Yazdankish E, Foroughi M, Azqhandi MHA. Capture of I
131 from medical-based wastewater using the highly effective and recyclable adsorbent of g-C
3N
4 assembled with Mg-Co-Al-layered double hydroxide.
JOURNAL OF HAZARDOUS MATERIALS 2020;
389:122151. [PMID:
32006938 DOI:
10.1016/j.jhazmat.2020.122151]
[Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
This paper reports a very high capacity and recyclable Mg-Co-Al-layered double hydroxide@ g-C3N4 nanocomposite as the new adsorbent for remediation of radioisotope-containing medical-based solutions. In this work, a convenient solvothermal method was employed to synthesize a new nano-adsorbent, whose features were determined by energy dispersive X-ray (EDS/EDX), XRD, FESEM, TEM, TGA, BET, and FT-IR spectroscopy. The as-prepared nano-adsorbent was applied to capture the radioisotope iodine-131 mainly from the medical-based wastewater under different conditions of main influential parameters, (i.e. adsorbent dose, initial I2 concentration, sonication time, and temperature). The process was evaluated by three models of RSM, CCD-ANFIS, and CCD-GRNN. Furthermore, comprehensive kinetic, isotherm, thermodynamic, reusability cycles and optimization (by GA and DF) studies were conducted to evaluate the behavior and adsorption mechanism of I2 on the surface of Mg-Co-Al-LDH@ g-C3N4 nanocomposite. High removal efficiency (95.25%) of 131I in only 30 min (i.e. during 1/384 its half-life), along with an excellent capacity that has ever been reported (2200.70 mg/g) and recyclability (seven times without breakthrough in the efficiency), turns the nanocomposite to a very promising option in remediation of 131I-containing solutions. Besides, from the models studied, ANFIS described the process with the highest accuracy and reliability with R2 > 0.999.
Collapse