1
|
Carrilho M, Monarca RI, Aparício G, Mathias MDL, Tapisso JT, von Merten S. Physiological and behavioural adjustment of a wild rodent to laboratory conditions. Physiol Behav 2024; 273:114385. [PMID: 37866641 DOI: 10.1016/j.physbeh.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Wild animals are brought to captivity for different reasons, for example to be kept in zoos and rehabilitation centres, but also for basic research. Such animals usually undergo a process of adjustment to captive conditions. While this adjustment occurs on the behavioural and the physiological level, those are usually studied separately. The aim of this study was to assess both the physiological and behavioural responses of wild wood mice, Apodemus sylvaticus, while adjusting to laboratory conditions. Over the course of four weeks, we measured in wild-caught mice brought to the laboratory faecal corticosterone metabolites and body mass as physiological parameters, stereotypic behaviour and nest-quality, as welfare-linked behavioural parameters, and four personality measures as additional behavioural parameters. The results of our study indicate that mice exhibited an adjustment in both behaviour and physiology over time in the laboratory. While the hormonal stress response decreased significantly, body mass and the proportion of stereotypic behaviours showed a tendency to increase over time. The slight increase of stereotypic behaviours, although not statistically significant, suggests the development of repetitive and non-functional behaviours as a response to laboratory conditions. However, we suggest that those behaviours might have been used by animals as a coping strategy to decrease the physiological stress response. Other behavioural parameters measured, such as boldness and nestbuilding behaviour were stable over time. The information obtained in the present study hints at a complex interplay between behavioural and physiological adjustments of wild animals to laboratory conditions, which should be considered when intending to use wild animals in experimental research.
Collapse
Affiliation(s)
- Maílis Carrilho
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal.
| | - Rita I Monarca
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Guilherme Aparício
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Maria da Luz Mathias
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Joaquim T Tapisso
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Sophie von Merten
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal; Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
2
|
Defining Short-Term Accommodation for Animals. Animals (Basel) 2023; 13:ani13040732. [PMID: 36830519 PMCID: PMC9952406 DOI: 10.3390/ani13040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The terms short-term, temporary, and transitional are related but can have different contexts and meanings for animal husbandry. The definitions and use of these terms can be pivotal to animal housing and welfare. We conducted three separate literature searches using Google Scholar for relevant reports regarding short-term, temporary, or transitional animal husbandry, and analysed key publications that stipulate relevant periods of accommodation. English Government guidance regarding acceptable short-term, temporary, or transitional accommodation for animals varies widely from <1 day to 3 months; whereas independent scientific criteria and guidance use typical periods of hours to several days. Stipulations regarding acceptable short-term, temporary, or transitional accommodation, notably among English Government guidance, which we focused on in this study, were highly inconsistent and lacked scientific rationale. The definitions and use of terms for both formal and other guidance should be limited to precautionary time frames within one circadian cycle, i.e., periods of <24 h. At ≥24 h, all animals at all facilities should be accommodated in conditions that are consistent with long-term housing, husbandry, and best practices.
Collapse
|
3
|
Hills A, Webster MM. Sampling biases and reproducibility: experimental design decisions affect behavioural responses in hermit crabs. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Fischer CP, Romero LM. The effects of daily mitotane or diazepam treatment on the formation of chronic stress symptoms in newly captured wild house sparrows. CONSERVATION PHYSIOLOGY 2020; 8:coaa118. [PMID: 34970435 PMCID: PMC7771575 DOI: 10.1093/conphys/coaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 06/14/2023]
Abstract
Wild animals brought into captivity frequently experience chronic stress and typically need a period of time to adjust to the conditions of captivity (restraint, artificial lighting, altered diet, human presence, etc.), to which they may never fully acclimate. Changes in mass, the hypothalamic-pituitary-adrenal axis and heart rate parameters have been observed over the first week in newly captive house sparrows (Passer domesticus). In this study, we tested the effects of two drugs, diazepam and mitotane, in preventing the chronic stress symptoms caused by captivity, compared with oil-injected control animals. Diazepam is an anxiolytic that is widely prescribed in humans and other animals and has been shown in some cases to reduce physiological stress. Mitotane is an agent that causes chemical adrenalectomy, reducing the body's capacity to produce glucocorticoid hormones. Our mitotane treatment did not cause the expected change in corticosterone concentrations. Baseline corticosterone was higher after a week in captivity regardless of the treatment group, while stress-induced corticosterone did not significantly increase above baseline after a week in captivity in any treatment group. However, mitotane treatment did have some physiological effects, as it reduced the resting heart rate and the duration of the heart rate response to a sudden noise. It also prevented the increase in nighttime activity that we observed in control animals. There was no effect of diazepam on corticosterone, resting heart rate, activity or heart rate response to a sudden noise, and no effect of either treatment on the sympathetic vs parasympathetic control of the resting heart rate. Together, these data suggest that mitotane, but not diazepam, can have a modest impact on helping house sparrows adapt to captive conditions. Easing the transition to captivity will likely make conservation efforts, such as initiating captive breeding programs, more successful.
