1
|
Ratuski AS, Améndola L, Makowska IJ, Weary DM. Effects of temporary access to environmental enrichment on measures of laboratory mouse welfare. Sci Rep 2024; 14:15143. [PMID: 38956228 PMCID: PMC11219853 DOI: 10.1038/s41598-024-65480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Laboratory mice are typically housed in "shoebox" cages with limited opportunities to engage in natural behaviour. Temporary access to environments with increased space and complexity (playpens) may improve mouse welfare. Previous work by our group has shown that mice are motivated to access and use these environments, but it is unknown how other aspects of welfare are impacted. Female C57BL/6J, BALB/cJ, and DBA/2J mice (n = 21; 7 mice per strain) were housed in mixed-strain trios and given temporary access to a large playpen with their cage mates three times per week. Control mice (n = 21; 7 mice per strain) remained in their home cages. Home cage behaviour (development of stereotypic behaviour over time, aggression following cage-changing) and anxiety tests were used to assess how playpen access impacted welfare. Contrary to our predictions, we found increased time spent performing stereotypies in playpen mice; this difference may be related to negative emotional states, increased motivation to escape the home cage, or active coping strategies. Playpen access resulted in strain-dependent improvements in aggression and some measures of anxiety. Aggression was lower for C57BL/6J mice in the playpen treatment following cage changing than it was for C57BL/6J control mice, while playpen mice, and particularly the C57BL/6J strain, spent more time in the center of the open field test and produced fewer fecal boli during anxiety testing, supporting other research showing that strain differences play an important role in behaviour and stress resiliency.
Collapse
Affiliation(s)
- A S Ratuski
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada.
| | - L Améndola
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - I J Makowska
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - D M Weary
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
van Ingelgom T, Didone V, Godefroid L, Quertemont É. Effects of social housing conditions on ethanol-induced behavioral sensitization in Swiss mice. Psychopharmacology (Berl) 2024; 241:987-1000. [PMID: 38206359 DOI: 10.1007/s00213-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
RATIONALE In previous animal model studies, it was shown that drug sensitization is dependent upon physical environmental conditions. However, the effects of social housing conditions on drug sensitization is much less known. OBJECTIVE The aim of the present study was to investigate the effects of social conditions, through the size of housing groups, on ethanol stimulant effects and ethanol-induced behavioral sensitization in mice. MATERIALS AND METHODS Male and female Swiss mice were housed in groups of different sizes (isolated mice, two mice per cage, four mice per cage and eight mice per cage) during a six-week period. A standard paradigm of ethanol-induced locomotor sensitization was then started with one daily injection of 2.5 g/kg ethanol for 8 consecutive days. RESULTS The results show that social housing conditions affect the acute stimulant effects of ethanol. The highest stimulant effects were observed in socially isolated mice and then gradually decreased as the size of the group increased. Although the rate of ethanol sensitization did not differ between groups, the ultimate sensitized levels of ethanol-induced stimulant effects were significantly reduced in mice housed in groups of eight. CONCLUSIONS These results are consistent with the idea that higher levels of acute and sensitized ethanol stimulant effects are observed in mice housed in stressful housing conditions, such as social isolation.
Collapse
Affiliation(s)
- Théo van Ingelgom
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Vincent Didone
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Leeloo Godefroid
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Étienne Quertemont
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium.
