1
|
Fareh R, Elsabe A, Baziyad M, Kawser T, Brahmi B, Rahman MH. Will Your Next Therapist Be a Robot?-A Review of the Advancements in Robotic Upper Extremity Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2023; 23:5054. [PMID: 37299781 PMCID: PMC10255591 DOI: 10.3390/s23115054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Several recent studies have indicated that upper extremity injuries are classified as a top common workplace injury. Therefore, upper extremity rehabilitation has become a leading research area in the last few decades. However, this high number of upper extremity injuries is viewed as a challenging problem due to the insufficient number of physiotherapists. With the recent advancements in technology, robots have been widely involved in upper extremity rehabilitation exercises. Although robotic technology and its involvement in the rehabilitation field are rapidly evolving, the literature lacks a recent review that addresses the updates in the robotic upper extremity rehabilitation field. Thus, this paper presents a comprehensive review of state-of-the-art robotic upper extremity rehabilitation solutions, with a detailed classification of various rehabilitative robots. The paper also reports some experimental robotic trials and their outcomes in clinics.
Collapse
Affiliation(s)
- Raouf Fareh
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ammar Elsabe
- Department of Computer Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed Baziyad
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tunajjina Kawser
- Anatomy Department, Shaheed Tajuddin Ahmad Medical College, Gazipur 1700, Bangladesh
| | - Brahim Brahmi
- Department of Electrical Engineering, College of Ahuntsic, Montreal, QC H2M 1Y8, Canada
| | - Mohammad H. Rahman
- Mechanical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI 53212, USA
| |
Collapse
|
2
|
Isokinetic Rehabilitation Trajectory Planning of an Upper Extremity Exoskeleton Rehabilitation Robot Based on a Multistrategy Improved Whale Optimization Algorithm. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Upper extremity exoskeleton rehabilitation robots have become a significant piece of rehabilitation equipment, and planning their motion trajectories is essential in patient rehabilitation. In this paper, a multistrategy improved whale optimization algorithm (MWOA) is proposed for trajectory planning of upper extremity exoskeleton rehabilitation robots with emphasis on isokinetic rehabilitation. First, a piecewise polynomial was used to construct a rough trajectory. To make the trajectory conform to human-like movement, a whale optimization algorithm (WOA) was employed to generate a bounded jerk trajectory with the minimum running time as the objective. The search performance of the WOA under complex constraints, including the search capability of trajectory planning symmetry, was improved by the following strategies: a dual-population search, including a new communication mechanism to prevent falling into the local optimum; a mutation centroid opposition-based learning, to improve the diversity of the population; and an adaptive inertia weight, to balance exploration and exploitation. Simulation analysis showed that the MWOA generated a trajectory with a shorter run-time and better symmetry and robustness than the WOA. Finally, a pilot rehabilitation session on a healthy volunteer using an upper extremity exoskeleton rehabilitation robot was completed safely and smoothly along the trajectory planned by the MWOA. The proposed algorithm thus provides a feasible scheme for isokinetic rehabilitation trajectory planning of upper extremity exoskeleton rehabilitation robots.
Collapse
|
3
|
Longatelli V, Torricelli D, Tornero J, Pedrocchi A, Molteni F, Pons JL, Gandolla M. A unified scheme for the benchmarking of upper limb functions in neurological disorders. J Neuroeng Rehabil 2022; 19:102. [PMID: 36167552 PMCID: PMC9513990 DOI: 10.1186/s12984-022-01082-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In neurorehabilitation, we are witnessing a growing awareness of the importance of standardized quantitative assessment of limb functions. Detailed assessments of the sensorimotor deficits following neurological disorders are crucial. So far, this assessment has relied mainly on clinical scales, which showed several drawbacks. Different technologies could provide more objective and repeatable measurements. However, the current literature lacks practical guidelines for this purpose. Nowadays, the integration of available metrics, protocols, and algorithms into one harmonized benchmarking ecosystem for clinical and research practice is necessary. METHODS This work presents a benchmarking framework for upper limb capacity. The scheme resulted from a multidisciplinary and iterative discussion among several partners with previous experience in benchmarking methodology, robotics, and clinical neurorehabilitation. We merged previous knowledge in benchmarking methodologies for human locomotion and direct clinical and engineering experience in upper limb rehabilitation. The scheme was designed to enable an instrumented evaluation of arm capacity and to assess the effectiveness of rehabilitative interventions with high reproducibility and resolution. It includes four elements: (1) a taxonomy for motor skills and abilities, (2) a list of performance indicators, (3) a list of required sensor modalities, and (4) a set of reproducible experimental protocols. RESULTS We proposed six motor primitives as building blocks of most upper-limb daily-life activities and combined them into a set of functional motor skills. We identified the main aspects to be considered during clinical evaluation, and grouped them into ten motor abilities categories. For each ability, we proposed a set of performance indicators to quantify the proposed ability on a quantitative and high-resolution scale. Finally, we defined the procedures to be followed to perform the benchmarking assessment in a reproducible and reliable way, including the definition of the kinematic models and the target muscles. CONCLUSIONS This work represents the first unified scheme for the benchmarking of upper limb capacity. To reach a consensus, this scheme should be validated with real experiments across clinical conditions and motor skills. This validation phase is expected to create a shared database of human performance, necessary to have realistic comparisons of treatments and drive the development of new personalized technologies.
Collapse
Affiliation(s)
- Valeria Longatelli
- Neuroengineering and Medical Robotics Laboratory and WE-COBOT Laboratory, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jesús Tornero
- Advanced Neurorehabilitation Unit, Hospital Los Madroños, Madrid, Spain
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory and WE-COBOT Laboratory, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy
| | | | - Marta Gandolla
- WE-COBOT Laboratory, Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Zhang M, Sun C, Liu Y, Wu X. A Robotic System to Deliver Multiple Physically Bimanual Tasks via Varying Force Fields. IEEE Trans Neural Syst Rehabil Eng 2022; 30:688-698. [PMID: 35271445 DOI: 10.1109/tnsre.2022.3158339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Individuals with physical limb disabilities are often restricted to perform activities of daily life (ADLs). While efficacy of bilateral training has been demonstrated in improving physical coordination of human limbs, few robots have been developed in simulating people's ADLs integrated with task-specific force field control. This study sought to develop a bilateral robot for better task rendering of general ADLs (gADLs), where gADL-consistent workspace is achieved by setting linear motors in series, and haptic rendering of multiple bimanual tasks (coupled, uncoupled and semi-coupled) is enabled by regulating force fields between robotic handles. Experiments were conducted with human users, and our results present a viable method of a single robotic system in simulating multiple physically bimanual tasks. In future, the proposed robotic system is expected to be serving as a coordination training device, and its clinical efficacy will be also investigated.
Collapse
|
5
|
Abd El-Kafy EM, Alshehri MA, El-Fiky AAR, Guermazi MA, Mahmoud HM. The Effect of Robot-Mediated Virtual Reality Gaming on Upper Limb Spasticity Poststroke: A Randomized-Controlled Trial. Games Health J 2022; 11:93-103. [PMID: 35100025 DOI: 10.1089/g4h.2021.0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Stroke is a common reason for motor disability and is often associated with spasticity and poor motor function of the upper limbs involved. Spasticity management is important to accelerate motor recovery. The objective of this study was to investigate the effects of training with robot-mediated virtual reality gaming on upper limb spasticity and motor functions in individuals with chronic stroke. Materials and Methods: A total of 40 Saudi individuals with chronic stroke were involved in this study. Participants were randomly assigned to two groups. The experimental group received conventional physiotherapy and training with robot-mediated virtual reality gaming, and the control group received only conventional physiotherapy. Outcomes were measured by the Action Research Arm Test (ARAT), Wolf Motor Function Test (WMFT), WMFT-Time, Modified Ashworth Scale (MAS), Active Range of Motion (AROM) of multiple joints of the upper limb, and Handgrip Strength (HGS). The scores of all the outcome measures were recorded at baseline and after the completion of the treatment. Results: Individuals with stroke in the experimental group had a better improvement in most measured variables (AROM of shoulder abduction, elbow supination and wrist extension, WMFT-Time, HGS, ARAT, WMFT, and MAS) compared with the control group after the completion of the treatment. Both groups showed significant improvement in all the measured variables after completion of the treatment, except in MAS for wrist flexors in the control group. Conclusion: Training with robot-mediated virtual reality gaming was effective in modulating spasticity and improving the motor functions of the affected upper limbs in individuals with chronic stroke. This study was registered in ClinicalTrial.gov (NCT05069480).
