1
|
Zhao H, Zhang L, Yang J, Guo W, Sun C, Shi R, Wang Z. Parkinson's disease motor intervention patterns: a network meta-analysis based on patient motor function. Front Neurol 2024; 15:1432256. [PMID: 39314864 PMCID: PMC11418397 DOI: 10.3389/fneur.2024.1432256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Parkinson's disease is characterized by symptoms such as bradykinesia and rigidity, which worsen as the disease progresses, significantly impacting patients' independence and quality of life. This study utilizes a network meta-analysis approach to quantify information gathered from randomized controlled trials (RCTs) regarding motor interventions that effectively improve the motor function of Parkinson's disease patients, aiming to provide evidence for selecting appropriate exercise intervention strategies for patients. Methods A systematic search strategy for randomized controlled trials (RCTs) restricted to English was constructed based on multiple biomedical databases. Databases searched included PubMed, Embase, Cochrane, Web of Science, CINAHL, CBM, China National Knowledge Infrastructure (CNKI), Wan fang, VIP, etc., with searches conducted from inception to July 9, 2023. Two authors screened all studies, extracted data, and used frequency domain analysis methods. Network meta-analysis was performed using STATA software version 18.0 to compare and rank exercises that could effectively improve the motor function of Parkinson's disease patients (measured by indicators such as MDS-UPDRS-III, TUG, BBS, Mini-BES Test, 6MWT scores). Additionally, a series of analyses and evaluations were conducted, such as assessing the methodological quality of included studies using the Cochrane risk of bias tool. Results The network meta-analysis included a total of 111 studies involving 5,358 participants, 133 intervention experiments, and 31 intervention measures. Although most exercise interventions showed effectiveness, cumulative ranking curves under the surface (SUCRA) values showed that archery exercise significantly improved patients' MDS-UPDRS-III scores (SUCRA = 95.6%), significantly superior to routine care [standardized mean difference (SMD = 16.92, 95%CI = -28.97, -4.87)]. High-intensity and agility exercise (High strength and agility) referred to as high-intensity exercise or agility training or a combination of both, collectively termed as high-intensity agility training, significantly improved patients' completion time for the time-up-and-go test (SUCRA = 99.7%), (SMD = -7.88, 95%CI = -9.47, -6.28). Dance and Tai Chi exercises significantly improved patients' balance abilities: Mini-Balance Evaluation Systems Test (SUCRA = 77.9%), (SMD = 5.25, 95%CI = -0.42, 10.92) for dance intervention and Berg Balance Scale (SUCRA = 94.7%), (SMD = 11.22, 95%CI = 3.26, 19.18) for Tai Chi intervention. Dance also significantly improved patients' walking ability in the 6-min walk test (SUCRA = 80.5%), (SMD = 71.31, 95%CI = 13.77, 128.84). Conclusion Compared to other exercises, archery, dance, Tai Chi, and high-intensity agility exercises demonstrate superior efficacy in improving the motor function of Parkinson's disease patients.
Collapse
Affiliation(s)
- Hongfei Zhao
- Wushu College, Shanghai Sport University, Shanghai, China
| | - Li Zhang
- Xiamen Medical College, Xiamen, Fujian, China
| | - Jingling Yang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanru Guo
- Wushu College, Shanghai Sport University, Shanghai, China
| | - Chunyang Sun
- School of Exercise and Health, Shanghai Sport University, Shanghai, China
| | - Runbo Shi
- Wushu College, Shanghai Sport University, Shanghai, China
| | - Zhen Wang
- Wushu College, Shanghai Sport University, Shanghai, China
| |
Collapse
|
2
|
Kaşlı K, Doğan M, Özal C, Doğan Y, Kılınç M, Aksu Yıldırım S. The effects of myofascial release in combined with task-oriented circuit training on balance in people with Parkinson's disease: a randomized pilot trial. Neurol Res 2024; 46:848-858. [PMID: 38818769 DOI: 10.1080/01616412.2024.2360860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Task-oriented circuit training (TOCT) has been used to improve balance in people with Parkinson's disease (pwPD). To investigate the effectiveness of TOCT on balance, quality of life, and disease symptoms when combined with myofascial release in pwPD. METHODS Twenty-six pwPD were randomized into two groups for this randomized controlled study. The groups received TOCT three days a week for eight weeks. At the end of each session, the myofascial release was applied to the neck, trunk, and lumbar region with three sets of 60-s foam rolling body weight (Intervention group-IG) and perceived discomfort level 0/10 (Control group-CG) using a numeric rating scale. Primary outcome measures were measured by the Berg Balance Scale (BBS), Parkinson's Disease Questionnaire (PDQ-8), and Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Secondary outcome measures included posturographic assessment, timed-up and go test (TUG), Trunk Impairment Scale (TIS), and rolling time. RESULTS Data obtained from 26 pwPDs in equal numbers in both groups were analyzed. All groups reported a significant change in MDS-UPDRS, MDS-UPDRS-III, PDQ-8, TIS, and rolling time after treatment compared to pretreatment. Post-hoc analyses showed that IG significantly improved motor symptoms, TUG, and TIS dynamics compared to CG. The mediolateral limits of stability and anterioposterior limits of stability distances of IG increased (p < 0.05). DISCUSSION Myofascial release, when combined with TOCT, may help to reduce disease-related motor symptoms and improve dynamic balance in pwPD. These findings suggest that myofascial release can be a beneficial addition to TOCT programs for pwPD.Clinical Trial Number: NCT05900934 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Kutay Kaşlı
- Department of Health Care Services, Vocational School of Health Services, Çankırı Karatekin University, Çankırı, Turkey
- Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mert Doğan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Cemil Özal
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Yahya Doğan
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Muhammed Kılınç
- Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Sibel Aksu Yıldırım
- Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Calaway CC, Martinez KJ, Calzada Bichili AR, Caplan JH, Milgrim WP, Mann JB, Haq I, Signorile JF. Velocity-Based Training Affects Function, Strength, and Power in Persons with Parkinson's Disease. J Strength Cond Res 2024:00124278-990000000-00508. [PMID: 39074248 DOI: 10.1519/jsc.0000000000004874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Calaway, CC, Martinez, KJ, Calzada Bichili, AR, Caplan, JH, Milgrim, WP, Mann, JB, Haq, I, and Signorile, JF. Velocity-based training affects function, strength, and power in persons with Parkinson's disease. J Strength Cond Res XX(X): 000-000, 2024-Velocity-based training (VBT) is commonly associated with high-level athletes. No study has examined the effects of VBT on performance in persons with Parkinson's disease (PD). The objective of the study was to compare the effects of 10 and 30% velocity-loss threshold protocols on changes in functional performance, strength, and power in persons with PD after 12 weeks of supervised VBT, 3 days per week. Twenty-one subjects with PD (72.9 ± 5.9 y) were randomly assigned to the 10% or 30% velocity-loss threshold group and performed the 6-m walk test at habitual and maximal gait speed (6MWTMax), the 5 time sit-to-stand test (5 × STS), 1 repetition maximum (1RM), and peak power (PP) testing for the chest press (CP) and leg press (LP) exercise. A mixed ANOVA with significance was set a priori at 0.05 revealed that significant time effects were seen for the 6MWT at maximal speed (MDiff ± SD = 0.22 ± 0.04 m·s-1, p < 0.001), 5-time sit-to-stand time (-1.48 ± 0.45 seconds, p = 0.005) and power (75.5 ± 22.7 W, p = 0.005), 1RM for CP (5.1 ± 1.1 kg, p < 0.001) and LP (12.6 ± 3.7 kg, p = 0.005), and LP-PP (43.6 ± 13.2 W, p = 0.006). Secondary analyses revealed time effects for the load at which PP was achieved for the CP exercise. A Wilcoxon signed-rank test revealed no significant differences in the percentage of 1RM at which PP was achieved for either condition. Results indicate that VBT is an effective training modality for improving functional capacity, strength, and power in persons with PD; however, shifts in force-velocity relationships were not evidenced.