Collapse
|
5
|
Soulsbury CD, Gray HE, Smith LM, Braithwaite V, Cotter SC, Elwood RW, Wilkinson A, Collins LM. The welfare and ethics of research involving wild animals: A primer. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Helen E. Gray
- Faculty of Biological Sciences University of Leeds Leeds UK
| | | | | | | | - Robert W. Elwood
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Anna Wilkinson
- School of Life Sciences University of Lincoln Lincoln UK
| | | |
Collapse
|
6
|
Muñoz MI, Quispe M, Maliqueo M, Penna M. Biotic and abiotic sounds affect calling activity but not plasma testosterone levels in male frogs (Batrachyla taeniata) in the field and in captivity. Horm Behav 2020; 118:104605. [PMID: 31644890 DOI: 10.1016/j.yhbeh.2019.104605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/19/2023]
Abstract
In animals, the expression of diverse reproductive behaviors is hormonally regulated. In particular, vocalizing during courtship has been related to circulating androgen levels, and reciprocally, conspecific vocalizations are known to modulate androgen secretion in vertebrates. The effect of natural sounds of abiotic origin on hormonal status has virtually not received attention. Therefore, we evaluated the vocal responses of male Batrachyla taeniata frogs to conspecific chorus and rainfall sounds in natural and controlled laboratory settings, measuring the testosterone levels of exposed individuals. In field and laboratory conditions, testosterone levels of frogs exposed to 31.5 min of chorus and rain sounds and non-exposed individuals were similar. In the field, frogs increased their call rate in response to playbacks of chorus and rain sound, but the evoked calling activity was unrelated to plasma testosterone. In contrast to the field, frogs showed limited responsiveness to 31.5-min acoustic exposures in the laboratory. Similarly to the field, for vocally active males tested in the laboratory there was no association between call rate and testosterone levels. Additionally, in this group, testosterone levels were higher in vocally active males relative to non-calling individuals. Overall, these results indicate that in B. taeniata testosterone levels are not altered following a short-term exposure to conspecific biotic and to abiotic sounds. Our results are suggestive of a threshold influence of testosterone on the vocal activity of the species studied. Further explorations of the influence of abiotic sounds on endocrine activation are required to understand how animals respond to variable acoustic environmental conditions.
Collapse
Affiliation(s)
- Matías I Muñoz
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838000, Santiago, Chile
| | - Maricel Quispe
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838000, Santiago, Chile.