Collapse
Affiliation(s)
| | - Mansour Abdullah Alshehri
- Department of Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia.,School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia
| | | | | | - Hayam Mohamed Mahmoud
- Department of Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Neuromuscular electrical stimulation restores upper limb sensory-motor functions and body representations in chronic stroke survivors. MED 2022; 3:58-74.e10. [DOI: 10.1016/j.medj.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
|
7
|
Dalla Gasperina S, Roveda L, Pedrocchi A, Braghin F, Gandolla M. Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons. Front Robot AI 2021; 8:745018. [PMID: 34950707 PMCID: PMC8688994 DOI: 10.3389/frobt.2021.745018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Technology-supported rehabilitation therapy for neurological patients has gained increasing interest since the last decades. The literature agrees that the goal of robots should be to induce motor plasticity in subjects undergoing rehabilitation treatment by providing the patients with repetitive, intensive, and task-oriented treatment. As a key element, robot controllers should adapt to patients’ status and recovery stage. Thus, the design of effective training modalities and their hardware implementation play a crucial role in robot-assisted rehabilitation and strongly influence the treatment outcome. The objective of this paper is to provide a multi-disciplinary vision of patient-cooperative control strategies for upper-limb rehabilitation exoskeletons to help researchers bridge the gap between human motor control aspects, desired rehabilitation training modalities, and their hardware implementations. To this aim, we propose a three-level classification based on 1) “high-level” training modalities, 2) “low-level” control strategies, and 3) “hardware-level” implementation. Then, we provide examples of literature upper-limb exoskeletons to show how the three levels of implementation have been combined to obtain a given high-level behavior, which is specifically designed to promote motor relearning during the rehabilitation treatment. Finally, we emphasize the need for the development of compliant control strategies, based on the collaboration between the exoskeleton and the wearer, we report the key findings to promote the desired physical human-robot interaction for neurorehabilitation, and we provide insights and suggestions for future works.
Collapse
Affiliation(s)
- Stefano Dalla Gasperina
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | - Loris Roveda
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), USI-SUPSI, Lugano, Switzerland
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | - Francesco Braghin
- WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy.,Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Marta Gandolla
- WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy.,Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Quantitative Assessment of Motor Function by an End-Effector Upper Limb Rehabilitation Robot Based on Admittance Control. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various rehabilitation robots have been developed to assist the movement training of the upper limbs of stroke patients, among which some have been used to evaluate the motor recovery. However, how to understand the recovery of motor function from the quantitative assessment following robot-assisted rehabilitation training is still not clear. The objective of this study is to propose a quantitative assessment method of motor function based on the force and trajectory characteristics during robotic training to reflect motor functional recovery. To assist stroke patients who are not able to move voluntarily, an assistive training mode was developed for the robot-assisted rehabilitation system based on admittance control. Then, to validate the relationship between characteristic information and functional recovery, a clinical experiment was conducted, in which nine stroke patients and nine healthy subjects were recruited. The results showed a significant difference in movement range and movement smoothness during trajectory tracking tasks between stroke patients and healthy subjects. The two parameters above have a correlation with the Fugl-Meyer Assessment for Upper Extremity (FMU) of the involved patients. The multiple linear regression analysis showed FMU was positively correlated with parameters (R2=0.91,p<0.005). This finding indicated that the above-mentioned method can achieve quantitative assessment of motor function for stroke patients during robot-assisted rehabilitation training, which can contribute to promoting rehabilitation robots in clinical practice.
Collapse
|
9
|
Park JH, Shin JH, Lee H, Roh J, Park HS. Alterations in intermuscular coordination underlying isokinetic exercise after a stroke and their implications on neurorehabilitation. J Neuroeng Rehabil 2021; 18:110. [PMID: 34217328 PMCID: PMC8254977 DOI: 10.1186/s12984-021-00900-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Abnormal intermuscular coordination limits the motor capability of stroke-affected upper limbs. By evaluating the intermuscular coordination in the affected limb under various biomechanical task constraints, the impact of a stroke on motor control can be analyzed and intermuscular coordination-based rehabilitation strategies can be developed. In this study, we investigated upper limb intermuscular coordination after a stroke during isokinetic movements. Methods Sixteen chronic stroke survivors and eight neurologically intact individuals were recruited. End-point forces and electromyographic activities of the shoulder and elbow muscles were measured while the participants performed isokinetic upper limb movements in a three-dimensional space. Intermuscular coordination of the stroke survivors and the control participants was quantified in the form of muscle synergies. Then, we compared the number, composition, and activation coefficients of muscle synergies and the end-point force between the groups. The correlation between the alteration of muscle synergies and the level of motor impairment was investigated. Results Four and five muscle synergies in the stroke and control groups were observed, respectively. The composition of muscle synergies was comparable between the groups, except that the three heads of the deltoid muscle were co-activated and formed one synergy in the stroke group, whereas those muscles formed two synergies in the control group. When the number of muscle synergies between the groups matched, the comparable composition of muscle synergies was observed in both groups. Alternatively, the modulation of synergy activation coefficients was altered after a stroke. The severity of motor impairments was negatively correlated with the similarity of the post-stroke synergies with respect to the mean control synergies. Conclusions Stroke-affected upper limbs seemed to modularize the activation of the shoulder and elbow muscles in a fairly similar way to that of neurologically intact individuals during isokinetic movements. Compared with free (i.e., unconstrained) movement, exercise under biomechanical constraints including the isokinetic constraint might promote the activation of muscle synergies independently in stroke survivors. We postulated the effect of biomechanical constraints on the intermuscular coordination and suggested a possible intermuscular coordination-based rehabilitation protocol that provides the biomechanical constraint appropriate to a trainee throughout the progress of rehabilitation.
Collapse
Affiliation(s)
- Jeong-Ho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Joon-Ho Shin
- Department of Neurorehabilitation, National Rehabilitation Center, Seoul, 01022, South Korea
| | - Hangil Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77004, USA.
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
10
|
Majidi Fard Vatan H, Nefti-Meziani S, Davis S, Saffari Z, El-Hussieny H. A review: A Comprehensive Review of Soft and Rigid Wearable Rehabilitation and Assistive Devices with a Focus on the Shoulder Joint. J INTELL ROBOT SYST 2021. [DOI: 10.1007/s10846-021-01353-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe importance of the human upper limb role in performing daily life and personal activities is significant. Improper functioning of this organ due to neurological disorders or surgeries can greatly affect the daily activities performed by patients. This paper aims to comprehensively review soft and rigid wearable robotic devices provided for rehabilitation and assistance focusing on the shoulder joint. In the last two decades, many devices have been proposed in this regard, however, there have been a few groups whose devices have had effective therapeutic capability with acceptable clinical evidence. Also, there were not many portable, lightweight and user-friendly devices. Therefore, this comprehensive study could pave the way for achieving optimal future devices, given the growing need for these devices. According to the results, the most commonly used plan was Exoskeleton, the most commonly used actuators were electrical, and most devices were considered to be stationary and rigid. By doing these studies, the advantages and disadvantages of each method are also presented. The presented devices each have a new idea and attitude in a specific field to solve the problems of movement disorders and rehabilitation, which were in the form of prototypes, initial clinical studies and sometimes comprehensive clinical and commercial studies. These plans need more comprehensive clinical trials to become a complete and efficient plan. This article could be used by researchers to identify and evaluate the important features and strengths and weaknesses of the plans to lead to the presentation of more optimal plans in the future.
Collapse
|
11
|
The Effects of Upper Extremity Isokinetic Strengthening in Post-Stroke Hemiplegia: A Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2021; 30:105729. [PMID: 33765633 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the efficacy of isokinetic strengthening in paretic upper extremity among patients with post-stroke hemiplegia. METHODS Hemiplegic patients with at least 6 months post-stroke and those with arm and hand Brunnstrom motor recovery stage ≥ 3 were included to the study. Patients were randomized into two groups. Isokinetic training group received 4 weeks (3 days/week) of isokinetic strengthening, while the control group was tailored strengthening exercises with exercise bands. Outcome measures were the isokinetic peak torque of wrist flexor and extensors, Fugl-Meyer Assessment of upper extremity, Stroke Impact Scale (SIS), Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, hand grip strength, peak isometric strength of wrist flexor and extensors. Outcome measures were evaluated before treatment, after treatment (at the end of week 4) and 4 weeks after the end of treatment (at the end of week 8). The trial was registered at ClinicalTtrials.gov (ID: NCT03834311). RESULTS After 4 weeks, changes in extensor peak torque at 60°/sn (p=0.007) and extensor peak isometric muscle strength (p=0.007) were higher in the isokinetic group (n=12) than those in the control group (n=12). At the end of week 8, only DASH score revealed a significantly higher improvement in the isokinetic group than that in the control group (p=0.014). CONCLUSIONS Isokinetic strengthening may provide motor and functional improvement in paretic upper extremity among patients with post-stroke hemiplegia.
