1
|
Towards Optimized Bioavailability of 99mTc-Labeled Barbiturates for Non-invasive Imaging of Matrix Metalloproteinase Activity. Mol Imaging Biol 2021; 24:434-443. [PMID: 34750717 PMCID: PMC9085681 DOI: 10.1007/s11307-021-01668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Introduction
Dysregulated activity of matrix metalloproteinases (MMPs) drives a variety of pathophysiological conditions. Non-invasive imaging of MMP activity in vivo promises diagnostic and prognostic value. However, current targeting strategies by small molecules are typically limited with respect to the bioavailability of the labeled MMP binders in vivo. To this end, we here introduce and compare three chemical modifications of a recently developed barbiturate-based radiotracer with respect to bioavailability and potential to image MMP activity in vivo. Methods Barbiturate-based MMP inhibitors with an identical targeting unit but varying hydrophilicity were synthesized, labeled with technetium-99m, and evaluated in vitro and in vivo. Biodistribution and radiotracer elimination were determined in C57/BL6 mice by serial SPECT imaging. MMP activity was imaged in a MMP-positive subcutaneous xenograft model of human K1 papillary thyroid tumors. In vivo data were validated by scintillation counting, autoradiography, and MMP immunohistochemistry. Results We prepared three new 99mTc‐labeled MMP inhibitors, bearing either a glycine ([99mTc]MEA39), lysine ([99mTc]MEA61), or the ligand HYNIC with the ionic co-ligand TPPTS ([99mTc]MEA223) yielding gradually increasing hydrophilicity. [99mTc]MEA39 and [99mTc]MEA61 were rapidly eliminated via hepatobiliary pathways. In contrast, [99mTc]MEA223 showed delayed in vivo clearance and primary renal elimination. In a thyroid tumor xenograft model, only [99mTc]MEA223 exhibited a high tumor-to-blood ratio that could easily be delineated in SPECT images. Conclusion Introduction of HYNIC/TPPTS into the barbiturate lead structure ([99mTc]MEA223) results in delayed renal elimination and allows non-invasive MMP imaging with high signal-to-noise ratios in a papillary thyroid tumor xenograft model. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01668-z.
Collapse
|
2
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, Ulloa P, Larsen N, Ferrari A, Rafecas M, Ellrichmann M, Pravdivtseva MS, Anikeeva M, Humbert J, Both M, Hundt JE, Hövener JB. Imaging Inflammation - From Whole Body Imaging to Cellular Resolution. Front Immunol 2021; 12:692222. [PMID: 34248987 PMCID: PMC8264453 DOI: 10.3389/fimmu.2021.692222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Imaging techniques have evolved impressively lately, allowing whole new concepts like multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to increase general awareness of possiblities of imaging to medicine field. Here, we have collected the selected (3D) imaging modalities and evaluated the recent findings on preclinical and clinical inflammation imaging. The focus has been on the feasibility of imaging to aid in inflammation precision medicine, and the key challenges and opportunities of the imaging modalities are presented. Some examples of the current usage in clinics/close to clinics have been brought out as an example. This review evaluates the future prospects of the imaging technologies for clinical applications in precision medicine from the pre-clinical development point of view.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| | - Jan Philip Kolb
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Gießen, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Oula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Institute for Experimental Cancer Research (IET), University of Kiel, Kiel, Germany
| | - Linh Ha
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), University of Lübeck, Lübeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department1, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mariia Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| |
Collapse
|
4
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
5
|
Abadjian MCZ, Edwards WB, Anderson CJ. Imaging the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:229-257. [PMID: 29275475 DOI: 10.1007/978-3-319-67577-0_15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment consists of tumor, stromal, and immune cells, as well as extracellular milieu. Changes in numbers of these cell types and their environments have an impact on cancer growth and metastasis. Non-invasive imaging of aspects of the tumor microenvironment can provide important information on the aggressiveness of the cancer, whether or not it is metastatic, and can also help to determine early response to treatment. This chapter provides an overview on non-invasive in vivo imaging in humans and mouse models of various cell types and physiological parameters that are unique to the tumor microenvironment. Current clinical imaging and research investigation are in the areas of nuclear imaging (positron emission tomography (PET) and single photon emission computed tomography (SPECT)), magnetic resonance imaging (MRI) and optical (near infrared (NIR) fluorescence) imaging. Aspects of the tumor microenvironment that have been imaged by PET, MRI and/or optical imaging are tumor associated inflammation (primarily macrophages and T cells), hypoxia, pH changes, as well as enzymes and integrins that are highly prevalent in tumors, stroma and immune cells. Many imaging agents and strategies are currently available for cancer patients; however, the investigation of novel avenues for targeting aspects of the tumor microenvironment in pre-clinical models of cancer provides the cancer researcher with a means to monitor changes and evaluate novel treatments that can be translated into the clinic.