| |
Collapse
|
3
|
Mieske P, Scheinpflug J, Yorgan TA, Brylka L, Palme R, Hobbiesiefken U, Preikschat J, Lewejohann L, Diederich K. Effects of more natural housing conditions on the muscular and skeletal characteristics of female C57BL/6J mice. Lab Anim Res 2023; 39:9. [PMID: 37189184 DOI: 10.1186/s42826-023-00160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Enrichment of home cages in laboratory experiments offers clear advantages, but has been criticized in some respects. First, there is a lack of definition, which makes methodological uniformity difficult. Second, there is concern that the enrichment of home cages may increase the variance of results in experiments. Here, the influence of more natural housing conditions on physiological parameters of female C57BL/6J mice was investigated from an animal welfare point of view. For this purpose, the animals were kept in three different housing conditions: conventional cage housing, enriched housing and the semi naturalistic environment. The focus was on musculoskeletal changes after long-term environmental enrichment. RESULTS The housing conditions had a long-term effect on the body weight of the test animals. The more complex and natural the home cage, the heavier the animals. This was associated with increased adipose deposits in the animals. There were no significant changes in muscle and bone characteristics except for single clues (femur diameter, bone resorption marker CTX-1). Additionally, the animals in the semi naturalistic environment (SNE) were found to have the fewest bone anomalies. Housing in the SNE appears to have the least effect on stress hormone concentrations. The lowest oxygen uptake was observed in enriched cage housing. CONCLUSIONS Despite increasing values, observed body weights were in the normal and strain-typical range. Overall, musculoskeletal parameters were slightly improved and age-related effects appear to have been attenuated. The variances in the results were not increased by more natural housing. This confirms the suitability of the applied housing conditions to ensure and increase animal welfare in laboratory experiments.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Julia Scheinpflug
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Juliane Preikschat
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
4
|
Weber EM, Zidar J, Ewaldsson B, Askevik K, Udén E, Svensk E, Törnqvist E. Aggression in Group-Housed Male Mice: A Systematic Review. Animals (Basel) 2022; 13:ani13010143. [PMID: 36611751 PMCID: PMC9817818 DOI: 10.3390/ani13010143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Aggression among group-housed male mice is a major animal welfare concern often observed at animal facilities. Studies designed to understand the causes of male mice aggression have used different methodological approaches and have been heterogeneous, using different strains, environmental enrichments, housing conditions, group formations and durations. By conducting a systematic literature review based on 198 observed conclusions from 90 articles, we showed that the methodological approach used to study aggression was relevant for the outcome and suggested that home cage observations were better when studying home cage aggression than tests provoking aggression outside the home cage. The study further revealed that aggression is a complex problem; one solution will not be appropriate for all animal facilities and all research projects. Recommendations were provided on promising tools to minimize aggression, based on the results, which included what type of environmental enrichments could be appropriate and which strains of male mice were less likely to be aggressive.
Collapse
Affiliation(s)
- Elin M. Weber
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Josefina Zidar
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Birgit Ewaldsson
- Department of Animal Science and Technology, AstraZeneca, 431 83 Mölndal, Sweden
| | - Kaisa Askevik
- Swedish 3Rs Center, Swedish Board of Agriculture, 553 29 Jönköping, Sweden
| | - Eva Udén
- Swedish 3Rs Center, Swedish Board of Agriculture, 553 29 Jönköping, Sweden
| | - Emma Svensk
- Swedish 3Rs Center, Swedish Board of Agriculture, 553 29 Jönköping, Sweden
- Correspondence:
| | - Elin Törnqvist
- Swedish National Committee for the Protection of Animals Used for Scientific Purposes, Swedish Board of Agriculture, 553 29 Jönköping, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Environmental enrichment: dissociated effects between physical activity and changing environmental complexity on anxiety and neurogenesis in adult male Balb/C mice. Physiol Behav 2022; 254:113878. [PMID: 35700814 DOI: 10.1016/j.physbeh.2022.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
Several factors, including environmental modifications, stimulate neuroplasticity. One type of neuroplasticity consists in the generation of new neurons in the dentate gyrus of the hippocampus. Neurogenesis is modulated by environmental enrichment (ENR, tunnels plus running wheel) and affected by the time of exposure to ENR. Despite the wide use of ENR to stimulate neuroplasticity, the degree to which ENR variations modeled by temporally changing the level of environmental complexity affect hippocampal neurogenesis and anxiety is still unclear. Thus, we investigated the effects of five housing conditions on young adult male Balb/C mice exposed for 42 days. The groups were as follows: standard conditions without ENR, constant ENR complexity, gradual increase of ENR complexity followed by a gradual decrease of ENR complexity, gradual increase of ENR complexity followed by constant ENR complexity, and constant ENR complexity followed by a gradual decrease of ENR complexity. On day 44, mice were exposed to the elevated plus-maze to evaluate anxiety. Further, we analyzed neurogenesis and quantified corticosterone levels. In an additional experiment, we explored the effect of voluntary physical activity on anxiety, neurogenesis, and corticosterone during the variations in ENR complexity. Our results showed that any change in ENR complexity over time reduced anxiety. Also, voluntary physical activity alone or in the context of a complex environment increased doublecortin cell maturation in the granular cell layer of the hippocampus. Finally, our study supports that physical activity acts proneurogenic, whereas any change in environmental complexity decreases anxiety-like behavior. However, the decrease in corticosterone levels elicited by physical activity was lower than the decrease produced by the decrement in environmental complexity.