Collapse
|
12
|
Carpinella I, Lencioni T, Bowman T, Bertoni R, Turolla A, Ferrarin M, Jonsdottir J. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2020; 17:10. [PMID: 32000790 PMCID: PMC6990497 DOI: 10.1186/s12984-020-0646-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Robot-based rehabilitation for persons post-stroke may improve arm function and daily-life activities as measured by clinical scales, but its effects on motor strategies during functional tasks are still poorly investigated. This study aimed at assessing the effects of robot-therapy versus arm-specific physiotherapy in persons post-stroke on motor strategies derived from upper body instrumented kinematic analysis, and on arm function measured by clinical scales. METHODS Forty persons in the sub-acute and chronic stage post-stroke were recruited. This sample included all those subjects, enrolled in a larger bi-center study, who underwent instrumented kinematic analysis and who were randomized in Center 2 into Robot (R_Group) and Control Group (C_Group). R_Group received robot-assisted training. C_Group received arm-specific treatment delivered by a physiotherapist. Pre- and post-training assessment included clinical scales and instrumented kinematic analysis of arm and trunk during a virtual untrained task simulating the transport of an object onto a shelf. Instrumented outcomes included shoulder/elbow coordination, elbow extension and trunk sagittal compensation. Clinical outcomes included Fugl-Meyer Motor Assessment of Upper Extremity (FM-UE), modified Ashworth Scale (MAS) and Functional Independence Measure (FIM). RESULTS R_Group showed larger post-training improvements of shoulder/elbow coordination (Cohen's d = - 0.81, p = 0.019), elbow extension (Cohen's d = - 0.71, p = 0.038), and trunk movement (Cohen's d = - 1.12, p = 0.002). Both groups showed comparable improvements in clinical scales, except proximal muscles MAS that decreased more in R_Group (Cohen's d = - 0.83, p = 0.018). Ancillary analyses on chronic subjects confirmed these results and revealed larger improvements after robot-therapy in the proximal portion of FM-UE (Cohen's d = 1.16, p = 0.019). CONCLUSIONS Robot-assisted rehabilitation was as effective as arm-specific physiotherapy in reducing arm impairment (FM-UE) in persons post-stroke, but it was more effective in improving motor control strategies adopted during an untrained task involving vertical movements not practiced during training. Specifically, robot therapy induced larger improvements of shoulder/elbow coordination and greater reduction of abnormal trunk sagittal movements. The beneficial effects of robot therapy seemed more pronounced in chronic subjects. Future studies on a larger sample should be performed to corroborate present findings. TRIAL REGISTRATION www.ClinicalTrials.gov NCT03530358. Registered 21 May 2018. Retrospectively registered.
Collapse
Affiliation(s)
- Ilaria Carpinella
- IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro 66, 20148, Milan, Italy
| | - Tiziana Lencioni
- IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro 66, 20148, Milan, Italy.
| | - Thomas Bowman
- IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro 66, 20148, Milan, Italy
| | - Rita Bertoni
- IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro 66, 20148, Milan, Italy
| | - Andrea Turolla
- Movement Neuroscience Research Group, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venezia, Lido, Italy
| | - Maurizio Ferrarin
- IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro 66, 20148, Milan, Italy
| | - Johanna Jonsdottir
- IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro 66, 20148, Milan, Italy
| |
Collapse
|
13
|
Bloomer C, Wang S, Kontson K. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training. PLoS One 2020; 15:e0226563. [PMID: 31978051 PMCID: PMC6980621 DOI: 10.1371/journal.pone.0226563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022] Open
Abstract
Motor learning and compensatory movement are important aspects of prosthesis training yet relatively little quantitative evidence supports our current understanding of how motor control and compensation develop in the novel body-powered prosthesis user. The goal of this study is to assess these aspects of prosthesis training through functional, kinematic, and kinetic analyses using a within-subject paradigm compared across two training time points. The joints evaluated include the left and right shoulders, torso, and right elbow. Six abled-bodied subjects (age 27 ± 3) using a body-powered bypass prosthesis completed the Jebsen-Taylor Hand Function Test and the targeted Box and Blocks Test after five training sessions and again after ten sessions. Significant differences in movement parameters included reduced times to complete tasks, reduced normalized jerk for most joints and tasks, and more variable changes in efficiency and compensation parameters for individual tasks and joints measured as range of motion, maximum angle, and average moment. Normalized jerk, joint specific path length, range of motion, maximum angle, and average moment are presented for the first time in this unique training context and for this specific device type. These findings quantitatively describe numerous aspects of motor learning and control in able-bodied subjects that may be useful in guiding future rehabilitation and training of body-powered prosthesis users.
Collapse
Affiliation(s)
- Conor Bloomer
- Division of Biomedical Physics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sophie Wang
- Division of Biomedical Physics, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Kimberly Kontson
- Division of Biomedical Physics, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Fuzzy Logic-Based Risk Assessment of a Parallel Robot for Elbow and Wrist Rehabilitation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020654. [PMID: 31963917 PMCID: PMC7013898 DOI: 10.3390/ijerph17020654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
A few decades ago, robotics started to be implemented in the medical field, especially in the rehabilitation of patients with different neurological diseases that have led to neuromuscular disorders. The main concern regarding medical robots is their safety assurance in the medical environment. The goal of this paper is to assess the risk of a medical robotic system for elbow and wrist rehabilitation in terms of robot and patient safety. The approached risk assessment follows the ISO12100:2010 risk management chart in order to determine, identify, estimate, and evaluate the possible risk that can occur during the use of the robotic system. The result of the risk assessment process is further analyzed using a fuzzy logic system in order to determine the safety degree conferred during the use of the robotic system. The innovative process concerning the risk assessment allows the achievement of a reliable medical robotic system both for the patient and the clinicians as well. The clinical trials performed on a group of 18 patients validated the functionality and the safe behavior of the robotic system.
Collapse
|
15
|
Narayanamurthy R, Jayakumar S, Elango S, Muralidharan V, Chakravarthy VS. A Cortico- Basal Ganglia Model for choosing an optimal rehabilitation strategy in Hemiparetic Stroke. Sci Rep 2019; 9:13472. [PMID: 31530821 PMCID: PMC6748960 DOI: 10.1038/s41598-019-49670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
To facilitate the selection of an optimal therapy for a stroke patient with upper extremity hemiparesis, we propose a cortico-basal ganglia model capable of performing reaching tasks under normal and stroke conditions. The model contains two hemispherical systems, each organized into an outer sensory-motor cortical loop and an inner basal ganglia (BG) loop, controlling their respective hands. The model is trained to simulate two therapeutic approaches: the constraint induced movement therapy (CIMT) in which the intact is arrested, and Bimanual Reaching in which the movements of the intact arm are found to aid the affected arm. Which of these apparently mutually conflicting approaches is right for a given patient? Based on our study on the effect of lesion size on arm performance, we hypothesize that the choice of the therapy depends on the lesion size. Whereas bimanual reaching is more suitable for smaller lesion size, CIMT is preferred in case of larger lesion sizes. By virtue of the model's ability to capture the experimental results effectively, we believe that it can serve as a benchmark for the development and testing of various rehabilitation strategies for stroke.
Collapse
Affiliation(s)
- Rukhmani Narayanamurthy
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samyukta Jayakumar
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sundari Elango
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | | - V Srinivasa Chakravarthy
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
16
|
Daly JJ, McCabe JP, Holcomb J, Monkiewicz M, Gansen J, Pundik S. Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke. Neurorehabil Neural Repair 2019; 33:523-537. [PMID: 31131743 PMCID: PMC6625035 DOI: 10.1177/1545968319846120] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background. Effective treatment methods are needed for moderate/severely impairment chronic stroke. Objective. The questions were the following: (1) Is there need for long-dose therapy or is there a mid-treatment plateau? (2) Are the observed gains from the prior-studied protocol retained after treatment? Methods. Single-blind, stratified/randomized design, with 3 applied technology treatment groups, combined with motor learning, for long-duration treatment (300 hours of treatment). Measures were Arm Motor Ability Test time and coordination-function (AMAT-T, AMAT-F, respectively), acquired pre-/posttreatment and 3-month follow-up (3moF/U); Fugl-Meyer (FM), acquired similarly with addition of mid-treatment. Findings. There was no group difference in treatment response (P ≥ .16), therefore data were combined for remaining analyses (n = 31; except for FM pre/mid/post, n = 36). Pre-to-Mid-treatment and Mid-to-Posttreatment gains of FM were statistically and clinically significant (P < .0001; 4.7 points and P < .001; 5.1 points, respectively), indicating no plateau at 150 hours and benefit of second half of treatment. From baseline to 3moF/U: (1) FM gains were twice the clinically significant benchmark, (2) AMAT-F gains were greater than clinically significant benchmark, and (3) there was statistically significant improvement in FM (P < .0001); AMAT-F (P < .0001); AMAT-T (P < .0001). These gains indicate retained clinically and statistically significant gains at 3moFU. From posttreatment to 3moF/U, gains on FM were maintained. There were statistically significant gains in AMAT-F (P = .0379) and AMAT-T P = .003.
Collapse
Affiliation(s)
- Janis J. Daly
- Malcom Randall Gainesville DVA Medical
Center, Gainesville, FL, USA
- College of Medicine, University of
Florida, Gainesville, FL, USA
| | | | | | | | - Jennifer Gansen
- Louis Stokes Cleveland VA Medical
Center, Cleveland, OH, USA
| | - Svetlana Pundik
- Louis Stokes Cleveland VA Medical
Center, Cleveland, OH, USA
- Case Western Reserve University School
of Medicine, Cleveland, OH, USA
| |
Collapse
|
17
|
Haghshenas-Jaryani M, Pande C, Muthu Wijesundara BJ. Soft Robotic Bilateral Hand Rehabilitation System for Fine Motor Learning . IEEE Int Conf Rehabil Robot 2019; 2019:337-342. [PMID: 31374652 DOI: 10.1109/icorr.2019.8779510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents the development of a pneumatically actuated soft robotic based bilateral therapy system for hand rehabilitation in post-stroke patients. The goal is to use a healthy hand to guide the motion of the paretic hand using a sensorized glove and a robotic exoskeleton, respectively. The sensorized glove tracks the motion of the healthy hand and provides inputs for the soft robotic hand exoskeleton to apply mimicking motion to the paretic hand. Two control algorithms, PD flow-based and adaptive PD pressure-based position controls, were developed and tested. Initial tests confirmed the ability of the systems to apply bilateral therapy. Furthermore, the adaptive pressure-based controller showed better performance with overall error reduced by 25.8% with respect to the flow-based controller. Future studies will include feasibility and performance of the system for applying therapy to post-stroke patients.