Collapse
Affiliation(s)
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Matrix Metalloproteinases in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Dupuis J, Harel F, Nguyen QT. Molecular imaging of the pulmonary circulation in health and disease. Clin Transl Imaging 2014; 2:415-426. [PMID: 25360422 PMCID: PMC4209091 DOI: 10.1007/s40336-014-0076-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022]
Abstract
The pulmonary circulation, at the unique crossroads between the left and the right heart, is submitted to large physiologic hemodynamic variations and possesses numerous important metabolic functions mediated through its vast endothelial surface. There are many pathologic conditions that can directly or indirectly affect the pulmonary vasculature and modify its physiology and functions. Pulmonary hypertension, the end result of many of these affections, is unfortunately diagnosed too late in the disease process, meaning that there is a crying need for earlier diagnosis and surrogate markers of disease progression and regression. By targeting endothelial, medial and adventitial targets of the pulmonary vasculature, novel molecular imaging agents could provide early detection of physiologic and biologic perturbation in the pulmonary circulation. This review provides the rationale for the development of molecular imaging agents for the diagnosis and follow-up of disorders of the pulmonary circulation and discusses promising targets for SPECT and positron emission tomographic imaging.
Collapse
Affiliation(s)
- Jocelyn Dupuis
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada ; Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - François Harel
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada ; Department of Radiology, Radio-Oncology and Nuclear Medicine Université de Montréal, Montreal, QC Canada
| | - Quang T Nguyen
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada
| |
Collapse
|
8
|
Altıparmak B, Lambrecht FY, Er O. Design of (99m) Tc-DTPA-CLP and preliminary evaluation in rats. Chem Biol Drug Des 2014; 83:362-6. [PMID: 24148110 DOI: 10.1111/cbdd.12253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/12/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022]
Abstract
Radiopharmaceuticals are localized in (malignant) tumor tissues by different mechanisms. One of these mechanisms, gelatinase enzyme activity, is associated with poor prognosis in cancer patients and potential targets for tumor imaging. There are some gelatinases to be associated with metastatic potential for tumor imaging to possibly predict metastases. In this study, a cyclic decapeptide conjugate, DTPA-CLP (DTPA-Cys-Leu-Pro-Gly-His-Trp-Gly-Phe-Pro-Ser-Cys), was selected as a peptide conjugate because of its selective inhibitory activity toward gelatinases. Peptide-conjugated DTPA-CLP was labeled with (99m) Tc with a radiolabeling efficiency of 97.0 ± 2.8%. After determining optimization conditions for radiolabeling, a biodistribution study of radiolabeled peptide in albino Wistar rats was performed. According to biodistribution data, (99m) Tc-DTPA-CLP showed high uptake in the lung, liver, uterus, and spleen. These results show that (99m) Tc-DTPA-CLP may be used for the imaging of gelatinase activity in metastatic tumors.
Collapse
Affiliation(s)
- Burcu Altıparmak
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir, 35100, Turkey
| | | | | |
Collapse
|