Collapse
Affiliation(s)
- Caleb C Calaway
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Kylie J Martinez
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Ana Raquel Calzada Bichili
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Joseph H Caplan
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - William P Milgrim
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - J Bryan Mann
- Department of Kinesiology and Sports Management, Texas A&M University, College Station, Texas; and
| | - Ihtsham Haq
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Joseph F Signorile
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| |
Collapse
|
4
|
Valenciano PJ, Monteiro PHM, Lazzaro IM, Heusi da Silva FJM, Silva FH, Mizrahi SE, Guimarães CP, Teixeira LA. Validation of the Equidyn protocol for evaluation of dynamic balance in older adults through a smartphone application. Gait Posture 2024; 111:59-64. [PMID: 38643633 DOI: 10.1016/j.gaitpost.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/08/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Different tasks and proxy measurements have been employed to evaluate dynamic balance in older individuals. However, due to inherent limitations, results from most evaluations could hardly be taken as valid measurements of dynamic balance. RESEARCH QUESTION Is the Equidyn smartphone application-based protocol valid and sensitive for assessment of dynamic balance in older adults? METHODS Dynamic balance was evaluated in 52 physically active individuals, age range 60-80 years (M = 69.36). The dynamic tasks were one-leg sway either in the mediolateral (ML) or anteroposterior (AP) direction while supported on the contralateral leg, and cyclic sit-to-stand with a narrow support base. These tasks were performed under standardized movement amplitude and rhythm. Outcomes were correlated with unipedal quiet standing. A smartphone was attached to the trunk backside, and a custom-made application (Equidyn) was employed to provide guidance throughout evaluation, timed beeps to pace the movements, and three-dimensional trunk acceleration measurement for balance evaluation. RESULTS Our data showed (a) that both ML and AP leg sway tasks were sensitive to aging and to direction of leg sway movements; (b) referenced to quiet unipedal stance, moderate/strong correlations for the ML/AP leg sway tasks and moderate correlations for the sit-to-stand task; and (c) moderate/strong correlations between the ML and AP leg sway tasks, and moderate correlations between the sit-to-stand and the two unipedal dynamic tasks in the ML acceleration direction. SIGNIFICANCE The current results support the conclusion that the Equidyn protocol is a sensitive and valid tool to evaluate dynamic balance in healthy older individuals. The protocol tasks standardized in amplitude and rhythm favor their reproducibility and trunk acceleration data interpretation. As the whole assessment is made through a smartphone application, this dynamic balance evaluation could be made in a low-cost simple way both in the laboratory and clinical settings.
Collapse
Affiliation(s)
- Paola Janeiro Valenciano
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | - Isabela Montoro Lazzaro
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, Kalbe E. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis. Cochrane Database Syst Rev 2024; 4:CD013856. [PMID: 38588457 PMCID: PMC11001292 DOI: 10.1002/14651858.cd013856.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS We included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of "Lee Silverman Voice training BIG" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.
Collapse
Affiliation(s)
- Moritz Ernst
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Romina Gollan
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Emma Lieker
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nora Cryns
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Antje Dresen
- Institute of Medical Sociology, Health Services Resarch, and Rehabilitation Science (IMVR), Faculty of Human Sciences and Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mandy Roheger
- Ambulatory Assessment in Psychology, Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop GmbH, Bottrop, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Tramontano M, Argento O, Orejel Bustos AS, DE Angelis S, Montemurro R, Bossa M, Belluscio V, Bergamini E, Vannozzi G, Nocentini U. Cognitive-motor dual-task training improves dynamic stability during straight and curved gait in patients with multiple sclerosis: a randomized controlled trial. Eur J Phys Rehabil Med 2024; 60:27-36. [PMID: 37997324 DOI: 10.23736/s1973-9087.23.08156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic inflammatory, demyelinating, degenerative disease of the central nervous system and the second most frequent cause of permanent disability in young adults. One of the most common issues concerns the ability to perform postural and gait tasks while simultaneously completing a cognitive task (namely, dual-task DT). AIM Assessing cognitive-motor dual-task training effectiveness in patients with Multiple Sclerosis (PwMS) for dynamic gait quality when walking on straight, curved, and blindfolded paths. DESIGN Two-arm single-blind randomized controlled trial. Follow-up at 8 weeks. SETTING Neurorehabilitation Hospital. POPULATION A sample of 42 PwMS aged 28-71, with a score of 4.00±1.52 on the Expanded Disability Status Scale were recruited. METHODS Participants were randomized in conventional (CTg) neurorehabilitation and dual-task training (DTg) groups and received 12 sessions, 3 days/week/4 weeks. They were assessed at baseline (T0), after the treatment (T1), and 8 weeks after the end of the treatment (T2) through Mini-BESTest, Tinetti Performance Oriented Mobility Assessment, Modified Barthel Index, and a set of spatiotemporal parameters and gait quality indices related to stability, symmetry, and smoothness of gait extracted from initial measurement units (IMUs) data during the execution of the 10-meter Walk Test (10mWT), the Figure-of-8 Walk Test (Fo8WT) and the Fukuda Stepping Test (FST). RESULTS Thirty-one PwMS completed the trial at T2. Significant improvement within subjects was found in Mini-BESTest scores for DTg from T0 to T1. The IMU-based assessment indicated significant differences in stability (P<0.01) and smoothness (P<0.05) measures between CTg and DTg during 10mWT and Fo8WT. Substantial improvements (P<0.017) were also found in the inter-session comparison, primarily for DTg, particularly for stability, symmetry, and smoothness measures. CONCLUSIONS This study supports the effectiveness of DT in promoting dynamic motor abilities in PwMS. CLINICAL REHABILITATION IMPACT Cognitive-motor DT implemented into the neurorehabilitation conventional program could be a useful strategy for gait and balance rehabilitation.