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, School of Medicine, San Juan de Dios Hospital, University of Chile, Santiago, Chile
| | - Mario Penna
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838000, Santiago, Chile
| |
Collapse
|
7
|
Eikenaar C, Hessler S, Fischer S, Bairlein F. An exception to the rule: Captivity does not stress wild migrating northern wheatears. Gen Comp Endocrinol 2019; 275:25-29. [PMID: 30753841 DOI: 10.1016/j.ygcen.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
Wild animals typically suffer from stress when brought into captivity. This stress is characterized by elevated circulating glucocorticoid levels and weight loss. We here describe for the first time a case where a wild animal, the long-distance migrating northern wheatear, does not show signs of stress when caged. We captured these birds on a stopover site during their spring migration and caged them individually with ad libitum access to food and water. The birds were divided into four groups and were blood-sampled immediately in the field, a few hours after caging, one day after caging, or three days after caging, respectively. From these blood-samples we determined circulating corticosterone level. Food intake and body mass were also monitored. We found that, with very few exceptions, corticosterone levels were low and did not differ among the groups. Accordingly, almost all birds consumed huge quantities of food and substantially increased their body mass. Together these results clearly show that caging does not result in indications of stress in wild migrating northern wheatears. Confinement-specific conditions such as restricted movement normally stress animals. We suggest migratory birds may not perceive such conditions as stressors due to their hyperphagic state, a notion that requires further testing.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sandra Fischer
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
8
|
Fischer CP, Romero LM. Chronic captivity stress in wild animals is highly species-specific. CONSERVATION PHYSIOLOGY 2019; 7:coz093. [PMID: 31824674 PMCID: PMC6892464 DOI: 10.1093/conphys/coz093] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 05/05/2023]
Abstract
Wild animals are brought into captivity for many reasons-conservation, research, agriculture and the exotic pet trade. While the physical needs of animals are met in captivity, the conditions of confinement and exposure to humans can result in physiological stress. The stress response consists of the suite of hormonal and physiological reactions to help an animal survive potentially harmful stimuli. The adrenomedullary response results in increased heart rate and muscle tone (among other effects); elevated glucocorticoid (GC) hormones help to direct resources towards immediate survival. While these responses are adaptive, overexposure to stress can cause physiological problems, such as weight loss, changes to the immune system and decreased reproductive capacity. Many people who work with wild animals in captivity assume that they will eventually adjust to their new circumstances. However, captivity may have long-term or permanent impacts on physiology if the stress response is chronically activated. We reviewed the literature on the effects of introduction to captivity in wild-caught individuals on the physiological systems impacted by stress, particularly weight changes, GC regulation, adrenomedullary regulation and the immune and reproductive systems. This paper did not review studies on captive-born animals. Adjustment to captivity has been reported for some physiological systems in some species. However, for many species, permanent alterations to physiology may occur with captivity. For example, captive animals may have elevated GCs and/or reduced reproductive capacity compared to free-living animals even after months in captivity. Full adjustment to captivity may occur only in some species, and may be dependent on time of year or other variables. We discuss some of the methods that can be used to reduce chronic captivity stress.
Collapse
Affiliation(s)
| | - L Michael Romero
- Department of Biology, 200 College Ave. Tufts University, Medford, MA 02155 USA
- Corresponding author: Department of Biology, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Ruiz-Raya F, Soler M, Abaurrea T, Chastel O, Roncalli G, Ibáñez-Álamo JD. Hormonal responses to non-mimetic eggs: is brood parasitism a physiological stressor during incubation? Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2565-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Raulo A, Dantzer B. Associations between glucocorticoids and sociality across a continuum of vertebrate social behavior. Ecol Evol 2018; 8:7697-7716. [PMID: 30151183 PMCID: PMC6106170 DOI: 10.1002/ece3.4059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA-axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair-bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group-level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA-axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA-axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA-axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA-axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co-evolve.
Collapse
Affiliation(s)
- Aura Raulo
- Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
- Zoology DepartmentUniversity of OxfordOxfordUK
| | - Ben Dantzer
- Department of PsychologyUniversity of MichiganAnn ArborMichigan
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
11
|
Fischer CP, Wright-Lichter J, Romero LM. Chronic stress and the introduction to captivity: How wild house sparrows (Passer domesticus) adjust to laboratory conditions. Gen Comp Endocrinol 2018; 259:85-92. [PMID: 29170021 DOI: 10.1016/j.ygcen.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
The conditions of captivity can cause chronic stress in wild animals. Newly-captured animals may experience weight loss, elevated glucocorticoid hormones, increased heart rate, increased resting adrenomedullary activation, and an altered heart rate response to acute stressors. As captivity conditions persist, chronic stress may decrease as animals adjust to the stressors of captivity. In this study, house sparrows (Passer domesticus) were captured from the wild, fitted with heart rate transmitters in a minor surgical process, and individually housed in an indoor bird facility. Mass, baseline corticosterone, resting heart rate, resting adrenomedullary activation, and the acute heart rate response to a sudden noise were measured over the course of the first 6 weeks of captivity. Birds lost weight during the first weeks of captivity, which was regained by week 5. Baseline corticosterone peaked at day 7, decreased sharply by day 11, and continued to decrease throughout the 6 weeks. Although heart rate in the first 24 h could not be collected, daytime heart rate decreased from day 1 through day 20, where it reached a stable plateau. Daytime heart rate variability decreased through the entire 6 weeks, which may indicate a gradual shift from sympathetic to parasympathetic nervous system regulation of heart rate. The acute heart rate response to a sudden noise lasted longer at day 6 than earlier or later in captivity. In conclusion, the data indicate that the different physiological systems associated with chronic stress adjust to captivity over different timelines.
