering types, variability of methods, and the ability to reproduce injury models.
Collapse
Affiliation(s)
- Jaqueline de Souza
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Institute of Health's Basic Science. Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Course of Physical Therapy, Federal University of Pampa, Uruguaiana, RS, Brazil.
| | | |
Collapse
|
15
|
Shu B, Yang Z, Li X, Zhang LQ. Effect of different intensity pulsed ultrasound on the restoration of rat skeletal muscle contusion. Cell Biochem Biophys 2012; 62:329-36. [PMID: 22068832 DOI: 10.1007/s12013-011-9310-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Muscle damage is a common form of injury. The incidence of muscle damage accounts for up to half of the sports injuries. The aim of this study was to investigate the effect of pulsed ultrasound on the healing process in an animal contusion injury model. SD rats (62) were randomly divided into control group (CG, 14 rats) and treatment group (48). According to the intensities of Ultrasound therapy, the treatment group was divided into 4 subgroups of 12 rats, each: A (0.25 W/cm(2), US(1)), B (0.5 W/cm(2), US(2)), C (0.75 W/cm(2), US(3)) and D (0.25 W/cm(2)). The effectiveness of ultrasound treatment on muscle injuries was evaluated, and the optimal intensity of ultrasound in treating muscle injuries was explored. The results obtained provide experimental and theoretical evidence for the clinical effectiveness of Ultrasound therapy in treating muscle injuries.
Collapse
Affiliation(s)
- Bin Shu
- Department of Rehabilitation Medicine, Third Affiliated Hospital, Third Military Medical University, Chongqing 400042, China.
| | | | | | | |
Collapse
|
16
|
Delgado-Diaz DC, Gordon BS, Dompier T, Burgess S, Dumke C, Mazoué C, Caldwell T, Kostek MC. Therapeutic ultrasound affects IGF-1 splice variant expression in human skeletal muscle. Am J Sports Med 2011; 39:2233-41. [PMID: 21785002 DOI: 10.1177/0363546511414857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Animal models of skeletal muscle damage and repair demonstrate that therapeutic ultrasound (TUS) enhances muscle force recovery after damage, increases satellite cell proliferation, and decreases insulin-like growth factor (IGF)-1 splice variant (mechano growth factor) gene expression. However, these effects have not been verified in humans. PURPOSE This study was undertaken to examine the 3 known splice variants of the IGF-1 gene in human skeletal muscle after damage and TUS treatment. STUDY DESIGN Controlled laboratory study. METHODS Sixteen healthy men (18-29 years of age), physically active, were randomized to either a control (CON) or experimental group (EXP). The EXP group underwent 200 lengthening contractions (muscle damage) of the quadriceps of both legs, 48 hours before TUS. Both groups received TUS, delivered for 10 minutes on a standardized area of the vastus lateralis of only 1 leg (1.0 MHz, 1.5 W/cm(2)). Bilateral muscle biopsy samples were taken from all participants, 6 hours after TUS. Total RNA was extracted, and quantitative real-time polymerase chain reaction conducted for each IGF-1 splice variant. RESULTS Muscle damage was confirmed by a decrease in the isometric peak torque and increase in creatine kinase activity levels 48 hours after damage (P < .01). After muscle damage, gene expression of total IGF-1 and 2 IGF-1 splice variants increased. Therapeutic ultrasound induced significant increase in IGF-1Eb gene expression in undamaged muscle (1.4 ± 0.2-fold, P < 0.01). In damaged skeletal muscle, no significant change in gene expression attributable to TUS was determined. CONCLUSION Insulin-like growth factor-1 splice variants are differentially regulated in human skeletal muscle in response to exercise-induced muscle damage and TUS treatment. A single treatment of TUS in damaged muscle induces no change in the gene expression of the 3 IGF-1 splice variants in humans. In contrast, in undamaged skeletal muscle, TUS significantly increased IGF-1Eb splice variant gene expression. CLINICAL RELEVANCE These findings suggest that TUS may have additional therapeutic uses beyond its current common practice but may not be effective for muscle injury treatment in a young, healthy population.
Collapse
Affiliation(s)
- Diana C Delgado-Diaz
- Laboratory of Muscle & Translational Therapeutics, Department of Exercise Science, Division of Applied Physiology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Validation of reference genes for estimating wound age in contused rat skeletal muscle by quantitative real-time PCR. Int J Legal Med 2011; 126:113-20. [DOI: 10.1007/s00414-011-0604-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
|
18
|
McBrier NM, Neuberger T, Okita N, Webb A, Sharkey N. Reliability and validity of a novel muscle contusion device. J Athl Train 2010; 44:275-8. [PMID: 19478842 DOI: 10.4085/1062-6050-44.3.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Many models have been employed to replicate skeletal muscle injury associated with trauma; however, most are restricted to 1 level of severity. OBJECTIVE To create and validate an injury-producing device that could generate multiple levels of injury severity. DESIGN Validation study. PATIENTS OR OTHER PARTICIPANTS Twenty-six male Wistar rats, 3 to 4 months old. INTERVENTION(S) A contusion device was developed and its ability to deliver consistent impacts was validated alone and in the presence of an experimental animal. A free-falling mass (267 g) was adjusted to the desired height (40, 50, 60, or 70 cm) and then dropped. MAIN OUTCOME MEASURE(S) Peak load, peak displacement, impulse, energy, and velocity peak were measured. Injury severity was determined using magnetic resonance imaging. RESULTS Outcome measures observed from the device alone were different by height (F(18,136) = 21.807, P < .001, 1-beta = 1.0). Outcomes using the experimental animals were also dependent on height (F(14,102) = 68.679, P < .001, 1-beta = 1.0). Linear regression analyses indicated that height accounted for 17% to 89% of the variance. CONCLUSIONS Mild to moderate and moderate to severe injuries can be replicated with this device, which will be useful in evaluating clinical treatments on acute muscle injury.