Collapse
Affiliation(s)
- Marco Tramontano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy -
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy -
| | - Ornella Argento
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Amaranta S Orejel Bustos
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Sara DE Angelis
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Rebecca Montemurro
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Michela Bossa
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Valeria Belluscio
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Elena Bergamini
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Giuseppe Vannozzi
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Ugo Nocentini
- Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Chen CY, Wang WN, Lu MK, Yang YW, Yu T, Wu TN, Tsai CH. The Rehabilitative Effect of Archery Exercise Intervention in Patients with Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:9175129. [PMID: 37333719 PMCID: PMC10270763 DOI: 10.1155/2023/9175129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Background Archery exercise exerts a rehabilitative effect on patients with paraplegia and might potentially serve as complementary physiotherapy for patients with Parkinson's disease. Objective This study aimed to examine the rehabilitative effects of an archery intervention. Methods A randomized controlled trial of a 12-week intervention was performed in patients with idiopathic Parkinson's disease. Thirty-one of the 39 eligible patients recruited from a medical center in Taiwan participated in the trial, of whom 16 were in the experimental group practicing archery exercises and 15 were in the control group at the beginning; twenty-nine completed the whole process. The Purdue pegboard test (PPT), the Unified Parkinson's Disease Rating Scale I to III (UPDRS I to III), physical fitness test, and timed up and go test (TUG) were used to assess the intervention effects of archery exercise. Results Compared to the control group, the outcome differences between the posthoc and baseline tests in PPT, UPDRS I to III, lower extremity muscular strength, and TUG in the experimental group (between-group difference in difference's mean: 2.07, 1.59, 1.36, -2.25, -3.81, -9.10, 3.57, and -1.51, respectively) did show positive changes and their effect sizes examined from Mann-Whitney U tests (η: 0.631, 0.544, 0.555, 0.372, 0.411, 0.470, 0.601, and 0.381, respectively; Ps < 0.05) were medium to large, indicating that the archery intervention exerted promising effects on improving hand flexibility and finger dexterity, activity functions in motor movement, lower extremity muscular strength, and gait and balance ability. Conclusions Traditional archery exercise was suggested to have a rehabilitative effect for mild to moderate Parkinson's disease and could be a form of physiotherapy. Nevertheless, studies with larger sample sizes and extended intervention periods are needed to ascertain the long-term effects of archery exercise.
Collapse
Affiliation(s)
- Chiu-Ying Chen
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Department of Nursing and Graduate Institute of Nursing, Asia University, Taichung, Taiwan
| | - Wei-Ning Wang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Kuei Lu
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Ph.D. Program for Translational Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Yu-Wan Yang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung Yu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Trong-Neng Wu
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Monleón Guinot S, San Martín Valenzuela C, Aranda Asensi V, de Salazar Antón C, Villanueva Navarro M, Tomás JM. Functional balance training in people with Parkinson's disease: a protocol of balanceHOME randomized control trial with crossover. Front Aging Neurosci 2023; 15:1137360. [PMID: 37266404 PMCID: PMC10231658 DOI: 10.3389/fnagi.2023.1137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Balance disturbances in Parkinson's Disease (PD) are usually assessed in a single-task as well as standard balance physiotherapy is carried out in isolated environments. Conversely, daily activities are developed in highly challenging environments. Although functional balance training (FBT) is included in the latest protocols, several methodological issues have not yet been considered. In the proposed single-blinded randomized control trial with crossover (NCT04963894), the aims are (1) to quantify the effects achieved by domiciliary FBT (balanceHOME program) in participants with and without cognitive impairment, and (2) to compare them with the effects of a passive-control period and a conventional face-to-face physiotherapy program for PD. Methods The initial recruitment was estimated at 112 people with idiopathic PD. Two-thirds of the participants will be randomized to one of the two groups to make the crossover. In contrast, the other third will do a face-to-face group program only. The balanceHOME protocol consists of challenging balance exercises incorporated into functional daily tasks, developed in-home and conducted two times per week for 60-min over an 8-weeks period. The primary strategy will consist of splitting functional tasks of daily life into static and dynamic balance components, besides standardized facilitate and disturbing strategies to execution of each exercise. Biomechanics and clinical performance of balance and gait, perception of quality of life, cognitive and mental functioning, and severity of PD will be measured at baseline (T0), post-8 weeks training (T1), and follow-up (T2). Results The primary outcome of the study will be the center of pressure sway area. The secondary outcomes consist of biomechanics and clinical variables related to static and dynamic balance. Outcomes from biomechanical of gait, quality of life, cognitive and mental state, and severity of PD, represent the tertiary outcomes. Discussion The balanceHOME program standardizes the FBT in demanding and daily environments for people with PD who prefer individualized treatment from home. This is the first time that the effects of group versus individual balance rehabilitation have been compared in people with and without cognitive impairment and evaluated in complex environments. This still-to-be-finished study will open the possibility of new strategies according to changes in post-pandemic therapeutic approaches.
Collapse
Affiliation(s)
- Sara Monleón Guinot
- Department of Methodology for the Behavioral Sciences, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Constanza San Martín Valenzuela
- Unit of Personal Autonomy, Dependency, and Mental Disorders Assessment, INCLIVA Biomedical Research Institute, Valencia, Spain
- Departament of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Jose M. Tomás
- Department of Methodology for the Behavioral Sciences, Faculty of Psychology, University of Valencia, Valencia, Spain
| |
Collapse
|
9
|
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, Kalbe E. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis. Cochrane Database Syst Rev 2023; 1:CD013856. [PMID: 36602886 PMCID: PMC9815433 DOI: 10.1002/14651858.cd013856.pub2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS We included 156 RCTs with a total of 7939 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 71 (3196 participants), and 55 (3283 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (71 studies; 3196 participants) suggests that dance has a moderate beneficial effect on the severity of motor signs (mean difference (MD) -10.32, 95% confidence interval (CI) -15.54 to -4.96; high confidence), and aqua-based, gait/balance/functional, and multi-domain training might have a moderate beneficial effect on the severity of motor signs (aqua-based: MD -7.77, 95% CI -13.27 to -2.28; gait/balance/functional: MD -7.37, 95% CI -11.39 to -3.35; multi-domain: MD -6.97, 95% CI -10.32 to -3.62; low confidence). The evidence also suggests that mind-body training and endurance training might have a small beneficial effect on the severity of motor signs (mind-body: MD -6.57, 95% CI -10.18 to -2.81; endurance: MD -6.43, 95% CI -10.72 to -2.28; low confidence). Flexibility training might have a trivial or no effect on the severity of motor signs (MD 2.01, 95% CI -4.82 to 8.98; low confidence). The evidence is very uncertain about the effects of strength/resistance training and "Lee Silverman Voice training BIG" (LSVT BIG) on the severity of motor signs (strength/resistance: MD -6.97, 95% CI -11.93 to -2.01; LSVT BIG: MD -5.49, 95% CI -14.74 to 3.62; very low confidence). Quality of life The evidence from the NMA (55 studies; 3283 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -14.98, 95% CI -23.26 to -6.52; moderate confidence). The evidence also suggests that endurance training might have a moderate beneficial effect, and that gait/balance/functional and multi-domain training might have a small beneficial effect on QoL (endurance: MD -9.16, 95% CI -15.68 to -2.82; gait/balance/functional: MD -5.64, 95% CI -10.04 to -1.23; multi-domain: MD -5.29, 95% CI -9.34 to -1.06; low confidence). The evidence is very uncertain about the effects of mind-body training, gaming, strength/resistance training, dance, LSVT BIG, and flexibility training on QoL (mind-body: MD -8.81, 95% CI -14.62 to -3.00; gaming: MD -7.05, 95% CI -18.50 to 4.41; strength/resistance: MD -6.34, 95% CI -12.33 to -0.35; dance: MD -4.05, 95% CI -11.28 to 3.00; LSVT BIG: MD 2.29, 95% CI -16.03 to 20.44; flexibility: MD 1.23, 95% CI -11.45 to 13.92; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.
