1
|
Flanagan Pritz CM, Johnson BL, Willacker JJ, Kennedy CM, Daniele NR, Eagles-Smith CA. Forest cover influences fish mercury concentrations in national parks of the western U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176936. [PMID: 39414044 DOI: 10.1016/j.scitotenv.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The global prevalence of mercury (Hg) contamination and its complex biogeochemical cycling has resulted in elevated Hg concentrations in biota in remote and pristine environments. However, there is uncertainty in the relative importance of Hg deposition and landscape factors that control Hg cycling and bioaccumulation. To address this, we measured total mercury (THg) concentrations in 1344 fish across 60 subalpine lakes from 12 national parks (NPs). These parks represent three distinct high-elevation regions across the western U.S.: Cascades and Olympic Peninsula, Sierra Nevada and Great Basin, and Rocky Mountains. Within these regions, three NPs (Mount Rainier, Yosemite, and Rocky Mountain) were intensively studied representatives of each region. This study aimed to (1) assess the magnitude of mercury contamination in a collection of remote, small catchment lakes; (2) quantify the variability of fish THg concentrations among and within parks; and (3) test the relative importance of Hg inputs in comparison to landscape characteristics on lake-specific fish THg concentrations. The spatial variability in fish THg concentrations was 2.6-fold higher than variation in deposition to watersheds, suggesting that factors other than Hg delivery are important determinants of Hg accumulation in these environments. Spatially, fish THg concentrations (ng/g ww ± standard error) were lower in the Rockies (46.2 ± 5.0) and Sierra (56.5 ± 5.8) compared to the Cascades (67.8 ± 6.1). Additionally, fish THg concentrations increased with increasing conifer forest cover (Intensive parks: P < 0.0001, R2 = 0.43; All parks: P = 0.0001, R2 = 0.23) but were not correlated with wet Hg deposition across the catchment. These findings suggest that forest composition is likely an important aspect of Hg delivery to lake food webs, and although the mechanisms are unclear, could be tied to some combination of forest influences on catchment organic carbon and increased surface area for dry Hg deposition.
Collapse
Affiliation(s)
- Colleen M Flanagan Pritz
- National Park Service, National Resource Stewardship and Science Directorate, Air Resources Division, PO Box 25287, Lakewood, CO 80225, USA.
| | - Branden L Johnson
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Christopher M Kennedy
- U.S. Fish & Wildlife Service, Fish and Aquatic Conservation, Colorado Fish and Wildlife Conservation Office, 1131 Fairway Club Circle, B2, Estes Park, CO 80517, USA
| | - Ninette R Daniele
- National Park Service, Yosemite National Park, Resources Management and Science Division, PO Box 700, El Portal, CA 95318, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| |
Collapse
|
2
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
3
|
Gustin MS, Dunham-Cheatham SM, Osterwalder S, Magand O, Dommergue A. What is the utility of measuring gaseous Hg II dry deposition using Aerohead samplers?: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167895. [PMID: 37866618 DOI: 10.1016/j.scitotenv.2023.167895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The most efficient way to quantify HgII inputs to ecosystems is to measure wet and dry deposition. Wet deposition of HgII is determined by measuring Hg concentrations and the volume of precipitation. Dry deposition of HgII is determined through direct measurement and/or determined indirectly by measuring air concentrations and using model-generated deposition velocities. Here, data collected using an Aerohead sampler holding cation exchange membranes are summarized, and the utility of this method for understanding dry deposition, and other measurements and processes is discussed. This analysis includes information from publications, and recent data collected at Guadalupe Mountains National Park, Texas, USA, and Amsterdam Island, Southern Indian Ocean. This method primarily measures gaseous HgII and little particulate-bound Hg. The Aerohead method is useful for looking at large-scale trends in deposition, verifying Hg depletion events, calculating dry deposition velocities for compounds with specific chemistry, and identification of sources of HgII. At numerous locations in the western USA, deposition rates were greater at higher elevations due to elevated concentrations associated with long-range transport of atmospheric pollution. When used in tandem with the Reactive Mercury Active System or a dual-channel system, more accurate deposition velocities - that vary as a function of GOM compound chemistry - can be calculated.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada, Reno.
| | - Sarrah M Dunham-Cheatham
- College of Biotechnology, Natural Resources and Environmental Science, University of Nevada, Reno
| | - Stefan Osterwalder
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), IGE, 38000 Grenoble, France; Department of Environmental Systems Science (D-USYS), Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Olivier Magand
- Observatoire des Sciences de l'Univers à La Réunion (OSU-R), UAR 3365, CNRS, Université de La Réunion, Météo France, 97744 Saint-Denis, La Réunion, France
| | - Aurélien Dommergue
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), IGE, 38000 Grenoble, France
| |
Collapse
|
4
|
Munshed M, Van Griensven Thé J, Fraser R, Matthews B, Elkamel A. Country-Wide Ecological Health Assessment Methodology for Air Toxics: Bridging Gaps in Ecosystem Impact Understanding and Policy Foundations. TOXICS 2024; 12:42. [PMID: 38250998 PMCID: PMC10820021 DOI: 10.3390/toxics12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Amid the growing concerns about air toxics from pollution sources, much emphasis has been placed on their impacts on human health. However, there has been limited research conducted to assess the cumulative country-wide impact of air toxics on both terrestrial and aquatic ecosystems, as well as the complex interactions within food webs. Traditional approaches, including those of the United States Environmental Protection Agency (US EPA), lack versatility in addressing diverse emission sources and their distinct ecological repercussions. This study addresses these gaps by introducing the Ecological Health Assessment Methodology (EHAM), a novel approach that transcends traditional methods by enabling both comprehensive country-wide and detailed regional ecological risk assessments across terrestrial and aquatic ecosystems. EHAM also advances the field by developing new food-chain multipliers (magnification factors) for localized ecosystem food web models. Employing traditional ecological multimedia risk assessment of toxics' fate and transport techniques as its foundation, this study extends US EPA methodologies to a broader range of emission sources. The quantification of risk estimation employs the quotient method, which yields an ecological screening quotient (ESQ). Utilizing Kuwait as a case study for the application of this methodology, this study's findings for data from 2017 indicate a substantial ecological risk in Kuwait's coastal zone, with cumulative ESQ values reaching as high as 3.12 × 103 for carnivorous shorebirds, contrasted by negligible risks in the inland and production zones, where ESQ values for all groups are consistently below 1.0. By analyzing the toxicity reference value (TRV) against the expected daily exposure of receptors to air toxics, the proposed methodology provides valuable insights into the potential ecological risks and their subsequent impacts on ecological populations. The present contribution aims to deepen the understanding of the ecological health implications of air toxics and lay the foundation for informed, ecology-driven policymaking, underscoring the need for measures to mitigate these impacts.
Collapse
Affiliation(s)
- Mohammad Munshed
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Lakes Environmental Software, Waterloo, ON N2L 3L3, Canada
| | - Jesse Van Griensven Thé
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Lakes Environmental Software, Waterloo, ON N2L 3L3, Canada
| | - Roydon Fraser
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bryan Matthews
- Lakes Environmental Software, Waterloo, ON N2L 3L3, Canada
| | - Ali Elkamel
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|