Collapse
Affiliation(s)
- Nicole M McBrier
- The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
19
|
Artilheiro PP, Oliveira EN, Viscardi CS, Martins MD, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12. FISIOTERAPIA E PESQUISA 2010. [DOI: 10.1590/s1809-29502010000200013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O ultra-som terapêutico (US) é um recurso bioestimulante utilizado para propiciar reparo muscular de melhor qualidade e menor duração, mas o potencial terapêutico do US contínuo não está totalmente estabelecido. O objetivo deste trabalho foi avaliar o efeito do US contínuo sobre a proliferação e viabilidade de células musculares precursoras (mioblastos C2C12). Mioblastos C2C12 foram cultivados em meio de cultura contendo 10% de soro fetal bovino e irradiados com US contínuo nas freqüências de 1 e 3 MHz nas intensidades de 0,2 e 0,5 W/cm2, durante 2 e 5 minutos. A viabilidade e proliferação celular foram avaliadas após 24, 48 e 72 h de incubação. Grupos não-irradiados serviram como controle. Foram realizados experimentos independentes em cada condição acima, e os dados obtidos submetidos à análise estatística. Os resultados mostram que não houve diferença estatisticamente significativa na proliferação e viabilidade celular entre os mioblastos tratados com US e as culturas controles após os diferentes períodos de incubação, em todos os parâmetros avaliados. Conclui-se que o US contínuo, nos parâmetros avaliados, não foi capaz de alterar a proliferação e viabilidade dos mioblastos.
Collapse
|
20
|
Sun JH, Wang YY, Zhang L, Gao CR, Zhang LZ, Guo Z. Time-dependent expression of skeletal muscle troponin I mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Int J Legal Med 2009; 124:27-33. [DOI: 10.1007/s00414-009-0323-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 01/14/2009] [Indexed: 01/05/2023]
|
21
|
Smith C, Kruger MJ, Smith RM, Myburgh KH. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 2009; 38:947-69. [PMID: 18937524 DOI: 10.2165/00007256-200838110-00005] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Injury of skeletal muscle, and especially mechanically induced damage such as contusion injury, frequently occurs in contact sports, as well as in accidental contact sports, such as hockey and squash. The large variations with regard to injury severity and affected muscle group, as well as non-specificity of reported symptoms, complicate research aimed at finding suitable treatments. Therefore, in order to increase the chances of finding a successful treatment, it is important to understand the underlying mechanisms inherent to this type of skeletal muscle injury and the cellular processes involved in muscle healing following a contusion injury. Arguably the most important of these processes is inflammation since it is a consistent and lasting response. The inflammatory response is dependent on two factors, namely the extent of actual physical damage and the degree of muscle vascularization at the time of injury. However, long-term anti-inflammatory treatment is not necessarily effective in promoting healing, as indicated by various studies on NSAID treatment. Because of the factors named earlier, human studies on the inflammatory response to contusion injury are limited, but several experimental animal models have been designed to study muscle damage and regeneration. The early recovery phase is characterized by the overlapping processes of inflammation and occurrence of secondary damage. Although neutrophil infiltration has been named as a contributor to the latter, no clear evidence exists to support this claim. Macrophages, although forming part of the inflammatory response, have been shown to have a role in recovery, rather than in exacerbating secondary damage. Several probable roles for this cell type in the second phase of recovery, involving resolution processes, have been identified and include the following: (i) phagocytosis to remove cellular debris; (ii) switching from a pro- to anti-inflammatory phenotype in regenerating muscle; (iii) preventing muscle cells from undergoing apoptosis; (iv) releasing factors to promote muscle precursor cell activation and growth; and (v) secretion of cytokines and growth factors to facilitate vascular and muscle fibre repair. These many different roles suggest that a single treatment with one specific target cell population (e.g. neutrophils, macrophages or satellite cells) may not be equally effective in all phases of the post-injury response. To find the optimal targeted, but time-course-dependent, treatments requires substantial further investigations. However, the techniques currently used to induce mechanical injury vary considerably in terms of invasiveness, tools used to induce injury, muscle group selected for injury and contractile status of the muscle, all of which have an influence on the immune and/or cytokine responses. This makes interpretation of the complex responses more difficult. After our review of the literature, we propose that a standardized non-invasive contusion injury is the ideal model for investigations into the immune responses to mechanical skeletal muscle injury. Despite its suitability as a model, the currently available literature with respect to the inflammatory response to injury using contusion models is largely inadequate. Therefore, it may be premature to investigate highly targeted therapies, which may ultimately prove more effective in decreasing athlete recovery time than current therapies that are either not phase-specific, or not administered in a phase-specific fashion.
Collapse
Affiliation(s)
- Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa.
| | | | | | | |
Collapse
|
22
|
Abstract
Background/Aim. Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. Methods. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E) were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C). A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH) was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. Results. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80?19.18; C: 22,97?25,47; p = 0.0005), rank of pressure ulcer (E: 5.90?2.48; C: 8.6?1.05; p = 0.0005) and total PUSH score (E: 7.35?3.17; C: 11.85?2.35; p = 0,0003). The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. Conclusion. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.
Collapse
|