Collapse
Affiliation(s)
- Clare Parker Fischer
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States.
| | - Jessica Wright-Lichter
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States
| | - L Michael Romero
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States
| |
Collapse
|
12
|
Eikenaar C, Müller F, Rüppel G, Stöwe M. Endocrine regulation of migratory departure from stopover: Evidence from a longitudinal migratory restlessness study on northern wheatears. Horm Behav 2018; 99:9-13. [PMID: 29408015 DOI: 10.1016/j.yhbeh.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Most migrating birds make stopovers to replenish fuel stores. The decision to resume migration from stopover to a large extent shapes the temporal organization of migration. This decision is known to be shaped by a suite of intrinsic and extrinsic factors such as the bird's fuel stores and current weather conditions. However, how departures from stopover are physiologically regulated is largely unknown. We here present data that strongly indicate that corticosterone, a hormone with a stimulatory effect on locomotion, acts as a mediator between fuel stores and departure from stopover. In migrating northern wheatears (Oenanthe oenanthe) temporarily caged at stopover, we observed a positive relationship between the change in fuel stores and the concurrent change in glucocorticoid metabolite (GCM) levels measured in the birds' droppings. We also found a positive relationship between the change in GCM levels and the change in the intensity of nocturnal migratory restlessness. As in northern wheatears nocturnal migratory restlessness is an accurate proxy for stopover departure likelihood, our results indicate that corticosterone mediates between fuel stores and the decision to resume migration. Our unique longitudinal study represents a considerable advance in our understanding of the endocrine regulation of avian migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Georg Rüppel
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Mareike Stöwe
- Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
13
|
Titon SCM, Assis VR, Titon Junior B, Cassettari BDO, Fernandes PACM, Gomes FR. Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:127-138. [DOI: 10.1002/jez.2078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Stefanny Christie Monteiro Titon
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Vania Regina Assis
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Braz Titon Junior
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Bruna de Oliveira Cassettari
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Pedro Augusto Carlos Magno Fernandes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Fernando Ribeiro Gomes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
14
|
Lattin CR, Pechenenko AV, Carson RE. Experimentally reducing corticosterone mitigates rapid captivity effects on behavior, but not body composition, in a wild bird. Horm Behav 2017; 89:121-129. [PMID: 28065712 PMCID: PMC5359069 DOI: 10.1016/j.yhbeh.2016.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 01/02/2023]
Abstract
Wild animals and captives display physiological and behavioral differences, and it has been hypothesized, but rarely tested, that these differences are caused by sustained elevation of the hormone corticosterone. We used repeated computed tomography (CT) imaging to examine body composition changes in breeding male and female wild house sparrows (Passer domesticus; n=20) in response to two weeks of captivity, and assessed behavioral changes using video recordings. Half of the birds received the drug mitotane, which significantly decreased stress-induced corticosterone titers compared to controls. Based on the CT images, fat volumes increased, and pectoralis muscle density and heart and testes volumes decreased, over the two weeks of captivity in both groups of birds. However, beak-wiping, a behavior that can indicate anxiety and aggression, showed increased occurrence in controls compared to mitotane-treated birds. While our results do not support the hypothesis that these body composition changes were primarily driven by stress-induced corticosterone, our data suggest that experimentally reducing stress-induced corticosterone may mitigate some captivity-induced behavioral changes. Broadly, our results emphasize that researchers should take behavioral and physiological differences between free-living animals and captives into consideration when designing studies and interpreting results. Further, time in captivity should be minimized when birds will be reintroduced back to the wild.
Collapse
Affiliation(s)
- Christine R Lattin
- Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520-8048, United States.