Collapse
|
18
|
Chen PM, Kwong PWH, Lai CKY, Ng SSM. Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and meta-analysis. PLoS One 2019; 14:e0216357. [PMID: 31120910 PMCID: PMC6532847 DOI: 10.1371/journal.pone.0216357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Background and objectives Bilateral upper limb training (BULT) and unilateral upper limb training (UULT) are two effective strategies for the recovery of upper limb motor function after stroke. This meta-analysis aimed to compare the improvements in motor impairment and functional performances of people with stroke after BULT and UULT. Research design and methods This systematic review and meta-analysis identified 21 randomized controlled trials (RCTs) met the eligibility criteria from CINAHL, Medline, Embase, Cochrane Library and PubMed. The outcome measures were the Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT), Action Research Arm Test (ARAT) and Box and Block Test (BBT), which are validated measures of upper limb function. Results Twenty-one studies involving 842 subjects with stroke were included. Compared with UULT, BULT yielded a significantly greater mean difference (MD) in the FMA-UE (MD = 2.21, 95% Confidence Interval (CI), 0.12 to 4.30, p = 0.04; I2 = 86%, p<0.001). However, a comparison of BULT and UULT yielded insignificant mean difference (MD) in terms of the time required to complete the WMFT (MD = 0.44; 95%CI, -2.22 to 3.10, p = 0.75; I2 = 55%, p = 0.06) and standard mean difference (SMD) in terms of the functional ability scores on the WMFT, ARAT and BBT (SMD = 0.25; 95%CI, -0.02 to 0.52, p = 0.07; I2 = 54%, p = 0.02). Discussion and implications Compared to UULT, BULT yielded superior improvements in the improving motor impairment of people with stroke, as measured by the FMA-UE. However, these strategies did not yield significant differences in terms of the functional performance of people with stroke, as measured by the WMFT, ARAT and BBT. More comparative studies of the effects of BULT and UULT are needed to increase the reliability of these conclusions.
Collapse
Affiliation(s)
- Pei-ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Patrick W. H. Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Claudia K. Y. Lai
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
- * E-mail:
| |
Collapse
|
19
|
Milot MH, Léonard G, Corriveau H, Desrosiers J. Using the Borg rating of perceived exertion scale to grade the intensity of a functional training program of the affected upper limb after a stroke: a feasibility study. Clin Interv Aging 2018; 14:9-16. [PMID: 30587949 PMCID: PMC6304074 DOI: 10.2147/cia.s179691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Intensity of a training program is a critical variable in treatment gains poststroke, but there are no guidelines to adequately dose the intensity of functional training (FT); the recommended type of training to promote poststroke recovery. Such guidelines are made available for strength training (ST) using the 1 repetition maximum (1RM), which has been linked to individuals’ self-rated level of exertion using the Borg rating of perceived exertion (BRPE) scale. The BRPE could be a valuable tool for clinicians to dose FT intensity after a stroke, but this remains to be tested. The main objective of the study was to evaluate the feasibility of the BRPE at grading FT intensity of the affected upper limb in older adults with a chronic stroke and secondarily to explore the clinical changes between FT and ST when the intensity is regulated with BRPE. Patients and methods Twelve participants were randomized into a FT or ST group and trained their affected upper limb (3 times/week for 4 weeks) with the intensity standardized with BRPE. Feasibility was assessed by adherence, occurrence of adverse events, and comparison of BRPE ratings between groups. Clinical changes were defined as improvements on the Fugl-Meyer motor assessment (FMA) and Wolf motor function test (WMFT). Results All participants adhered to FT/ST without adverse effects, and comparable BRPE ratings were noted between groups throughout the training (P≥0.42). Both groups showed significant gains at the FMA (ST: 5±4 points/FT: 6±4 points; P=0.04) and WMFT (ST: 0.4±0.3 points/FT: 0.6±0.4 points; P=0.05), which were comparable between groups (P≥0.47). Conclusion The results suggest that it is feasible to use the BRPE scale to adjust FT intensity. Gains in motor function in both groups suggest that undergoing therapy, regardless of its type, might be a sufficient stimulus to produce gains when intensity is adequately adjusted. Further studies are needed to validate the current observations.
Collapse
Affiliation(s)
- Marie-Hélène Milot
- University of Sherbrooke, School of Medicine and Health Sciences, School of Rehabilitation, Research Center on Aging, Sherbrooke, Québec, Canada,
| | - Guillaume Léonard
- University of Sherbrooke, School of Medicine and Health Sciences, School of Rehabilitation, Research Center on Aging, Sherbrooke, Québec, Canada,
| | - Hélène Corriveau
- University of Sherbrooke, School of Medicine and Health Sciences, School of Rehabilitation, Research Center on Aging, Sherbrooke, Québec, Canada,
| | - Johanne Desrosiers
- University of Sherbrooke, School of Medicine and Health Sciences, School of Rehabilitation, Research Center on Aging, Sherbrooke, Québec, Canada,
| |
Collapse
|
20
|
Xu G, Gao X, Pan L, Chen S, Wang Q, Zhu B, Li J. Anxiety detection and training task adaptation in robot-assisted active stroke rehabilitation. INT J ADV ROBOT SYST 2018. [DOI: 10.1177/1729881418806433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the therapist-centered rehabilitation program, the experienced therapists can observe emotional changes of stroke patients and make corresponding decisions on their intervention strategies. Likewise, robotic-assisted stroke rehabilitation systems will be more appreciated if they can also perceive emotional states of the stroke patients and enhance their engagements by exploring emotion-based dynamic difficulty adjustments. Nevertheless, few research have addressed this issue. A two-phase pilot study with anxiety as the target emotion state was conducted in this article. In phase I, the motor performances and the physiological responses to the stroke subject’s anxiety with high, medium, and low intensities were statistically analyzed, and anxiety models with three intensities were offline developed using support vector machine–based classifiers. In phase II, anxiety-based closed-loop robot-aided training task adaptation and its impacts on patient–robot interaction engagements were explored. As a comparison, a performance-based robotic behavior adaptation was also implemented. Experimental results with 12 recruited stroke patients conducted on the Barrett WAMTM manipulator verified that the rehabilitation robot can implicitly recognize the anxiety intensities of the stroke survivors and the anxiety-based real-time robotic behavior adaptation shows more engagements in the human–robot interactions.
Collapse
Affiliation(s)
- Guozheng Xu
- Robotics Information Sensing and Control Research Institute, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiang Gao
- Robotics Information Sensing and Control Research Institute, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Lizheng Pan
- School of Mechanical Engineering, Changzhou University, Changzhou, China
| | - Sheng Chen
- Robotics Information Sensing and Control Research Institute, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Qiang Wang
- Robotics Information Sensing and Control Research Institute, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bo Zhu
- Robotics Information Sensing and Control Research Institute, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jinfei Li
- Department of Rehabilitation Medicine, Nanjing Tongren Hospital, Nanjing, China
| |
Collapse
|
21
|
Improving Upper Extremity Function and Quality of Life with a Tongue Driven Exoskeleton: A Pilot Study Quantifying Stroke Rehabilitation. Stroke Res Treat 2018; 2017:3603860. [PMID: 29403672 PMCID: PMC5748322 DOI: 10.1155/2017/3603860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/29/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023] Open
Abstract
Stroke is a leading cause of long-term disability around the world. Many survivors experience upper extremity (UE) impairment with few rehabilitation opportunities, secondary to a lack of voluntary muscle control. We developed a novel rehabilitation paradigm (TDS-HM) that uses a Tongue Drive System (TDS) to control a UE robotic device (Hand Mentor: HM) while engaging with an interactive user interface. In this study, six stroke survivors with moderate to severe UE impairment completed 15 two-hour sessions of TDS-HM training over five weeks. Participants were instructed to move their paretic arm, with synchronized tongue commands to track a target waveform while using visual feedback to make accurate movements. Following TDS-HM training, significant improvements in tracking performance translated into improvements in the UE portion of the Fugl-Meyer Motor Assessment, range of motion, and all subscores for the Stroke Impact Scale. Regression modeling found daily training time to be a significant predictor of decreases in tracking error, indicating the presence of a potential dose-response relationship. The results of this pilot study indicate that the TDS-HM system can elicit significant improvements in moderate to severely impaired stroke survivors. This pilot study gives preliminary insight into the volume of treatment time required to improve outcomes.