Collapse
Affiliation(s)
- Moritz Ernst
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Romina Gollan
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Emma Lieker
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Antje Dresen
- Institute of Medical Sociology, Health Services Resarch, and Rehabilitation Science (IMVR), Faculty of Human Sciences and Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mandy Roheger
- Ambulatory Assessment in Psychology, Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop GmbH, Bottrop, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
McCrum C, Bhatt TS, Gerards MHG, Karamanidis K, Rogers MW, Lord SR, Okubo Y. Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice. Front Sports Act Living 2022; 4:1015394. [PMID: 36275443 PMCID: PMC9583884 DOI: 10.3389/fspor.2022.1015394] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: "Principles and Mechanisms" and "Implementation in Practice." In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Tanvi S. Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Marissa H. G. Gerards
- Department of Epidemiology, Care and Public Health Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
- Department of Physiotherapy, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Stephen R. Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Yoshiro Okubo
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Allen NE, Canning CG, Almeida LRS, Bloem BR, Keus SH, Löfgren N, Nieuwboer A, Verheyden GS, Yamato TP, Sherrington C. Interventions for preventing falls in Parkinson's disease. Cochrane Database Syst Rev 2022; 6:CD011574. [PMID: 35665915 PMCID: PMC9169540 DOI: 10.1002/14651858.cd011574.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Most people with Parkinson's disease (PD) experience at least one fall during the course of their disease. Several interventions designed to reduce falls have been studied. An up-to-date synthesis of evidence for interventions to reduce falls in people with PD will assist with informed decisions regarding fall-prevention interventions for people with PD. OBJECTIVES To assess the effects of interventions designed to reduce falls in people with PD. SEARCH METHODS CENTRAL, MEDLINE, Embase, four other databases and two trials registers were searched on 16 July 2020, together with reference checking, citation searching and contact with study authors to identify additional studies. We also conducted a top-up search on 13 October 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) of interventions that aimed to reduce falls in people with PD and reported the effect on falls. We excluded interventions that aimed to reduce falls due to syncope. DATA COLLECTION AND ANALYSIS We used standard Cochrane Review procedures. Primary outcomes were rate of falls and number of people who fell at least once. Secondary outcomes were the number of people sustaining one or more fall-related fractures, quality of life, adverse events and economic outcomes. The certainty of the evidence was assessed using GRADE. MAIN RESULTS This review includes 32 studies with 3370 participants randomised. We included 25 studies of exercise interventions (2700 participants), three studies of medication interventions (242 participants), one study of fall-prevention education (53 participants) and three studies of exercise plus education (375 participants). Overall, participants in the exercise trials and the exercise plus education trials had mild to moderate PD, while participants in the medication trials included those with more advanced disease. All studies had a high or unclear risk of bias in one or more items. Illustrative risks demonstrating the absolute impact of each intervention are presented in the summary of findings tables. Twelve studies compared exercise (all types) with a control intervention (an intervention not thought to reduce falls, such as usual care or sham exercise) in people with mild to moderate PD. Exercise probably reduces the rate of falls by 26% (rate ratio (RaR) 0.74, 95% confidence interval (CI) 0.63 to 0.87; 1456 participants, 12 studies; moderate-certainty evidence). Exercise probably slightly reduces the number of people experiencing one or more falls by 10% (risk ratio (RR) 0.90, 95% CI 0.80 to 1.00; 932 participants, 9 studies; moderate-certainty evidence). We are uncertain whether exercise makes little or no difference to the number of people experiencing one or more fall-related fractures (RR 0.57, 95% CI 0.28 to 1.17; 989 participants, 5 studies; very low-certainty evidence). Exercise may slightly improve health-related quality of life immediately following the intervention (standardised mean difference (SMD) -0.17, 95% CI -0.36 to 0.01; 951 participants, 5 studies; low-certainty evidence). We are uncertain whether exercise has an effect on adverse events or whether exercise is a cost-effective intervention for fall prevention. Three studies trialled a cholinesterase inhibitor (rivastigmine or donepezil). Cholinesterase inhibitors may reduce the rate of falls by 50% (RaR 0.50, 95% CI 0.44 to 0.58; 229 participants, 3 studies; low-certainty evidence). However, we are uncertain if this medication makes little or no difference to the number of people experiencing one or more falls (RR 1.01, 95% CI 0.90 to 1.14230 participants, 3 studies) and to health-related quality of life (EQ5D Thermometer mean difference (MD) 3.00, 95% CI -3.06 to 9.06; very low-certainty evidence). Cholinesterase inhibitors may increase the rate of non fall-related adverse events by 60% (RaR 1.60, 95% CI 1.28 to 2.01; 175 participants, 2 studies; low-certainty evidence). Most adverse events were mild and transient in nature. No data was available regarding the cost-effectiveness of medication for fall prevention. We are uncertain of the effect of education compared to a control intervention on the number of people who fell at least once (RR 10.89, 95% CI 1.26 to 94.03; 53 participants, 1 study; very low-certainty evidence), and no data were available for the other outcomes of interest for this comparisonWe are also uncertain (very low-certainty evidence) whether exercise combined with education makes little or no difference to the number of falls (RaR 0.46, 95% CI 0.12 to 1.85; 320 participants, 2 studies), the number of people sustaining fall-related fractures (RR 1.45, 95% CI 0.40 to 5.32,320 participants, 2 studies), or health-related quality of life (PDQ39 MD 0.05, 95% CI -3.12 to 3.23, 305 participants, 2 studies). Exercise plus education may make little or no difference to the number of people experiencing one or more falls (RR 0.89, 95% CI 0.75 to 1.07; 352 participants, 3 studies; low-certainty evidence). We are uncertain whether exercise combined with education has an effect on adverse events or is a cost-effective intervention for fall prevention. AUTHORS' CONCLUSIONS: Exercise interventions probably reduce the rate of falls, and probably slightly reduce the number of people falling in people with mild to moderate PD. Cholinesterase inhibitors may reduce the rate of falls, but we are uncertain if they have an effect on the number of people falling. The decision to use these medications needs to be balanced against the risk of non fall-related adverse events, though these adverse events were predominantly mild or transient in nature. Further research in the form of large, high-quality RCTs are required to determine the relative impact of different types of exercise and different levels of supervision on falls, and how this could be influenced by disease severity. Further work is also needed to increase the certainty of the effects of medication and further explore falls prevention education interventions both delivered alone and in combination with exercise.