| | - Anita V Pechenenko
- Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520-8048, United States
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520-8048, United States
| |
Collapse
|
15
|
Fischer CP, Romero LM. The use of α- or β-blockers to ameliorate the chronic stress of captivity in the house sparrow ( Passer domesticus). CONSERVATION PHYSIOLOGY 2016; 4:cow049. [PMID: 27752321 PMCID: PMC5065711 DOI: 10.1093/conphys/cow049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/16/2016] [Accepted: 10/04/2016] [Indexed: 05/06/2023]
Abstract
When wild animals are brought into captivity for the first time, they frequently develop chronic stress symptoms. Animals can develop glucocorticoid dysregulation or changes in the sympathetic nervous system over the course of the first week in captivity. By blocking the action of epinephrine and norepinephrine using α- or β-blockers, we hoped to reduce the degree of chronic stress symptoms exhibited by newly captured house sparrows. We measured corticosterone, heart rate and heart rate variability in 24 house sparrows (Passer domesticus) over the first week of captivity. The birds were treated with saline, propranolol (a β-blocker) or phentolamine (an α-blocker) for the first 3 days of captivity. We also compared newly captured animals with animals that had been held in captivity for 1 month. During the first week of captivity, baseline corticosterone increased, but that increase was blocked by propranolol. Heart rate was not different between the treatment groups, but it was higher during the first week than after 1 month in captivity. Sympathetic nervous system activity (as measured by heart rate variability) decreased over the first week of captivity, but was not affected by treatment. β-Blockers, but not α-blockers, might help to improve some symptoms of chronic stress in newly captured animals.
Collapse
Affiliation(s)
- Clare Parker Fischer
- Corresponding author: Tufts University, Department of Biology, 163 Packard Avenue, Medford, MA 02155, USA. Tel: +1 617 642 9725.
| | | |
Collapse
|
16
|
Hau M, Haussmann MF, Greives TJ, Matlack C, Costantini D, Quetting M, Adelman JS, Miranda AC, Partecke J. Repeated stressors in adulthood increase the rate of biological ageing. Front Zool 2015; 12:4. [PMID: 25705242 PMCID: PMC4336494 DOI: 10.1186/s12983-015-0095-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Individuals of the same age can differ substantially in the degree to which they have accumulated tissue damage, akin to bodily wear and tear, from past experiences. This accumulated tissue damage reflects the individual's biological age and may better predict physiological and behavioural performance than the individual's chronological age. However, at present it remains unclear how to reliably assess biological age in individual wild vertebrates. METHODS We exposed hand-raised adult Eurasian blackbirds (Turdus merula) to a combination of repeated immune and disturbance stressors for over one year to determine the effects of chronic stress on potential biomarkers of biological ageing including telomere shortening, oxidative stress load, and glucocorticoid hormones. We also assessed general measures of individual condition including body mass and locomotor activity. RESULTS By the end of the experiment, stress-exposed birds showed greater decreases in telomere lengths. Stress-exposed birds also maintained higher circulating levels of oxidative damage compared with control birds. Other potential biomarkers such as concentrations of antioxidants and glucocorticoid hormone traits showed greater resilience and did not differ significantly between treatment groups. CONCLUSIONS The current data demonstrate that repeated exposure to experimental stressors affects the rate of biological ageing in adult Eurasian blackbirds. Both telomeres and oxidative damage were affected by repeated stress exposure and thus can serve as blood-derived biomarkers of biological ageing.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Am Obstberg 1, 78315 Radolfzell, Germany ; Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837 USA
| | - Timothy J Greives
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Am Obstberg 1, 78315 Radolfzell, Germany ; Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, Fargo, ND 58202 USA
| | - Christa Matlack
- Department of Biology, Bucknell University, Lewisburg, PA 17837 USA
| | - David Costantini
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium ; University of Glasgow, Institute of Biodiversity, Animal Health & Comparative Medicine, Glasgow, QG12 8Q UK
| | - Michael Quetting
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Am Obstberg 1, 78315 Radolfzell, Germany ; Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - James S Adelman
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Am Obstberg 1, 78315 Radolfzell, Germany ; Department of Biological Sciences, 4092B Derring Hall, Virginia Tech, Blacksburg, VA 24061-0406 USA
| | - Ana Catarina Miranda
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany ; Max Planck Institute for Ornithology, Department of Migration and Immuno-ecology, Am Obstberg 1, 78315 Radolfzell, Germany ; Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, Campus do Bacanga, São Luís, Maranhão Brazil
| | - Jesko Partecke
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany ; Max Planck Institute for Ornithology, Department of Migration and Immuno-ecology, Am Obstberg 1, 78315 Radolfzell, Germany
| |
Collapse
|
17
|
|
18
|