Collapse
|
22
|
Tran VD, Dario P, Mazzoleni S. Kinematic measures for upper limb robot-assisted therapy following stroke and correlations with clinical outcome measures: A review. Med Eng Phys 2018; 53:13-31. [PMID: 29361407 DOI: 10.1016/j.medengphy.2017.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
AIM OF THE STUDY This review classifies the kinematic measures used to evaluate post-stroke motor impairment following upper limb robot-assisted rehabilitation and investigates their correlations with clinical outcome measures. METHODS An online literature search was carried out in PubMed, MEDLINE, Scopus and IEEE-Xplore databases. Kinematic parameters mentioned in the studies included were categorized into the International Classification of Functioning, Disability and Health (ICF) domains. The correlations between these parameters and the clinical scales were summarized. RESULTS Forty-nine kinematic parameters were identified from 67 articles involving 1750 patients. The most frequently used parameters were: movement speed, movement accuracy, peak speed, number of speed peaks, and movement distance and duration. According to the ICF domains, 44 kinematic parameters were categorized into Body Functions and Structure, 5 into Activities and no parameters were categorized into Participation and Personal and Environmental Factors. Thirteen articles investigated the correlations between kinematic parameters and clinical outcome measures. Some kinematic measures showed a significant correlation coefficient with clinical scores, but most were weak or moderate. CONCLUSIONS The proposed classification of kinematic measures into ICF domains and their correlations with clinical scales could contribute to identifying the most relevant ones for an integrated assessment of upper limb robot-assisted rehabilitation treatments following stroke. Increasing the assessment frequency by means of kinematic parameters could optimize clinical assessment procedures and enhance the effectiveness of rehabilitation treatments.
Collapse
Affiliation(s)
- Vi Do Tran
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Polo Sant'Anna Valdera, V.le R. Piaggio 34-56025 Pontedera, Italy; Rehabilitation Bioengineering Laboratory, Volterra, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Polo Sant'Anna Valdera, V.le R. Piaggio 34-56025 Pontedera, Italy
| | - Stefano Mazzoleni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Polo Sant'Anna Valdera, V.le R. Piaggio 34-56025 Pontedera, Italy; Rehabilitation Bioengineering Laboratory, Volterra, Italy.
| |
Collapse
|
23
|
Lee YJ, Chen B, Liang JN, Aruin AS. Control of vertical posture while standing on a sliding board and pushing an object. Exp Brain Res 2018; 236:721-731. [PMID: 29305618 DOI: 10.1007/s00221-017-5166-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022]
Abstract
Voluntary pushing or translation perturbation of the support surface each induces a body perturbation that affects postural control. The objective of the study was to investigate anticipatory (APA) and compensatory (CPA) postural adjustments when pushing an object (that induces self-initiated perturbation) and standing on a sliding board (that induces translational perturbation). Thirteen healthy young participants were instructed to push a handle with both hands while standing on a sliding board that was either free to move in the anterior-posterior direction or stationary. Electromyographic activity (EMG) of trunk and lower extremity muscles, center of pressure (COP) displacements, and the forces exerted by the hand were recorded and analyzed during the APA and CPA phases. When the sliding board was free to move during pushing (translation perturbation), onsets of activity of ventral leg muscles and COP displacement were delayed as compared to pushing when standing on a stationary board. Moreover, magnitudes of shank muscle activity and the COP displacement were decreased. When pushing heavier weight, magnitudes of muscle activity, COP displacement, and pushing force increased. The magnitude of activity of the shank muscles during the APA and CPA phases in conditions with translational perturbation varied with the magnitude of the pushing weight. The outcome of the study suggests that the central nervous system prioritizes the pushing task while attenuates the source of additional perturbation induced by translation perturbation. These results could be used in the development of balance re-training paradigms involving pushing weight while standing on a sliding surface.
Collapse
Affiliation(s)
- Yun-Ju Lee
- Department of Industrial Engineering and Engineering Management (R924), College of Engineering, National Tshing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| | - Bing Chen
- Department of Neurological Surgery, The Miami Project to Cure Paralysis Lois Pope Life Center, University of Miami, Miami, FL, USA
| | - Jing-Nong Liang
- Department of Physical Therapy, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Alexander S Aruin
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Villafañe JH, Taveggia G, Galeri S, Bissolotti L, Mullè C, Imperio G, Valdes K, Borboni A, Negrini S. Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand (N Y) 2018; 13:95-102. [PMID: 28719996 PMCID: PMC5755871 DOI: 10.1177/1558944717692096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We evaluated the effectiveness of robot-assisted motion and activity in additional to physiotherapy (PT) and occupational therapy (OT) on stroke patients with hand paralysis. METHODS A randomized controlled trial was conducted. Thirty-two patients, 34.4% female (mean ± SD age: 68.9 ± 11.6 years), with hand paralysis after stroke participated. The experimental group received 30 minutes of passive mobilization of the hand through the robotic device Gloreha (Brescia, Italy), and the control group received an additional 30 minutes of PT and OT for 3 consecutive weeks (3 d/wk) in addition to traditional rehabilitation. Outcomes included the National Institutes of Health Stroke Scale (NIHSS), Modified Ashworth Scale, Barthel Index (BI), Motricity Index (MI), short version of the Disabilities of the Arm, Shoulder and Hand (QuickDASH), and the visual analog scale (VAS) measurements. All measures were collected at baseline and end of the intervention (3 weeks). RESULTS A significant effect of time interaction existed for NIHSS, BI, MI, and QuickDASH, after stroke immediately after the interventions (all, P < .001). The experimental group had a greater reduction in pain compared with the control group at the end of the intervention, a reduction of 11.3 mm compared with 3.7 mm, using the 100-mm VAS scale. CONCLUSIONS In the treatment of pain and spasticity in hand paralysis after stroke, robot-assisted mobilization performed in conjunction with traditional PT and OT is as effective as traditional rehabilitation.
Collapse
Affiliation(s)
- Jorge H. Villafañe
- IRCCS Don Gnocchi Foundation, Milan, Italy,Jorge H. Villafañe, IRCCS Don Gnocchi Foundation, Regione Generala 11/16, Piossasco 10045, Italy.
| | | | | | - Luciano Bissolotti
- Fondazione Teresa Camplani-Casa di Cura Domus Salutis, Brescia, Italy,LARIN: Neuromuscular and Adapted Physical Activity Laboratory, Brescia, Italy
| | - Chiara Mullè
- Habilita, Istituto Clinico Ospedale di Sarnico, Italy
| | | | | | | | - Stefano Negrini
- IRCCS Don Gnocchi Foundation, Milan, Italy,University of Brescia, Italy
| |
Collapse
|
25
|
Eom SH, Lee EH. A study on the operation of rehabilitation interfaces in active rehabilitation exercises for upper limb hemiplegic patients: Interfaces for lateral and bilateral exercises. Technol Health Care 2017; 24 Suppl 2:S607-23. [PMID: 27163324 DOI: 10.3233/thc-161188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND For implementing autonomous rehabilitation exercises for upper limb hemiplegic patients, interfaces and a rehabilitation scenario that allow lateral and bilateral motions in a rehabilitation exercise robot are proposed. OBJECTIVE The proposed method measures the motion information generated from the unaffected part and projects it to an affected part in which the affected part expresses motions of the unaffected part. METHODS Both the accelerometer and gyro data were merged for estimating the motion information of the unaffected part. Also, HDR and complementary filters were applied to improve measurement errors in a data merging process. RESULTS For verifying the proposed method, a device, which is similar to a human body joint, was fabricated. Then, the angular values estimated by using an inertial sensor and the encoder values from the device were compared. In addition, a camera analysis was used to verify the proposed rehabilitation scenario by applying the rehabilitation interface proposed in this study to an exo-skeleton robot arm. CONCLUSION It is possible to apply the method proposed in this study to the control variables in different upper limb rehabilitation exercise robots. Thus, it is expected that patient centered active lateral/bilateral rehabilitation exercises can be performed through this interface method.
Collapse
|
26
|
Shishov N, Melzer I, Bar-Haim S. Parameters and Measures in Assessment of Motor Learning in Neurorehabilitation; A Systematic Review of the Literature. Front Hum Neurosci 2017; 11:82. [PMID: 28286474 PMCID: PMC5324661 DOI: 10.3389/fnhum.2017.00082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
Upper limb function, essential for daily life, is often impaired in individuals after stroke and cerebral palsy (CP). For an improved upper limb function, learning should occur, and therefore training with motor learning principles is included in many rehabilitation interventions. Despite accurate measurement being an important aspect for examination and optimization of treatment outcomes, there are no standard algorithms for outcome measures selection. Moreover, the ability of the chosen measures to identify learning is not well established. We aimed to review and categorize the parameters and measures utilized for identification of motor learning in stroke and CP populations. PubMed, Pedro, and Web of Science databases were systematically searched between January 2000 and March 2016 for studies assessing a form of motor learning following upper extremity training using motor control measures. Thirty-two studies in persons after stroke and 10 studies in CP of any methodological quality were included. Identified outcome measures were sorted into two categories, “parameters,” defined as identifying a form of learning, and “measures,” as tools measuring the parameter. Review's results were organized as a narrative synthesis focusing on the outcome measures. The included studies were heterogeneous in their study designs, parameters and measures. Parameters included adaptation (n = 6), anticipatory control (n = 2), after-effects (n = 3), de-adaptation (n = 4), performance (n = 24), acquisition (n = 8), retention (n = 8), and transfer (n = 14). Despite motor learning theory's emphasis on long-lasting changes and generalization, the majority of studies did not assess the retention and transfer parameters. Underlying measures included kinematic analyses in terms of speed, geometry or both (n = 39), dynamic metrics, measures of accuracy, consistency, and coordination. There is no exclusivity of measures to a specific parameter. Many factors affect task performance and the ability to measure it—necessitating the use of several metrics to examine different features of movement and learning. Motor learning measures' applicability to clinical setting can benefit from a treatment-focused approach, currently lacking. The complexity of motor learning results in various metrics, utilized to assess its occurrence, making it difficult to synthesize findings across studies. Further research is desirable for development of an outcome measures selection algorithm, while considering the quality of such measurements.