Collapse
Affiliation(s)
- Natalie E Allen
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Colleen G Canning
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Lorena Rosa S Almeida
- Movement Disorders and Parkinson's Disease Clinic, Roberto Santos General Hospital, Salvador, Brazil
- Motor Behavior and Neurorehabilitation Research Group, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Bastiaan R Bloem
- Raboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, Netherlands
| | - Samyra Hj Keus
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- Quality and Improvement, OLVG, Amsterdam, Netherlands
| | - Niklas Löfgren
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- Department of Women's and Children's Health, Physiotherapy, Uppsala University, Uppsala, Sweden
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Tiê P Yamato
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| | - Catherine Sherrington
- Institute for Musculoskeletal Health, School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Osborne JA, Botkin R, Colon-Semenza C, DeAngelis TR, Gallardo OG, Kosakowski H, Martello J, Pradhan S, Rafferty M, Readinger JL, Whitt AL, Ellis TD. Physical Therapist Management of Parkinson Disease: A Clinical Practice Guideline From the American Physical Therapy Association. Phys Ther 2021; 102:6485202. [PMID: 34963139 PMCID: PMC9046970 DOI: 10.1093/ptj/pzab302] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
A clinical practice guideline on Parkinson disease was developed by an American Physical Therapy Association volunteer guideline development group that consisted of physical therapists and a neurologist. The guideline was based on systematic reviews of current scientific and clinical information and accepted approaches for management of Parkinson disease. The Spanish version of this clinical practice guideline is available as a supplement (Suppl. Appendix 1).
Collapse
Affiliation(s)
- Jacqueline A Osborne
- Brooks Rehabilitation Hospital, Brooks Institute of Higher Learning, Jacksonville, Florida, USA
| | - Rachel Botkin
- Botkin Rehab Services, Physical Therapy, Columbus, Ohio, USA
| | - Cristina Colon-Semenza
- Department of Kinesiology, Doctor of Physical Therapy Program, University of Connecticut, Storrs, Connecticut, USA
| | - Tamara R DeAngelis
- Boston University Sargent College of Health and Rehabilitation Services, Physical Therapy and Athletic Training, Boston, Massachusetts, USA
| | - Oscar G Gallardo
- Rancho Los Amigos National Rehabilitation Center, Physical Therapy, Downey, California, USA
| | - Heidi Kosakowski
- Address all correspondence to Dr Kosakowski care of the Department of Practice of the American Physical Therapy Association at:
| | | | - Sujata Pradhan
- University of Washington, Rehabilitation Medicine, Seattle, Washington, USA
| | - Miriam Rafferty
- Northwestern University, Center for Education in Health Sciences, Chicago, Illinois, USA
| | | | | | - Terry D Ellis
- Boston University Sargent College of Health and Rehabilitation Services, Physical Therapy and Athletic Training, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Effect of Incorporating Short-Foot Exercises in the Balance Rehabilitation of Flat Foot: A Randomized Controlled Trial. Healthcare (Basel) 2021; 9:healthcare9101358. [PMID: 34683038 PMCID: PMC8544541 DOI: 10.3390/healthcare9101358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Effective balance rehabilitation is essential to address flat foot (pes planus) which is closely associated with reduced postural stability. Although sensorimotor training (SMT) and short-foot exercise (SFE) have been effective for improving postural stability, the combined effects of SMT with SFE have not been evaluated in previous studies. The aim of this study was to compare the lone versus combined effects of SMT with SFE on postural stability among participants with flat foot. This was a single-blinded, randomized controlled trial. A total of 32 flat-footed participants were included in the study (14 males and 18 females) and assigned to the SMT combined with SFE group and SMT alone group. All participants underwent 18 sessions of the SMT program three times a week for six weeks. Static balance, dynamic balance, and the Hmax/Mmax ratio were compared before and after the interventions. Static and dynamic balance significantly increased in the SMT combined with SFE group compared with the SMT alone group. However, the Hmax/Mmax ratio was not significantly different between the two groups. Therefore, this study confirms that the combination of SMT and SFE is superior to SMT alone to improve postural balance control in flat-footed patients in clinical settings.
Collapse
|
14
|
Sarasso E, Agosta F, Piramide N, Gardoni A, Canu E, Leocadi M, Castelnovo V, Basaia S, Tettamanti A, Volontè MA, Filippi M. Action Observation and Motor Imagery Improve Dual Task in Parkinson's Disease: A Clinical/fMRI Study. Mov Disord 2021; 36:2569-2582. [PMID: 34286884 DOI: 10.1002/mds.28717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Action observation training and motor imagery may improve motor learning in Parkinson's disease (PD). OBJECTIVES The objectives of this study were to assess mobility and balance (performing motor and dual tasks) and brain functional reorganization following 6 weeks of action observation training and motor imagery associated with dual-task gait/balance exercises in PD patients with postural instability and gait disorders relative to dual-task training alone. METHODS Twenty-five PD-postural instability and gait disorder patients were randomized into 2 groups: the DUAL-TASK+AOT-MI group performed a 6-week gait/balance training consisting of action observation training-motor imagery combined with practicing the observed-imagined exercises; the DUAL-TASK group performed the same exercises combined with watching landscape videos. Exercises were increasingly difficult to include the dual task. At baseline and at 6 weeks, patients underwent: mobility, gait, and balance evaluations (also repeated 2 months after training), cognitive assessment, and functional MRI, including motor and dual tasks. RESULTS Dual-task gait/balance training enhanced mobility, during both single- and dual-task conditions, and executive functions in PD-postural instability and gait disorders, with a long-lasting effect at 14 weeks. When exercises were preceded by action observation training-motor imagery, PD-postural instability and gait disorders showed greater improvement of balance and gait velocity both with and without the dual task, particularly during the turning phase. After training, the DUAL-TASK+AOT-MI group showed reduced recruitment of frontal areas and increased activity of cerebellum during functional-MRI motor and dual task, correlating with balance/turning velocity and executive improvements, respectively. The DUAL-TASK group showed reduced activity of supplementary motor area and increased recruitment of temporo-parietal areas during the dual task and decreased cerebellar activity during the motor task correlating with faster turning velocity. Functional MRI results were not corrected for multiple comparisons and should be interpreted carefully. CONCLUSIONS Adding action observation training-motor imagery to dual-task gait/balance training promotes specific functional reorganization of brain areas involved in motor control and executive-attentive abilities and more long-lasting effects on dual-task mobility and balance in PD-postural instability and gait disorders. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Leocadi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Tettamanti
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Soke F, Kocer B, Fidan I, Keskinoglu P, Guclu-Gunduz A. Effects of task-oriented training combined with aerobic training on serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in people with Parkinson's disease: A randomized controlled study. Exp Gerontol 2021; 150:111384. [PMID: 33965556 DOI: 10.1016/j.exger.2021.111384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra pars compacta. Exercise training, which is incorporated both goal-based training such as task-oriented training (TOT) and aerobic training (AT), has been suggested to induce neuroprotection. However, molecular mechanisms which may underlie exercise-induced neuroprotection are still largely unknown. Thus, the aim of the present study was to investigate the effects of TOT combined with AT (TOT-AT) on serum brain-derived neurotrophic factor (BDNF), glial cell-derived growth factor (GDNF), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels in people with PD (PwPD). METHODS Forty PwPD were randomized into 8-week of either exercise group (n = 20) or control group (n = 20). The exercise group received TOT-AT while the control group received only AT. Serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels determined with ELISA were assessed at baseline and after training. RESULTS A total of 29 PwPD completed this study. Our results showed no significant change in the serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in both groups. After the intervention period, no significant difference was observed between the groups regarding the serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels. CONCLUSION TOT-AT could not be an effective exercise method for changing serum concentrations of BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β in the rehabilitation of PD.