Collapse
|
6
|
Ratuski AS, Makowska IJ, Dvorack KR, Weary DM. Using approach latency and anticipatory behaviour to assess whether voluntary playpen access is rewarding to laboratory mice. Sci Rep 2021; 11:18683. [PMID: 34548608 PMCID: PMC8455539 DOI: 10.1038/s41598-021-98356-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
Laboratory mice are typically housed in “shoebox" cages that limit the expression of natural behaviours. Temporary access to more complex environments (playpens) may improve their welfare. We aimed to assess if access to playpens is rewarding for conventionally-housed mice and to document mouse behaviour during playpen access. Female C57BL/6J, BALB/cJ, and DBA/2J mice were provided temporary access to a large enriched playpen three times per week; control mice remained in their home cages. We measured latency to enter playpens and anticipatory behaviour to determine if access was rewarding, and recorded mouse behaviour during playpen sessions. Over time, playpen mice entered the playpen more quickly; latency declined from 168 ± 22 to 13 ± 2 s over the 14-d trial. As expected, playpen mice showed an increase in anticipatory behaviour before playpen access (mean ± SE = 19.7 ± 2.6 behavioural transitions), while control mice showed no change in anticipatory behaviour relative to baseline values (2.4 ± 1.6 transitions). Mice in the playpen performed more ambulatory behaviours than control mice who remained in home cages (21.5 ± 0.7 vs 6.9 ± 1.1 observations of 25 total observations). We conclude that conventionally-housed mice find voluntary playpen access rewarding, and suggest this as a useful option for providing laboratory mice with access to more complex environments.
Collapse
Affiliation(s)
- Anna S Ratuski
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada.
| | - I Joanna Makowska
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada
| | - Kaitlyn R Dvorack
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada
| |
Collapse
|
7
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Baxter M, O’Connell NE. Does grouping environmental enrichments together affect the way they are used by commercially housed broiler chickens? Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2018.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Bailoo JD, Murphy E, Boada-Saña M, Varholick JA, Hintze S, Baussière C, Hahn KC, Göpfert C, Palme R, Voelkl B, Würbel H. Effects of Cage Enrichment on Behavior, Welfare and Outcome Variability in Female Mice. Front Behav Neurosci 2018; 12:232. [PMID: 30416435 PMCID: PMC6212514 DOI: 10.3389/fnbeh.2018.00232] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022] Open
Abstract
The manner in which laboratory rodents are housed is driven by economics (minimal use of space and resources), ergonomics (ease of handling and visibility of animals), hygiene, and standardization (reduction of variation). This has resulted in housing conditions that lack sensory and motor stimulation and restrict the expression of species-typical behavior. In mice, such housing conditions have been associated with indicators of impaired welfare, including abnormal repetitive behavior (stereotypies, compulsive behavior), enhanced anxiety and stress reactivity, and thermal stress. However, due to concerns that more complex environmental conditions might increase variation in experimental results, there has been considerable resistance to the implementation of environmental enrichment beyond the provision of nesting material. Here, using 96 C57BL/6 and SWISS female mice, respectively, we systematically varied environmental enrichment across four levels spanning the range of common enrichment strategies: (1) bedding alone; (2) bedding + nesting material; (3) deeper bedding + nesting material + shelter + increased vertical space; and (4) semi-naturalistic conditions, including weekly changes of enrichment items. We studied how these different forms of environmental enrichment affected measures of animal welfare, including home-cage behavior (time–budget and stereotypic behavior), anxiety (open field behavior, elevated plus-maze behavior), growth (food and water intake, body mass), stress physiology (glucocorticoid metabolites in fecal boluses and adrenal mass), brain function (recurrent perseveration in a two-choice guessing task) and emotional valence (judgment bias). Our results highlight the difficulty in making general recommendations across common strains of mice and for selecting enrichment strategies within specific strains. Overall, the greatest benefit was observed in animals housed with the greatest degree of enrichment. Thus, in the super-enriched housing condition, stereotypic behavior, behavioral measures of anxiety, growth and stress physiology varied in a manner consistent with improved animal welfare compared to the other housing conditions with less enrichment. Similar to other studies, we found no evidence, in the measures assessed here, that environmental enrichment increased variation in experimental results.
Collapse
Affiliation(s)
- Jeremy D Bailoo
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Eimear Murphy
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Maria Boada-Saña
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Justin A Varholick
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Sara Hintze
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Caroline Baussière
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Kerstin C Hahn
- Institute for Animal Pathology, University of Bern, Bern, Switzerland
| | - Christine Göpfert
- Institute for Animal Pathology, University of Bern, Bern, Switzerland
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bernhard Voelkl
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Hanno Würbel
- Division of Animal Welfare, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Brod S, Gobbetti T, Gittens B, Ono M, Perretti M, D'Acquisto F. The impact of environmental enrichment on the murine inflammatory immune response. JCI Insight 2017; 2:e90723. [PMID: 28405616 PMCID: PMC5374068 DOI: 10.1172/jci.insight.90723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Living in a mentally and physically stimulating environment has been suggested to have a beneficial effect on the immune response. This study investigates these effects, utilizing a 2-week program of environmental enrichment (EE) and 2 models of acute inflammation: zymosan-induced peritonitis (ZIP) and the cecal ligation and puncture (CLP) model of sepsis. Our results revealed that following exposure to EE, mice possessed a significantly higher circulating neutrophil to lymphocyte ratio compared with control animals. When subject to ZIP, EE animals exhibit enhanced neutrophil and macrophage influx into their peritoneal cavity. Corresponding results were found in CLP, where we observed an improved capacity for enriched animals to clear systemic microbial infection. Ex vivo investigation of leukocyte activity also revealed that macrophages from EE mice presented an enhanced phagocytic capacity. Supporting these findings, microarray analysis of EE animals revealed the increased expression of immunomodulatory genes associated with a heightened and immunoprotective status. Taken together, these results provide potentially novel mechanisms by which EE influences the development and dynamics of the immune response. A housing period as little as 2 weeks in an enriched environment with an increase in spatial and sensorial stimuli improved the ability of mice to clear infections.