Collapse
Affiliation(s)
- Nataliya Shishov
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Itshak Melzer
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Simona Bar-Haim
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| |
Collapse
|
27
|
Conrad MO, Qiu D, Hoffmann G, Zhou P, Kamper DG. Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke. Top Stroke Rehabil 2017; 24:262-268. [PMID: 28054504 DOI: 10.1080/10749357.2016.1277482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Stroke survivors experience greater strength deficits during finger extension than finger flexion. Prior research indicates relatively little observed weakness is directly attributable to muscle atrophy. Changes in other muscle properties, however, may contribute to strength deficits. OBJECTIVES This study measured muscle fiber conduction velocity (MFCV) in a finger flexor and extensor muscle to infer changes in muscle fiber-type after stroke. METHODS Conduction velocity was measured using a linear EMG surface electrode array for both extensor digitorum communis and flexor digitorum superficialis in 12 stroke survivors with chronic hand hemiparesis and five control subjects. Measurements were made in both hands for all subjects. Stroke survivors had either severe (n = 5) or moderate (n = 7) hand impairment. RESULTS Absolute MFCV was significantly lower in the paretic hand of severely impaired stroke patients compared to moderately impaired patients and healthy control subjects. The relative MFCV between the two hands, however, was quite similar for flexor muscles across all subjects and for extensor muscles for the neurologically intact control subjects. However, MFCV for finger extensors was smaller in the paretic as compared to the nonparetic hand for both groups of stroke survivors. CONCLUSIONS One explanation for reduced MFCV may be a type-II to type-I muscle fiber, especially in extrinsic extensors. Clinically, therapists may use this information to develop therapeutic exercises targeting loss of type-II fiber in extensor muscles.
Collapse
Affiliation(s)
- Megan O Conrad
- a Department of Industrial and Systems Engineering , School of Engineering and Applied Science, Oakland University , Rochester , MI , USA
| | - Dan Qiu
- b Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA.,c Sensory Motor Performance Program , Rehabilitation Institute of Chicago & Northwestern University , Chicago , IL , USA
| | - Gilles Hoffmann
- d Department of Neurological Sciences , Rush University Medical Center , Chicago , IL , USA
| | - Ping Zhou
- e Department of Physical Medicine and Rehabilitation , University of Texas Health Science Center , Houston , TX , USA.,f Guangdong Provincial Work Injury Rehabilitation Center , Guangzhou , China
| | - Derek G Kamper
- g UNC/NC State Joint Department of Biomedical Engineering , NC State University , Raleigh , NC , USA
| |
Collapse
|
28
|
Lee KW, Kim SB, Lee JH, Lee SJ, Yoo SW. Effect of Upper Extremity Robot-Assisted Exercise on Spasticity in Stroke Patients. Ann Rehabil Med 2016; 40:961-971. [PMID: 28119825 PMCID: PMC5256323 DOI: 10.5535/arm.2016.40.6.961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/01/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To determine the efficacy of a stretching and strengthening exercise program using an upper extremity robot, as compared with a conventional occupational therapy program for upper extremity spasticity in stroke patients. METHODS Subjects were randomly divided into a robot-assisted therapy (RT) group and a conventional rehabilitation therapy (CT) group. RT group patients received RT and CT once daily for 30 minutes each, 5 days a week, for 2 weeks. RT was performed using an upper-extremity robot (Neuro-X; Apsun Inc., Seoul, Korea), and CT was administered by occupational therapists. CT group patients received CT alone twice daily for 30 minutes, 5 days a week, for 2 weeks. Modified Ashworth Scale (MAS) was used to measure the spasticity of upper extremity. Manual muscle tests (MMT), Manual Function Tests (MFT), Brunnstrom stage, and the Korean version of Modified Barthel Index (K-MBI) were used to measure the strength and function of upper extremity. All measurements were obtained before and after 2-week treatment. RESULTS The RT and CT groups included 22 subjects each. After treatment, both groups showed significantly lower MAS scores and significant improvement in the MMT, MFT, Brunnstrom stage, and K-MBI scores. Treatment effects showed no significant differences between the two groups. CONCLUSION RT showed similar treatment benefits on spasticity, as compared to CT. The study results suggested that RT could be a useful method for continuous, repeatable, and relatively accurate range of motion exercise in stroke patients with spasticity.
Collapse
Affiliation(s)
- Kyeong Woo Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Sang Beom Kim
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Jong Hwa Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Sook Joung Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Seung Wan Yoo
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| |
Collapse
|
29
|
On the assessment of coordination between upper extremities: towards a common language between rehabilitation engineers, clinicians and neuroscientists. J Neuroeng Rehabil 2016; 13:80. [PMID: 27608923 PMCID: PMC5017057 DOI: 10.1186/s12984-016-0186-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022] Open
Abstract
Well-developed coordination of the upper extremities is critical for function in everyday life. Interlimb coordination is an intuitive, yet subjective concept that refers to spatio-temporal relationships between kinematic, kinetic and physiological variables of two or more limbs executing a motor task with a common goal. While both the clinical and neuroscience communities agree on the relevance of assessing and quantifying interlimb coordination, rehabilitation engineers struggle to translate the knowledge and needs of clinicians and neuroscientists into technological devices for the impaired. The use of ambiguous definitions in the scientific literature, and lack of common agreement on what should be measured, present large barriers to advancements in this area. Here, we present the different definitions and approaches to assess and quantify interlimb coordination in the clinic, in motor control studies, and by state-of-the-art robotic devices. We then propose a taxonomy of interlimb activities and give recommendations for future neuroscience-based robotic- and sensor-based assessments of upper limb function that are applicable to the everyday clinical practice. We believe this is the first step towards our long-term goal of unifying different fields and help the generation of more consistent and effective tools for neurorehabilitation.
Collapse
|
30
|
Sheng B, Zhang Y, Meng W, Deng C, Xie S. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Med Eng Phys 2016; 38:587-606. [PMID: 27117423 DOI: 10.1016/j.medengphy.2016.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/18/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
Abstract
Robot-assisted bilateral upper-limb training grows abundantly for stroke rehabilitation in recent years and an increasing number of devices and robots have been developed. This paper aims to provide a systematic overview and evaluation of existing bilateral upper-limb rehabilitation devices and robots based on their mechanisms and clinical-outcomes. Most of the articles studied here were searched from nine online databases and the China National Knowledge Infrastructure (CNKI) from year 1993 to 2015. Devices and robots were categorized as end-effectors, exoskeletons and industrial robots. Totally ten end-effectors, one exoskeleton and one industrial robot were evaluated in terms of their mechanical characteristics, degrees of freedom (DOF), supported control modes, clinical applicability and outcomes. Preliminary clinical results of these studies showed that all participants could gain certain improvements in terms of range of motion, strength or physical function after training. Only four studies supported that bilateral training was better than unilateral training. However, most of clinical results cannot definitely verify the effectiveness of mechanisms and clinical protocols used in robotic therapies. To explore the actual value of these robots and devices, further research on ingenious mechanisms, dose-matched clinical protocols and universal evaluation criteria should be conducted in the future.
Collapse
|
31
|
Hsieh YW, Liing RJ, Lin KC, Wu CY, Liou TH, Lin JC, Hung JW. Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. J Neuroeng Rehabil 2016; 13:31. [PMID: 27000446 PMCID: PMC4802889 DOI: 10.1186/s12984-016-0138-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/11/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales. METHODS The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention. RESULTS RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT. CONCLUSION A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living. TRIAL REGISTRATION ClinicalTrials.gov. NCT01727648.
Collapse
Affiliation(s)
- Yu-wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, and Healthy Aging Research Center, Chang Gung University, 259 Wenhua 1st Rd, Taoyuan, Taiwan
| | - Rong-jiuan Liing
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keh-chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, and Healthy Aging Research Center, Chang Gung University, 259 Wenhua 1st Rd, Taoyuan, Taiwan.
| | - Tsan-hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jui-chi Lin
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jen-wen Hung
- Department of Rehabilitation, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Middleton A, Fritz SL, Liuzzo DM, Newman-Norlund R, Herter TM. Using clinical and robotic assessment tools to examine the feasibility of pairing tDCS with upper extremity physical therapy in patients with stroke and TBI: a consideration-of-concept pilot study. NeuroRehabilitation 2015; 35:741-54. [PMID: 25323084 DOI: 10.3233/nre-141178] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) may provide a safe, non-invasive technique for modulating neural excitability during neurorehabilitation. OBJECTIVE 1) Assess feasibility and potential effectiveness of tDCS as an adjunct to standard upper extremity (UE) physical therapy (PT) for motor impairments resulting from neurological insult. 2) Determine sustainability of improvements over a six month period. METHODS Five participants with chronic neurologic insult (stroke or traumatic brain injury > 6 months prior) completed 24 sessions (40 minutes, three times/week) of UE-PT combined with bihemispheric tDCS delivered at 1.5 mA over the motor cortex during the first 15 minutes of each PT session. Outcomes were assessed using clinical (UE Fugl-Meyer, Purdue Pegboard, Box and Block, Stroke Impact Scale) and robotic (unimanual and bimanual motor control) measures. Change in scores and associated effects sizes from Pre-test to Post-test and a six month Follow-up were calculated for each participant and group as a whole. RESULTS Scores on UE Fugl-Meyer, Box and Block, Purdue Pegboard, Stroke Impact Scale, and robotic measures improved from Pre- to Post-test. Improvements on UE Fugl-Meyer, Box and Block, and robotic measures were largely sustained at six months. CONCLUSIONS Combining bihemispheric tDCS with UE-PT in individuals with neurological insult warrants further investigation.