Collapse
Affiliation(s)
- Fatih Soke
- University of Health Sciences, Gulhane Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Ankara, Turkey.
| | - Bilge Kocer
- Diskapi Yildirim Beyazit Teaching and Research Hospital, Department of Neurology, Ankara, Turkey
| | - Isil Fidan
- Gazi University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Pembe Keskinoglu
- Dokuz Eylul University, Department of Biostatistics, School of Medicine, Izmir, Turkey
| | - Arzu Guclu-Gunduz
- Gazi University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Ankara, Turkey
| |
Collapse
|
16
|
Morelli N, Morelli H. Dual task training effects on gait and balance outcomes in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2021; 49:102794. [PMID: 33540278 DOI: 10.1016/j.msard.2021.102794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND People with Multiple Sclerosis (PwMS) exhibit deteriorated balance and gait performance during dual task (DT) conditions. Impaired dual tasking is related to increased fall risk and lower quality of life in PwMS. While dual task interventions have proven effective in various patient populations, evidence is lacking to support the use of DT interventions to improve clinical measures of balance and gait in PwMS. Therefore, the purpose of this systematic review was to synthesize the effectiveness of DT intervention at improving balance and gait in PwMS. METHODS A systematic search was completed using CINHAL, PubMed and MEDLINE. Methodological quality, level of evidence and recommendations for included studies was assessed by two reviewers. Effect sizes with 95% confidence intervals comparing single and DT outcomes were calculated for all balance and gait variables. RESULTS Five randomized control trials (RCTs) were included for review. Of the 23 effect sizes calculated, three had 95% confidence intervals which did not pass zero and were therefore interpreted as strong. Due to inconsistent level one evidence of DT interventions being superior to single task balance and gait interventions a grade B recommendation was given. CONCLUSION There is inconsistent evidence supporting the use of DT interventions to improve clinical balance measures in PwMS. There is supportive evidence for the use of DT interventions to improve both single and DT gait speed. However, there was heterogeneity between interventions and dosage among RCTs. Despite multiple promising findings, DT interventions appear to have minimal impact on clinical balance and gait measures in PwMS.
Collapse
Affiliation(s)
- Nathan Morelli
- Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA.
| | - Haley Morelli
- Rehabilitation Department, Chandler Medical Center at University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Alatawi SF. A scoping review of the nature of physiotherapists' role to avoid fall in people with Parkinsonism. Neurol Sci 2021; 42:3733-3748. [PMID: 33443671 PMCID: PMC8413181 DOI: 10.1007/s10072-020-05015-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is considered a neurological disease with a high prevalence rate among population. One of its main problems is recurrent fall which has numerous contributing factors such as history of fall, fear of falling, gait deficits, impaired balance, poor functional mobility, and muscle weakness. OBJECTIVE To review and explore the focus/nature of interventions which target the role of physiotherapy preventing fall in patients with PD. METHOD A scoping review was led dependent on Arksey and O'Malley as discussed by Wood et al. (2002). This paper based on this structure to perceive intervention studies have been embraced in physiotherapy to prevent fall after Parkinson's disease. The search included various databases. The referencing arrangements of every pertinent paper were additionally filtered for more studies. FINDINGS A total of 173 articles were included, 39 of which met the eligibility criteria. Fifteen studies reported on the direct impact of physiotherapy on fall, while the rest examined the impacts of physiotherapy on factors that are associated with fall. Different outcomes, interventions types, and duration were used in these studies. Findings showed a favorable result of physiotherapy on fall and near fall incidence, balance, gait, functional mobility, muscle strength, and fear of falling. CONCLUSION Physiotherapy has the possibility to decrease fall incidence and fall risk in people with PD. However, the heterogeneity in the patients' selection, intervention studies, outcome measures chosen, time since the onset of disease, variation in intensity, and duration of treatment between included studies make the comparisons difficult. Consequently, more studies are needed on best intervention.
Collapse
Affiliation(s)
- Salem F. Alatawi
- grid.440760.10000 0004 0419 5685Associate professor of neurorehabilitation Department of Physical Therapy Faculty of Applied Medical Sciences, University of Tabuk, Tabuk City, Saudi Arabia
| |
Collapse
|
18
|
Chang HC, Chen CC, Weng YH, Chiou WD, Chang YJ, Lu CS. The efficacy of cognitive-cycling dual-task training in patients with early-stage Parkinson's disease: A pilot study. NeuroRehabilitation 2020; 47:415-426. [PMID: 33136071 DOI: 10.3233/nre-203090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have suggested that cognitive-motor dual-task (DT) training might improve gait performance, locomotion automaticity, balance, and cognition in patients with Parkinson's disease (PD). OBJECTIVE We aimed to investigate the efficacy of cognitive-cycling DT training in patients with early-stage PD. METHODS Participants were scheduled to perform cognitive tasks simultaneously with the cycling training twice per week for eight weeks for a total of 16 sessions during their on-states. Clinical assessments were conducted using the unified Parkinson's disease rating scale (UPDRS), modified Hoehn and Yahr stage, Timed Up and Go (TUG) test, gait and cognitive performances under dual-task paradigm, the new freezing of gait questionnaire, Schwab and England Activities of Daily Living scale, 39-item Parkinson's disease questionnaire, and cognitive performance. RESULTS Thirteen eligible patients were enrolled in the study. The mean age was 60.64±5.32 years, and the mean disease duration was 7.02±3.23 years. Twelve PD patients completed 16 serial cognitive-cycling sessions for two months. After 16 sessions of training (T2), the UPDRS III scores improved significantly in both the off- and on-states, and TUG were significantly less than those at pretraining (T0). During both the single-task and the DT situations, gait performance and spatial memory cognitive performance significantly improved from T0 to T2. CONCLUSION The present study demonstrated that cognitive-cycling DT training improves the motor functions, gait and cognitive performances of PD patients.