Sparkman AM, Bronikowski AM, Williams S, Parsai S, Manhart W, Palacios MG. Physiological indices of stress in wild and captive garter snakes: Correlations, repeatability, and ecological variation. Comp Biochem Physiol A Mol Integr Physiol 2014; 174:11-7. [DOI: 10.1016/j.cbpa.2014.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/26/2022]
|
19
|
Khan N, Robert K. Does sex matter? Differential responses to corticosterone administration in the zebra finch. ZOOLOGY 2013; 116:293-9. [DOI: 10.1016/j.zool.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/14/2013] [Accepted: 08/03/2013] [Indexed: 11/30/2022]
|
20
|
Della Costa NS, Lèche A, Guzmán DA, Navarro JL, Marin RH, Martella MB. Behavioral responses to short-term transport in male and female Greater Rheas (Rhea americana) reared in captivity. Poult Sci 2013; 92:849-57. [PMID: 23472006 DOI: 10.3382/ps.2012-02754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal transport is an indispensable practice in species that need to be moved for management or commercial purposes. However, transport may have negative effects on individuals' welfare. The aims of the present work were to determine if the behavioral responses of adult Greater Rheas (Rhea americana) bred in captivity are sensitive to short-term transport and if males and females differ in their posttransport behavioral activity and recovery. Eight males and 8 females were placed in individual pens and allowed 6 d to habituate (d 1 to 6) before transport procedure. On the transport day (d 7), half of the birds (4 males and 4 females) were randomly assigned to a transport group that was captured and handled to be placed into the crates, exposed to a 30-min transport stressor, and immediately returned to their pens. Four transports with 1 different male and female each time were performed. The other half remained undisturbed and were used as controls. Behavior of all individuals was video-recorded during habituation days, after transport on d 7, and on the 2 following days (d 8 and 9) to evaluate pre- and posttransport behavioral activity for 2 h per day. No significant behavioral changes were observed during the last 2 d of the habituation period (d 5 and 6), suggesting that Greater Rheas were adapted to the housing conditions before transport. After transportation, several behaviors were affected: transported males and females showed null resting, transported females also showed reduced preening and increased vigilance (P < 0.05), whereas transported males showed increased drinking (P < 0.05) compared with their respective control groups. The results suggest that behavioral responses of captive-bred Greater Rheas are sensitive to short-term transport (which includes handling) and that males and females differ in their posttransport behavioral activity, recovering their overall basal levels on the third day posttransportation.
Collapse
|
21
|
Cockrem JF. Individual variation in glucocorticoid stress responses in animals. Gen Comp Endocrinol 2013; 181:45-58. [PMID: 23298571 DOI: 10.1016/j.ygcen.2012.11.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 12/30/2022]
Abstract
When stimuli from the environment are perceived to be a threat or potential threat then animals initiate stress responses, with activation of the hypothalamo-pituitary-adrenal axis and secretion of glucocorticoid hormones (cortisol and corticosterone). Whilst standard deviation or standard error values are always reported, it is only when graphs of individual responses are shown that the extensive variation between animals is apparent. Some animals have little or no response to a stressor that evokes a relatively large response in others. Glucocorticoid responses of fish, amphibian, reptiles, birds, and mammals are considered in this review. Comparisons of responses between animals and groups of animals focused on responses to restraint or confinement as relatively standard stressors. Individual graphs could not be found in the literature for glucocorticoid responses to capture or restraint in fish or reptiles, with just one graph in mammals with the first sample was collected when animals were initially restrained. Coefficients of variation (CVs) calculated for parameters of glucocorticoid stress responses showed that the relative magnitudes of variation were similar in different vertebrate groups. The overall mean CV for glucocorticoid concentrations in initial (0 min) samples was 74.5%, and CVs for samples collected over various times up to 4 h were consistently between 50% and 60%. The factors that lead to the observed individual variation and the extent to which this variation is adaptive or non-adaptive are little known in most animals, and future studies of glucocorticoid responses in animals can focus on individual responses and their origins and significance.
Collapse
Affiliation(s)
- John F Cockrem
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
22
|
Davies S, Rodriguez NS, Sweazea KL, Deviche P. The Effect of Acute Stress and Long-Term Corticosteroid Administration on Plasma Metabolites in an Urban and Desert Songbird. Physiol Biochem Zool 2013; 86:47-60. [DOI: 10.1086/667990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Adamo SA. The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection. Horm Behav 2012; 62:324-30. [PMID: 22381405 DOI: 10.1016/j.yhbeh.2012.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/04/2012] [Accepted: 02/12/2012] [Indexed: 11/21/2022]
Abstract
Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.
Collapse
Affiliation(s)
- Shelley A Adamo
- Dept. of Psychology and Neuroscience, Dalhousie Univ., Halifax, NS B3H 4R2, Canada.
| |
Collapse
|