Collapse
Affiliation(s)
- Addie Middleton
- University of South Carolina, Department of Exercise Science, Division of Rehabilitation Sciences, Columbia, SC, USA
| | - Stacy L Fritz
- University of South Carolina, Department of Exercise Science, Division of Rehabilitation Sciences, Columbia, SC, USA
| | - Derek M Liuzzo
- University of South Carolina, Department of Exercise Science, Division of Rehabilitation Sciences, Columbia, SC, USA
| | - Roger Newman-Norlund
- University of South Carolina, Department of Exercise Science, Division of Rehabilitation Sciences, Columbia, SC, USA
| | - Troy M Herter
- University of South Carolina, Department of Exercise Science, Division of Rehabilitation Sciences, Columbia, SC, USA
| |
Collapse
|
33
|
|
34
|
Kang N, Cauraugh JH. Paretic hand unimanual force control: Improved submaximal force production and regularity. Neurosci Res 2014; 94:79-86. [PMID: 25527304 DOI: 10.1016/j.neures.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
The purpose was to investigate force control capabilities in paretic hands during unimanual movements after coupled bimanual movement training and neuromuscular stimulation on impaired muscles. Nineteen chronic stroke participants completed 90 min of rehabilitation per week for six consecutive weeks. Before and after training, volunteers performed unimanual submaximal force control tasks at 5% and 50% of maximum voluntary contraction with their paretic and non-paretic hands. Force control measures included submaximal force production, force variability, accuracy, and regularity. Two major findings on paretic hands after training revealed: (a) greater submaximal force production across force levels and (b) less regular force outputs. Paretic hand control improved after coupled bimanual movement training as evidenced by submaximal force production and force regularity.
Collapse
Affiliation(s)
- Nyeonju Kang
- Motor Behavior Laboratory, University of Florida, Gainesville, FL, USA
| | - James H Cauraugh
- Motor Behavior Laboratory, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Sivan M, Gallagher J, Makower S, Keeling D, Bhakta B, O'Connor RJ, Levesley M. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. J Neuroeng Rehabil 2014; 11:163. [PMID: 25495889 PMCID: PMC4280043 DOI: 10.1186/1743-0003-11-163] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
Background Home-based robotic technologies may offer the possibility of self-directed upper limb exercise after stroke as a means of increasing the intensity of rehabilitation treatment. The current literature has a paucity of robotic devices that have been tested in a home environment. The aim of this research project was to evaluate a robotic device Home-based Computer Assisted Arm Rehabilitation (hCAAR) that can be used independently at home by stroke survivors with upper limb weakness. Methods hCAAR device comprises of a joystick handle moved by the weak upper limb to perform tasks on the computer screen. The device provides assistance to the movements depending on users ability. Nineteen participants (stroke survivors with upper limb weakness) were recruited. Outcome measures performed at baseline (A0), at end of 8-weeks of hCAAR use (A1) and 1 month after end of hCAAR use (A2) were: Optotrak kinematic variables, Fugl Meyer Upper Extremity motor subscale (FM-UE), Action Research Arm Test (ARAT), Medical Research Council (MRC) and Modified Ashworth Scale (MAS), Chedoke Arm and Hand Activity Inventory (CAHAI) and ABILHAND. Results Two participants were unable to use hCAAR: one due to severe paresis and the other due to personal problems. The remaining 17 participants were able to use the device independently in their home setting. No serious adverse events were reported. The median usage time was 433 minutes (IQR 250 – 791 min). A statistically significant improvement was observed in the kinematic and clinical outcomes at A1. The median gain in the scores at A1 were by: movement time 19%, path length 15% and jerk 19%, FM-UE 1 point, total MAS 1.5 point, total MRC 2 points, ARAT 3 points, CAHAI 5.5 points and ABILHAND 3 points. Three participants showed clinically significant improvement in all the clinical outcomes. Conclusions The hCAAR feasibility study is the first clinical study of its kind reported in the current literature; in this study, 17 participants used the robotic device independently for eight weeks in their own homes with minimal supervision from healthcare professionals. Statistically significant improvements were observed in the kinematic and clinical outcomes in the study. Electronic supplementary material The online version of this article (doi:10.1186/1743-0003-11-163) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Rory J O'Connor
- Academic Department of Rehabilitation Medicine, University of Leeds, Leeds LS1 3EX, UK.
| | | |
Collapse
|
36
|
Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil 2014; 11:137. [PMID: 25217124 PMCID: PMC4180322 DOI: 10.1186/1743-0003-11-137] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Studies of stroke patients undergoing robot-assisted rehabilitation have revealed various kinematic parameters describing movement quality of the upper limb. However, due to the different level of stroke impairment and different assessment criteria and interventions, the evaluation of the effectiveness of rehabilitation program is undermined. This paper presents a systematic review of kinematic assessments of movement quality of the upper limb and identifies the suitable parameters describing impairments in stroke patients. A total of 41 different clinical and pilot studies on different phases of stroke recovery utilizing kinematic parameters are evaluated. Kinematic parameters describing movement accuracy are mostly reported for chronic patients with statistically significant outcomes and correlate strongly with clinical assessments. Meanwhile, parameters describing feed-forward sensorimotor control are the most frequently reported in studies on sub-acute patients with significant outcomes albeit without correlation to any clinical assessments. However, lack of measures in coordinated movement and proximal component of upper limb enunciate the difficulties to distinguish the exploitation of joint redundancies exhibited by stroke patients in completing the movement. A further study on overall measures of coordinated movement is recommended.
Collapse
|
37
|
Chen JC, Shaw FZ. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J Clin Cases 2014; 2:316-326. [PMID: 25133141 PMCID: PMC4133420 DOI: 10.12998/wjcc.v2.i8.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into “a training package”, based on the patient’s functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients.
Collapse
|
38
|
Wolf A, Scheiderer R, Napolitan N, Belden C, Shaub L, Whitford M. Efficacy and task structure of bimanual training post stroke: a systematic review. Top Stroke Rehabil 2014; 21:181-96. [PMID: 24985386 DOI: 10.1310/tsr2103-181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bimanual training has been shown to be as effective as, but not superior to, unimanual paretic upper extremity (UE) training interventions in improving paretic UE function and use post stroke. However, it is still unclear whether different training interventions or task structures within bimanual interventions may differentially affect the outcomes. OBJECTIVE The objectives of this review were to (1) systematically determine the efficacy of bimanual training in relation to the International Classification of Functioning, Disability and Health model components and (2) explore the structure of current bimanual training interventions. METHOD A systematic review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eleven studies were accepted for review. RESULTS Three main types of bimanual training emerged: functional task training (FTT), bilateral training with rhythmic auditory cues (BATRAC), and robot-assisted training (RAT). Bimanual training is generally efficacious overall in improving paretic UE movement in individuals with subacute and/or chronic stroke as compared with other interventions. FTT, BATRAC, and RAT showed no significant differences compared with conventional therapy. Bimanual training may have greater proximal control benefits but fewer benefits in terms of subjects' perceived amount and quality of use as compared with constraint-induced movement therapy. CONCLUSION There were not enough data to draw any conclusions about the effects of bimanual task symmetry or commonality of goal.
Collapse
Affiliation(s)
- Angela Wolf
- Department of Physical Therapy, Walsh University, North Canton, Ohio
| | - Rachel Scheiderer
- Department of Physical Therapy, Walsh University, North Canton, Ohio
| | | | - Courtney Belden
- Department of Physical Therapy, Walsh University, North Canton, Ohio
| | - Lauren Shaub
- Department of Physical Therapy, Walsh University, North Canton, Ohio
| | - Maureen Whitford
- Department of Physical Therapy, Walsh University, North Canton, Ohio
| |
Collapse
|
39
|
Basteris A, Nijenhuis SM, Stienen AHA, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil 2014; 11:111. [PMID: 25012864 PMCID: PMC4108977 DOI: 10.1186/1743-0003-11-111] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial.Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits.