Collapse
Affiliation(s)
- Hsiu-Chen Chang
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Da Chiou
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Rehabilitation, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ya-Ju Chang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Professor Lu Neurological Clinic, Taoyuan, Taiwan
| |
Collapse
|
19
|
Stuckenschneider T, Askew CD, Menêses AL, Baake R, Weber J, Schneider S. The Effect of Different Exercise Modes on Domain-Specific Cognitive Function in Patients Suffering from Parkinson's Disease: A Systematic Review of Randomized Controlled Trials. JOURNAL OF PARKINSONS DISEASE 2020; 9:73-95. [PMID: 30741688 DOI: 10.3233/jpd-181484] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Supervised exercise training alleviates motor symptoms in people with Parkinson's disease (PD). However, the efficacy of exercise to improve nonmotor symptoms such as cognitive function is less well known. OBJECTIVE To systematically review evidence on the efficacy of different exercise modes (coordination exercise, resistance exercise, aerobic exercise) on domain-specific cognitive function in patients with PD. METHODS Parallel-group randomized controlled trials published before March 2018 were included. Primary outcome measures included global cognitive function and its subdomains, and the Unified Parkinson's Disease Rating Scale was included as a secondary outcome. Methodological quality was assessed using the Physiotherapy Evidence Database scale. RESULTS The literature search yielded 2,000 articles, of which 11 met inclusion criteria. 508 patients (mean age 68±4 years) were included with a disease severity from 1 to 4 on the Hoehn & Yahr stage scale. Overall study quality was modest (mean 6±2, range 3-8/10). In 5 trials a significant between-group effect size (ES) was identified for tests of specific cognitive domains, including a positive effect of aerobic exercise on memory (ES = 2.42) and executive function (ES = 1.54), and of combined resistance and coordination exercise on global cognitive function (ES = 1.54). Two trials found a significant ES for coordination exercise (ES = 0.84-1.88), which led to improved executive function compared with that of non-exercising control subjects. CONCLUSION All modes of exercise are associated with improved cognitive function in individuals with PD. Aerobic exercise tended to best improve memory; however, a clear effect of exercise mode was not identified.
Collapse
Affiliation(s)
- Tim Stuckenschneider
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany.,VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Annelise L Menêses
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Ricarda Baake
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Jan Weber
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany.,VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
20
|
Abstract
Parkinson's disease (PD) and other synucleinopathies, namely dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), are common degenerative neurological disorders that share synuclein pathology. Although certain cardinal features of parkinsonism, including bradykinesia and rigidity, respond well to levodopa, axial features, such as gait and balance impairment, are less reliably responsive to dopaminergic therapy and surgical interventions. Consequently, falls are common in PD and other synucleinopathies and are a major contributor toward injury and loss of independence. This underscores the need for appropriate fall risk assessment and implementation of preventative measures in all patients with parkinsonism. The aim of this review is therefore to explore modifiable and non-modifiable risk factors for falls in synucleinopathies. We next review and evaluate the evidence for pharmacological, nonpharmacological, and surgical approaches for fall prevention, and emphasize individualized and multifaceted approaches.
Collapse
|
21
|
Effects of dual-task aquatic exercises on functional mobility, balance and gait of individuals with Parkinson's disease: A randomized clinical trial with a 3-month follow-up. Complement Ther Med 2019; 42:119-124. [DOI: 10.1016/j.ctim.2018.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/19/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
|
22
|
Freitas TBD, Silva KGD, Nuvolini RA, Doná F, Pompeu JE, Swarowsky A, Torriani-Pasin C. Dual-task demands in various motor skills through Parkinson’s disease progression. MOTRIZ: REVISTA DE EDUCACAO FISICA 2019. [DOI: 10.1590/s1980-6574201900010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Flávia Doná
- Universidade Anhanguera de São Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Hulbert S, Rochester L, Nieuwboer A, Goodwin V, Fitton C, Chivers-Seymour K, Ashburn A. "Staying safe" - a narrative review of falls prevention in people with Parkinson's - "PDSAFE". Disabil Rehabil 2018; 41:2596-2605. [PMID: 29774765 DOI: 10.1080/09638288.2018.1471167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Parkinson's disease demonstrates a spectrum of motor and non-motor symptoms. Falling is common and disabling. Current medical management shows minimal impact to reduce falls or fall-related risk factors, such as deficits in gait, strength, and postural instability. Despite evidence supporting rehabilitation in reducing fall risk factors, the most appropriate intervention to reduce overall fall rate remains inconclusive. This article aims to 1) synthesise current evidence and conceptual models of falls rehabilitation in Parkinson's in a narrative review; and based on this evidence, 2) introduce the treatment protocol used in the falls prevention and multi-centre clinical trial "PDSAFE". Method: Search of four bibliographic databases using the terms "Parkinson*" and "Fall*" combined with each of the following; "Rehab*, Balanc*, Strength*, Strateg*and Exercis*" and a framework for narrative review was followed. A total of 3557 papers were identified, 416 were selected for review. The majority report the impact of rehabilitation on isolated fall risk factors. Twelve directly measure the impact on overall fall rate. Discussion: Results were used to construct a narrative review with conceptual discussion based on the "International Classification of Functioning", leading to presentation of the "PDSAFE" intervention protocol. Conclusions: Evidence suggests training single, fall risk factors may not affect overall fall rate. Combining with behavioural and strategy training in a functional, personalised multi-dimensional model, addressing all components of the "International Classification of Functioning" is likely to provide a greater influence on falls reduction. "PDSAFE" is a multi-dimensional, physiotherapist delivered, individually tailored, progressive, home-based programme. It is designed with a strong evidence-based approach and illustrates a model for the clinical delivery of the conceptual theory discussed. Implications for Rehabilitation Parkinson's disease demonstrates a spectrum of motor and non-motor symptoms, where falling is common and disabling. Current medical and surgical management have minimal impact on falls, rehabilitation of falls risk factors has strong evidence but the most appropriate intervention to reduce overall fall rate remains inconclusive. Addressing all components of the International Classification of Function in a multifactorial model when designing falls rehabilitation interventions may be more effective at reducing fall rates in people with Parkinson's than treating isolated risk factors. The clinical model for falls rehabilitation in people with Parkinson's should be multi-dimensional.