Collapse
Affiliation(s)
- Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, England, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, England, United Kingdom
| | - Beatrice Gittens
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, England, United Kingdom
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London, England, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, England, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, England, United Kingdom
| |
Collapse
|
11
|
Aggression in group-housed laboratory mice: why can't we solve the problem? Lab Anim (NY) 2017; 46:157-161. [DOI: 10.1038/laban.1219] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023]
|
12
|
Novak J, Bailoo JD, Melotti L, Würbel H. Effect of Cage-Induced Stereotypies on Measures of Affective State and Recurrent Perseveration in CD-1 and C57BL/6 Mice. PLoS One 2016; 11:e0153203. [PMID: 27145080 PMCID: PMC4856387 DOI: 10.1371/journal.pone.0153203] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Stereotypies are abnormal repetitive behaviour patterns that are highly prevalent in laboratory mice and are thought to reflect impaired welfare. Thus, they are associated with impaired behavioural inhibition and may also reflect negative affective states. However, in mice the relationship between stereotypies and behavioural inhibition is inconclusive, and reliable measures of affective valence are lacking. Here we used an exploration based task to assess cognitive bias as a measure of affective valence and a two-choice guessing task to assess recurrent perseveration as a measure of impaired behavioural inhibition to test mice with different forms and expression levels of stereotypic behaviour. We trained 44 CD-1 and 40 C57BL/6 female mice to discriminate between positively and negatively cued arms in a radial maze and tested their responses to previously inaccessible ambiguous arms. In CD-1 mice (i) mice with higher stereotypy levels displayed a negative cognitive bias and this was influenced by the form of stereotypy performed, (ii) negative cognitive bias was evident in back-flipping mice, and (iii) no such effect was found in mice displaying bar-mouthing or cage-top twirling. In C57BL/6 mice neither route-tracing nor bar-mouthing was associated with cognitive bias, indicating that in this strain these stereotypies may not reflect negative affective states. Conversely, while we found no relation of stereotypy to recurrent perseveration in CD-1 mice, C57BL/6 mice with higher levels of route-tracing, but not bar-mouthing, made more repetitive responses in the guessing task. Our findings confirm previous research indicating that the implications of stereotypies for animal welfare may strongly depend on the species and strain of animal as well as on the form and expression level of the stereotypy. Furthermore, they indicate that variation in stereotypic behaviour may represent an important source of variation in many animal experiments.
Collapse
Affiliation(s)
- Janja Novak
- Division of Animal Welfare, VPH Institute, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
- * E-mail:
| | - Jeremy D. Bailoo
- Division of Animal Welfare, VPH Institute, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Luca Melotti
- Division of Animal Welfare, VPH Institute, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Hanno Würbel
- Division of Animal Welfare, VPH Institute, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| |
Collapse
|
13
|
Mesa-Gresa P, Pérez-Martinez A, Redolat R. Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice. Aggress Behav 2013; 39:269-79. [PMID: 23588702 DOI: 10.1002/ab.21481] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/26/2013] [Indexed: 12/13/2022]
Abstract
Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice.
Collapse
Affiliation(s)
- Patricia Mesa-Gresa
- Department of Psychobiology, Faculty of Psychology; Universitat de València; Valencia; Spain
| | - Asunción Pérez-Martinez
- Department of Psychobiology, Faculty of Psychology; Universitat de València; Valencia; Spain
| | - Rosa Redolat
- Department of Psychobiology, Faculty of Psychology; Universitat de València; Valencia; Spain
| |
Collapse
|
14
|
|
15
|
Walker MD, Mason G. Reprint of Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia. Behav Brain Res 2012; 227:508-13. [DOI: 10.1016/j.bbr.2011.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 11/15/2022]
|
16
|
Walker MD, Mason G. Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia. Behav Brain Res 2011; 224:207-12. [DOI: 10.1016/j.bbr.2011.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 11/27/2022]
|