Collapse
Affiliation(s)
- Angelo Basteris
- Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, College Lane, AL95HX Hatfield, United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Lin CH, Chou LW, Wei SH, Lieu FK, Chiang SL, Sung WH. Validity and reliability of a novel device for bilateral upper extremity functional measurements. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 114:315-323. [PMID: 24690377 DOI: 10.1016/j.cmpb.2014.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND OBJECTIVE This study was designed to establish the validity and reliability of a new device that measures bilateral shoulder and elbow range of motion (ROM) and grip force performance in vivo. A further aim was to investigate the control of inter-limb grip force coordination during isometric force-maintenance tasks. Validity of the ROM and grip force measurements was examined using a validated clinical goniometer and standard weights. SUBJECTS Twenty-one healthy adults (six female, 15 male; mean±standard deviation age=23.05±3.51) were recruited for this study. DESIGN All subjects were asked to perform tests to evaluate the validity and reliability of ROM, grip force maximum voluntary contraction (MVC) and coordination control measurements. RESULTS The ROM and grip force measurements were linearly correlated with criterion standards. For reliability testing, all of the intraclass correlation coefficient values were >0.99. The inter-limb grip force coordination control task showed that the force modulation timing during dominant-to-non-dominant hand transition was longer than the non-dominant-to-dominant hand transition (p<0.05). CONCLUSIONS These results demonstrate that this device is valid and reliable when used to measure shoulder and elbow ROM and grip force of both hands. Isometric force-maintenance tasks also indicated changes in inter-limb grip force control.
Collapse
Affiliation(s)
- Chueh-Ho Lin
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan; Department of Physical Therapy, Hung-Kung University, Taichung, Taiwan
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Shun-Hwa Wei
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | | | | | - Wen-Hsu Sung
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
41
|
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 2014; 11:3. [PMID: 24401110 PMCID: PMC4029785 DOI: 10.1186/1743-0003-11-3] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.
Collapse
Affiliation(s)
- Paweł Maciejasz
- DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier, France
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa, Poland
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Kurt Gerlach-Hahn
- Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Arne Jansen-Troy
- Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Steffen Leonhardt
- Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
42
|
Shahine EM, Shafshak TS. The effect of repetitive bilateral arm training with rhythmic auditory cueing on motor performance and central motor changes in patients with chronic stroke. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2014. [DOI: 10.4103/1110-161x.128128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Sin M, Kim WS, Park D, Min YS, Kim WJ, Cho K, Paik NJ. Electromyographic analysis of upper limb muscles during standardized isotonic and isokinetic robotic exercise of spastic elbow in patients with stroke. J Electromyogr Kinesiol 2013; 24:11-7. [PMID: 24290983 DOI: 10.1016/j.jelekin.2013.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/03/2013] [Accepted: 10/04/2013] [Indexed: 11/17/2022] Open
Abstract
Although it has been reported that strengthening exercise in stroke patients is beneficial for their motor recovery, there is little evidence about which exercise method is the better option. The purpose of this study was to compare isotonic and isokinetic exercise by surface electromyography (EMG) analysis using standardized methods. Nine stroke patients performed three sets of isotonic elbow extensions at 30% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic elbow extensions with standardization of mean angular velocity and the total amount of work for each matched set in two strengthening modes. All exercises were done by using 1-DoF planner robot to regulate exact resistive torque and speed. Surface electromyographic activity of eight muscles in the hemiplegic shoulder and elbow was recorded. Normalized root mean square (RMS) values and co-contraction index (CCI) were used for the analysis. The isokinetic mode was shown to activate the agonists of elbow extension more efficiently than the isotonic mode (normalized RMS for pooled triceps: 96.0±17.0 (2nd), 87.8±14.4 (3rd) in isokinetic, 80.9±11.0 (2nd), 81.6±12.4 (3rd) in isotonic contraction, F[1,8]=11.168; P=0.010) without increasing the co-contraction of muscle pairs, implicating spasticity or synergy.
Collapse
Affiliation(s)
- Minki Sin
- School of Mechanical and Aerospace Engineering, Seoul National University/IAMD, Seoul, Republic of Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Daegeun Park
- School of Mechanical and Aerospace Engineering, Seoul National University/IAMD, Seoul, Republic of Korea
| | - Yu-Sun Min
- Department of Rehabilitation Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Woo Jin Kim
- Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, Inje University of Medicine, Busan, Republic of Korea
| | - Kyujin Cho
- School of Mechanical and Aerospace Engineering, Seoul National University/IAMD, Seoul, Republic of Korea.
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
44
|
Abdollahi F, Kenyon RV, Patton JL. Mirror versus parallel bimanual reaching. J Neuroeng Rehabil 2013; 10:71. [PMID: 23837908 PMCID: PMC3717099 DOI: 10.1186/1743-0003-10-71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 06/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background In spite of their importance to everyday function, tasks that require both hands to work together such as lifting and carrying large objects have not been well studied and the full potential of how new technology might facilitate recovery remains unknown. Methods To help identify the best modes for self-teleoperated bimanual training, we used an advanced haptic/graphic environment to compare several modes of practice. In a 2-by-2 study, we compared mirror vs. parallel reaching movements, and also compared veridical display to one that transforms the right hand’s cursor to the opposite side, reducing the area that the visual system has to monitor. Twenty healthy, right-handed subjects (5 in each group) practiced 200 movements. We hypothesized that parallel reaching movements would be the best performing, and attending to one visual area would reduce the task difficulty. Results The two-way comparison revealed that mirror movement times took an average 1.24 s longer to complete than parallel. Surprisingly, subjects’ movement times moving to one target (attending to one visual area) also took an average of 1.66 s longer than subjects moving to two targets. For both hands, there was also a significant interaction effect, revealing the lowest errors for parallel movements moving to two targets (p < 0.001). This was the only group that began and maintained low errors throughout training. Conclusion Combined with other evidence, these results suggest that the most intuitive reaching performance can be observed with parallel movements with a veridical display (moving to two separate targets). These results point to the expected levels of challenge for these bimanual training modes, which could be used to advise therapy choices in self-neurorehabilitation.
Collapse
|
45
|
Patten C, Condliffe EG, Dairaghi CA, Lum PS. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke. J Neuroeng Rehabil 2013; 10:1. [PMID: 23336711 PMCID: PMC3562202 DOI: 10.1186/1743-0003-10-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. METHOD Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. RESULTS PRIMARY OUTCOME Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). SECONDARY OUTCOMES A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p's < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p's < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. CONCLUSIONS Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery.
Collapse
Affiliation(s)
- Carolynn Patten
- Brain Rehabilitation R&D Center (151A), Malcolm Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Elizabeth G Condliffe
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christine A Dairaghi
- Rehabilitation Research Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Peter S Lum
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
- Veterans Affairs Medical Center, Washington, DC, USA
- Center for Applied Biomechanics and Rehabilitation Research, National Rehabilitation Hospital, Washington, DC, USA
| |
Collapse
|
46
|
Jung NH, Kim KM, Oh JS, Chang M. The Effects of Bilateral Arm Training on Reaching Performance and Activities of Daily Living of Stroke Patients. J Phys Ther Sci 2013. [DOI: 10.1589/jpts.25.449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nam-Hae Jung
- Department of Occupational Therapy, Bongseng Memorial Hospital
| | - Kyeong-Mi Kim
- Department of Occupational Therapy, College of Biomedical Science and Engineering, InjeUniversity: 197 Inje Street, Gimhae, Gyeongsangnam-do 621-749, Republic of Korea
| | - Jae-Seop Oh
- Department of Physical Therapy, College of Biomedical Science and Engineering, Inje University
| | - Moonyoung Chang
- Department of Occupational Therapy, College of Biomedical Science and Engineering, InjeUniversity: 197 Inje Street, Gimhae, Gyeongsangnam-do 621-749, Republic of Korea
| |
Collapse
|
47
|
A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke Res Treat 2012; 2012:972069. [PMID: 23251833 PMCID: PMC3517854 DOI: 10.1155/2012/972069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
Introduction. In stroke rehabilitation, bilateral upper limb training is gaining ground. As a result, a growing number of mechanical and robotic bilateral upper limb training devices have been proposed. Objective. To provide an overview and qualitative evaluation of the clinical applicability of bilateral upper limb training devices. Methods. Potentially relevant literature was searched in the PubMed, Web of Science, and Google Scholar databases from 1990 onwards. Devices were categorized as mechanical or robotic (according to the PubMed MeSH term of robotics). Results. In total, 6 mechanical and 14 robotic bilateral upper limb training devices were evaluated in terms of mechanical and electromechanical characteristics, supported movement patterns, targeted part and active involvement of the upper limb, training protocols, outcomes of clinical trials, and commercial availability. Conclusion. Initial clinical results are not yet of such caliber that the devices in question and the concepts on which they are based are firmly established. However, the clinical outcomes do not rule out the possibility that the concept of bilateral training and the accompanied devices may provide a useful extension of currently available forms of therapy. To actually demonstrate their (surplus) value, more research with adequate experimental, dose-matched designs, and sufficient statistical power are required.
Collapse
|
48
|
Abstract
Stroke represents a major cause of death and disability. In just the last two decades, science has begun to appreciate the central nervous system's attempts to repair itself through a process termed neuroplasticity. The remodeling is a dynamic process subject to endogenous and exogenous forces. Rehabilitation has started to implement approaches based on objective measures such as diffusion tensor imaging and functional magnetic resonance. Newer modalities such as constraint-induced movement therapy and robotic interventions are being used for both short- and long-term functional gains. This review describes the various studies on neuroplasticity and the variety of interventions now available.
Collapse
|
49
|
Finley M, Combs S. User perceptions of gaming interventions for improving upper extremity motor function in persons with chronic stroke. Physiother Theory Pract 2012; 29:195-201. [DOI: 10.3109/09593985.2012.717591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Isokinetic strength and power deficits in the hand following stroke. Clin Neurophysiol 2012; 123:1200-6. [DOI: 10.1016/j.clinph.2011.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022]
|