Collapse
Affiliation(s)
- Sophia Hulbert
- Faculty of Health Sciences, University Hospital Southampton, University of Southampton , Southampton , UK
| | - Lynn Rochester
- Campus for Ageing and Vitality, Clinical Ageing Research Unit, Newcastle University , Newcastle upon Tyne , UK
| | | | - Vicki Goodwin
- NIHR CLAHRC South West Peninsula, University of Exeter , Exeter , UK
| | - Carolyn Fitton
- Faculty of Health Sciences, University Hospital Southampton, University of Southampton , Southampton , UK
| | - Kim Chivers-Seymour
- Faculty of Health Sciences, University Hospital Southampton, University of Southampton , Southampton , UK
| | - Ann Ashburn
- Faculty of Health Sciences, University Hospital Southampton, University of Southampton , Southampton , UK
| |
Collapse
|
24
|
Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord 2018; 33:1248-1266. [DOI: 10.1002/mds.27372] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Susan H. Fox
- Edmund J. Safra Program, Movement Disorder Clinic; Toronto Western Hospital; Toronto Ontario Canada
- University of Toronto Department of Medicine; Toronto Ontario Canada
| | - Regina Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders; Danube Hospital; Vienna Austria
| | - Shen-Yang Lim
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders; University of Malaya; Kuala Lumpur Malaysia
| | - Brandon Barton
- Rush University Medical Center; Chicago Illinois USA
- Jesse Brown VA Medical Center; Chicago Illinois USA
| | - Rob M. A. de Bie
- Department of Neurology, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Klaus Seppi
- Department of Neurology; Medical University Innsbruck; Innsbruck Austria
| | - Miguel Coelho
- Department of Neurology, Santa Maria Hospital, Instituto de Medicina Molecular; University of Lisbon; Lisbon Portugal
| | - Cristina Sampaio
- Cure Huntington's Disease Initiative (CHDI) Management/CHDI Foundation, Princeton, NJ; USA
- Instituto de Medicina Molecular; University of Lisbon; Lisbon Portugal
| | | |
Collapse
|
25
|
Abstract
Parkinson disease (PD) is a complex, multisystem disorder with both neurologic and systemic nonmotor manifestations. It is neurodegenerative in nature in which disordered balance, gait, and falls are universal problems that can be present at initial diagnosis, and which progress over time. Freezing of gait is a particularly debilitating feature of PD that becomes more prevalent over time with disease progression, being present in approximately 7% after 2 years of disease and 28% after 5 years. Approximately 60% of people with PD fall each year, with around 70% of fallers falling recurrently, and some recurrent fallers falling multiple times per week. Many risk factors for falls in people with PD have been identified; these include a history of falls, freezing of gait, and abnormalities in measures of balance, leg muscle strength, mobility, cognition, and fear of falling. Therapies for improving physical function and mobility include levodopa, cholinesterase inhibitors, methylphenidate, deep-brain stimulation, cuing for freezing of gait, and exercise. This chapter reviews the clinical, pathologic, and physiologic correlates of gait disturbance and falls in PD, as well as the evidence for medical and nonmedical interventions.
Collapse
Affiliation(s)
- Samuel D Kim
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Natalie E Allen
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Colleen G Canning
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Effects of curved-walking training on curved-walking performance and freezing of gait in individuals with Parkinson's disease: A randomized controlled trial. Parkinsonism Relat Disord 2017; 43:20-26. [DOI: 10.1016/j.parkreldis.2017.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022]
|
27
|
Lamont RM, Morris ME, Menz HB, McGinley JL, Brauer SG. Falls in people with Parkinson's disease: A prospective comparison of community and home-based falls. Gait Posture 2017; 55:62-67. [PMID: 28419875 DOI: 10.1016/j.gaitpost.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 04/02/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Falls are common and debilitating in people with Parkinson's disease (PD) and restrict participation in daily activities. Understanding circumstances of falls in the community and at home may assist clinicians to target therapy more effectively. OBJECTIVE To compare the characteristics of community and home fallers and the circumstances that contribute to falls in people living with PD. METHODS People with mild-moderately severe PD (n=196) used a daily falls diary and telephone hotline to report prospectively the occurrence, location and circumstances of falls over 14 months. RESULTS 62% of people with PD fell, with most falling at least once in the community. Compared to people who fell at home, the community-only fallers had shorter durations of PD (p=0.012), less severe disease (p=0.008) and reported fewer falls in the year prior to the study (p=0.003). Most falls occurred while people were ambulant, during postural transitions and when medication was working well. Community-based falls were frequently attributed to environmental factors such as challenging terrains (p<0.001), high attention demands (p=0.029), busy or cluttered areas (p<0.001) and tasks requiring speed (p=0.020). Physical loads were more often present in home than community-based falls (p=0.027). CONCLUSION Falls that occur in the community typically affect people with earlier PD and less severe disease than home-based falls. Individuals experiencing community-based falls may benefit from physiotherapy to manage challenging environments and high attention demands.
Collapse
Affiliation(s)
- Robyn M Lamont
- School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, 4072, Australia.
| | - Meg E Morris
- School of Allied Health, La Trobe University, Melbourne, 3086, Australia; Northpark Private Hospital Healthscope, Melbourne, Australia.
| | - Hylton B Menz
- School of Allied Health, La Trobe University, Melbourne, 3086, Australia.
| | - Jennifer L McGinley
- Melbourne School of Health Sciences, The University of Melbourne, 3010, Melbourne, Australia.
| | - Sandra G Brauer
- School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, 4072, Australia.
| |
Collapse
|
28
|
Wajda DA, Mirelman A, Hausdorff JM, Sosnoff JJ. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review. Expert Rev Neurother 2017; 17:251-261. [PMID: 27548008 DOI: 10.1080/14737175.2016.1227704] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.
Collapse
Affiliation(s)
- Douglas A Wajda
- a Department of Kinesiology and Community Health , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Anat Mirelman
- b Center for the Study of Movement, Cognition, and Mobility, Neurological Institute , Tel Aviv Sourasky Medical Center , Tel Aviv , Israel
- c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Jeffrey M Hausdorff
- b Center for the Study of Movement, Cognition, and Mobility, Neurological Institute , Tel Aviv Sourasky Medical Center , Tel Aviv , Israel
- c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
- d Sagol School of Neuroscience , Tel Aviv University , Tel Aviv , Israel
| | - Jacob J Sosnoff
- a Department of Kinesiology and Community Health , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
29
|
Frih B, Mkacher W, Jaafar H, Frih A, Ben Salah Z, El May M, Hammami M. Specific balance training included in an endurance-resistance exercise program improves postural balance in elderly patients undergoing haemodialysis. Disabil Rehabil 2017; 40:784-790. [PMID: 28084833 DOI: 10.1080/09638288.2016.1276971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. METHODS Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. RESULTS All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. CONCLUSIONS In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.
Collapse
Affiliation(s)
- Bechir Frih
- a Department of Biochemistry: Human Nutrition and Metabolic Disorders: "Functional Foods and Vascular Health" LR12ES05, Faculty of Medicine of Monastir , Monastir , Tunisia
| | - Wajdi Mkacher
- b Department of Research: Exercise Physiology and Pathophysiology: "Biology, Medicine and Health" UR12ES06, Faculty of Medicine of Sousse , Sousse , Tunisia
| | - Hamdi Jaafar
- c Institut de recherche de l'Hôpital Montfort , Ottawa , Canada.,d Biochemistry, Microbiology and Immunology Department, Faculty of Medicine , University of Ottawa , Ottawa , Canada
| | - Ameur Frih
- e Nephrology and Internal Medicine Service , CHU Monastir , Monastir , Tunisia
| | - Zohra Ben Salah
- f Department of Physical Medicine and Rehabilitation , CHU Monastir , Monastir , Tunisia
| | - Mezry El May
- e Nephrology and Internal Medicine Service , CHU Monastir , Monastir , Tunisia
| | - Mohamed Hammami
- a Department of Biochemistry: Human Nutrition and Metabolic Disorders: "Functional Foods and Vascular Health" LR12ES05, Faculty of Medicine of Monastir , Monastir , Tunisia
| |
Collapse
|
30
|
de Vries NM, Nonnekes J, Bloem BR. Toward affordable falls prevention in Parkinson's disease. Mov Disord 2015; 31:3-6. [PMID: 26660664 DOI: 10.1002/mds.26474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nienke M de Vries
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jorik Nonnekes
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|