1
|
Mc Veigh M, Bellan LM. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. LAB ON A CHIP 2024; 24:1226-1243. [PMID: 38165824 DOI: 10.1039/d3lc00779k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Positron emission tomography (PET) is a powerful diagnostic tool that holds incredible potential for clinicians to track a wide variety of biological processes using specialized radiotracers. Currently, however, a single radiotracer accounts for over 95% of procedures, largely due to the cost of radiotracer synthesis. Microfluidic platforms provide a solution to this problem by enabling a dose-on-demand pipeline in which a single benchtop platform would synthesize a wide array of radiotracers. In this review, we will explore the field of microfluidic production of radiotracers from early research to current development. Furthermore, the benefits and drawbacks of different microfluidic reactor designs will be analyzed. Lastly, we will discuss the various engineering considerations that must be addressed to create a fully developed, commercially effective platform that can usher the field from research and development to commercialization.
Collapse
Affiliation(s)
- Mark Mc Veigh
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Lu Y, He Y, Schibli R, Mu L, van Dam RM. Proof-of-concept optimization of a copper-mediated 18F-radiosynthesis of a novel MAGL PET tracer on a high-throughput microdroplet platform and its macroscale translation. LAB ON A CHIP 2023; 23:4652-4663. [PMID: 37818614 PMCID: PMC10608794 DOI: 10.1039/d3lc00735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Copper-mediated radiofluorination has demonstrated remarkable potential in forming aromatic C-18F bonds of radioligands for positron emission tomography (PET). Achieving optimal results often requires optimization efforts, requiring a substantial amount of radiolabeling precursor and time, severely limiting the experimental throughput. Recently, we successfully showcased the feasibility of performing and optimizing Cu-mediated radiosynthesis on a high-throughput microdroplet platform using the well-known and clinically used radioligand [18F]FDOPA as an illustrative example. In our current work, we optimized the Cu-mediated synthesis of a novel monoacylglycerol lipase (MAGL) PET tracer ([18F]YH149), showing the versatility of droplet-based techniques for early stage tracer development. Across 5 days, we conducted a total of 117 experiments, studying 36 distinct conditions, while utilizing <15 mg of total organoboron precursor. Compared to the original report in which the radiochemical yield (RCY) was 4.4 ± 0.5% (n = 5), the optimized droplet condition provided a substantial improvement in RCY (52 ± 8%, n = 4) and showed excellent radiochemical purity (100%) and molar activity (77-854 GBq μmol-1), using a starting activity of 0.2-1.45 GBq. Furthermore, we showed for the first time a translation of the optimized microscale conditions to a vial-based method. With similar starting activity (0.2-1.44 GBq), the translated synthesis exhibited a comparable RCY of 50 ± 10% (n = 4) while maintaining excellent radiochemical purity (100%) and acceptable molar activity (20-46 GBq μmol-1). The successful translation to vial-based reactions ensures wider applicability of the optimized synthesis by leveraging widely available commercial vial-based synthesis modules.
Collapse
Affiliation(s)
- Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| | - Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kumar A, Joshi RK, Thakur R, Kumar D, Nagaraj C, Kumar P. Development of an economical method to synthesize O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 FFET). J Labelled Comp Radiopharm 2023; 66:345-352. [PMID: 37408511 DOI: 10.1002/jlcr.4052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Positron emission tomography (PET) using O-(2-[18 F]fluoroethyl)-L-tyrosine ([18 F]FET) has shown great success in differentiating tumor recurrence from necrosis. In this study, we are reporting the experience of synthesis [18 F]FET by varying the concentration of TET precursor in different chemistry modules. TET precursor (2-10 mg) was used for the synthesis of [18 F]FET in an automated (MX Tracerlab) module (n = 6) and semiautomated (FX2N Tracerlab) module (n = 19). The quality control was performed for all the preparations. For human imaging, 220 ± 50 MBq of [18 F]FET was briefly injected into the patient to acquire PET-MR images. The radiochemical purity was greater than 95% for the final product in both modules. The decay corrected average yield was 10.7 ± 4.7% (10 mg, n = 3) and 8.2 ± 2.6% (2 mg, n = 3) with automated chemistry module and 36.7 ± 7.3% (8-10 mg, n = 12), 26.4 ± 3.1% (5-7 mg, n = 4), and 35.1 ± 3.8% (2-4 mg, n = 3) with semiautomated chemistry modules. The PET imaging showed uptake at the lesion site (SUVmax = 7.5 ± 2.6) and concordance with the MR image. The [18 F]FET was produced with a higher radiochemical yield with 2.0 mg of the precursor with substantial yield and is suitable for brain tumor imaging.
Collapse
Affiliation(s)
- Aishwarya Kumar
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Riptee Thakur
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dinesh Kumar
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Elkawad H, Xu Y, Tian M, Jin C, Zhang H, Yu K, He Q. Recent advances in microfluidic devices for radiosynthesis of PET‐imaging probes. Chem Asian J 2022; 17:e202200579. [PMID: 35909081 DOI: 10.1002/asia.202200579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Husamelden Elkawad
- The second affiliated hospital of Zhejiang University Nuclear Medicine and PET center CHINA
| | - Yangyang Xu
- Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Mei Tian
- The second affiliated hospital of Zhejiang University Nuclear Medicine & PET center CHINA
| | - Chenyang Jin
- Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Hong Zhang
- The second affiliated hospital of Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Kaiwu Yu
- Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Qinggang He
- Zhejiang University Chemical Engineering 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
5
|
Lisova K, Wang J, Hajagos TJ, Lu Y, Hsiao A, Elizarov A, van Dam RM. Economical droplet-based microfluidic production of [ 18F]FET and [ 18F]Florbetaben suitable for human use. Sci Rep 2021; 11:20636. [PMID: 34667246 PMCID: PMC8526601 DOI: 10.1038/s41598-021-99111-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Current equipment and methods for preparation of radiopharmaceuticals for positron emission tomography (PET) are expensive and best suited for large-scale multi-doses batches. Microfluidic radiosynthesizers have been shown to provide an economic approach to synthesize these compounds in smaller quantities, but can also be scaled to clinically-relevant levels. Batch microfluidic approaches, in particular, offer significant reduction in system size and reagent consumption. Here we show a simple and rapid technique to concentrate the radioisotope, prior to synthesis in a droplet-based radiosynthesizer, enabling production of clinically-relevant batches of [18F]FET and [18F]FBB. The synthesis was carried out with an automated synthesizer platform based on a disposable Teflon-silicon surface-tension trap chip. Up to 0.1 mL (4 GBq) of radioactivity was used per synthesis by drying cyclotron-produced aqueous [18F]fluoride in small increments directly inside the reaction site. Precursor solution (10 µL) was added to the dried [18F]fluoride, the reaction chip was heated for 5 min to perform radiofluorination, and then a deprotection step was performed with addition of acid solution and heating. The product was recovered in 80 µL volume and transferred to analytical HPLC for purification. Purified product was formulated via evaporation and resuspension or a micro-SPE formulation system. Quality control testing was performed on 3 sequential batches of each tracer. The method afforded production of up to 0.8 GBq of [18F]FET and [18F]FBB. Each production was completed within an hour. All batches passed quality control testing, confirming suitability for human use. In summary, we present a simple and efficient synthesis of clinically-relevant batches of [18F]FET and [18F]FBB using a microfluidic radiosynthesizer. This work demonstrates that the droplet-based micro-radiosynthesizer has a potential for batch-on-demand synthesis of 18F-labeled radiopharmaceuticals for human use.
Collapse
Affiliation(s)
- Ksenia Lisova
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Jia Wang
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|