1
|
Chen S, Zhi Z, Wong WL, Yuan W, Sun N. Understanding the synergistic sensitization of natural products and antibiotics: An effective strategy to combat MRSA. Eur J Med Chem 2024; 281:117012. [PMID: 39509947 DOI: 10.1016/j.ejmech.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multi-resistant organisms found in hospital-acquired infections and is associated with high morbidity and mortality. The development of new drugs and promising therapeutic strategies against MRSA is thus an urgent request. In recent years, some natural products have been demonstrated to show great potential in improving the efficacy of antibiotics to treat various drug-resistant bacteria, particularly MRSA. In this context, we aimed to analyze systematically from the prior arts that investigated the synergy between natural products and antibiotics against MRSA. These findings not only give us a better understanding on the mechanism of actions but also shed light on the bioactive molecular scaffolds identified from diverse natural products. In the present study, we concentratedly reviewed the studies that utilized natural products to enhance the potency of conventional antibiotics against MRSA in the last decade. The timely information reported herein may give meaningful insights into the molecular design of novel and potent antibacterial agents and/or effective therapeutics to combat MRSA for practical applications.
Collapse
Affiliation(s)
- Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China.
| | - Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China.
| |
Collapse
|
2
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Luo X, Hu C, Yin Q, Zhang X, Liu Z, Zhou C, Zhang J, Chen W, Yang Y. Dual-Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria-infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401793. [PMID: 38874469 PMCID: PMC11321617 DOI: 10.1002/advs.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
Collapse
Affiliation(s)
- Xue‐Yue Luo
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Chun‐Mei Hu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Qi Yin
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Xiao‐Mei Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Zhen‐Zhen Liu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Cheng‐Kai Zhou
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Jian‐Gang Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Wei Chen
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Yong‐Jun Yang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| |
Collapse
|
4
|
Chakraborty S, Baindara P, Sharma P, Jose T A, V K, Manoharan R, Mandal SM. Anti-Biofilm Action of Cineole and Hypericum perforatum to Combat Pneumonia-Causing Drug-Resistant P. aeruginosa. Antibiotics (Basel) 2024; 13:689. [PMID: 39199989 PMCID: PMC11350762 DOI: 10.3390/antibiotics13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Hospital-acquired antibiotic-resistant pneumonia is one of the major causes of mortality around the world that pose a catastrophic threat. Pseudomonas aeruginosa is one of the most significant opportunistic pathogens responsible for hospital-acquired pneumonia and gained resistance to the majority of conventional antibiotics. There is an urgent need for antibiotic alternatives to control drug-resistant pneumonia and other related respiratory infections. In the present study, we explored the antibacterial potential of cineole in combination with homeopathic medicines against biofilm-forming drug-resistant P. aeruginosa. Out of 26 selected and screened homeopathic medicines, Hypericum Perforatum (HyPer) was found to eradicate biofilm-forming drug-resistant P. aeruginosa most effectively when used in combination with cineole. Interestingly, the synergistic action of HyPer and cineole was also found to be similarly effective against planktonic cells of P. aeruginosa. Further, the potential synergistic killing mechanisms of cineole and HyPer were determined by analyzing zeta membrane potential, outer membrane permeability, and DNA release from P. aeruginosa cells upon treatment with cineole and HyPer. Additionally, molecular docking analysis revealed strong binding affinities of hypericin (an active ingredient of HyPer) with the PqsA (a quorum sensing protein) of P. aeruginosa. Overall, our findings revealed the potential synergistic action of cineole and HyPer against biofilm-forming drug-resistant P. aeruginosa. Cineole and HyPer could be used in combination with other bronchodilators as inhalers to control the biofilm-forming drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur 721302, India;
| | - Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Pralay Sharma
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Austin Jose T
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Kumaravel V
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Raja Manoharan
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Santi M. Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur 721302, India;
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Li J, Lu T, Chu Y, Zhang Y, Zhang J, Fu W, Sun J, Liu Y, Liao X, Zhou Y. Cinnamaldehyde targets SarA to enhance β-lactam antibiotic activity against methicillin-resistant Staphylococcus aureus. MLIFE 2024; 3:291-306. [PMID: 38948140 PMCID: PMC11211666 DOI: 10.1002/mlf2.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 07/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and β-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to β-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on β-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with β-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to β-lactams. Furthermore, CIN fully restored the anti-MRSA activities of β-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a β-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.
Collapse
Affiliation(s)
- Jianguo Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Tingyin Lu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuefei Chu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuejun Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Yantai Fushan Center for Animal Disease Control and PreventionYantaiChina
| | - Wenzhen Fu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yu‐Feng Zhou
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
6
|
Weng Z, Zeng F, Wang M, Guo S, Tang Z, Itagaki K, Lin Y, Shen X, Cao Y, Duan JA, Wang F. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J Adv Res 2024; 57:197-212. [PMID: 37137428 PMCID: PMC10918359 DOI: 10.1016/j.jare.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zebin Weng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Minxin Wang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhijuan Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kiyoshi Itagaki
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yajuan Lin
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaqi Cao
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Ao Duan
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Campbell MJ, Beenken KE, Spencer HJ, Jayana B, Hester H, Sahukhal GS, Elasri MO, Smeltzer MS. Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiol Spectr 2024; 12:e0314723. [PMID: 38059629 PMCID: PMC10782960 DOI: 10.1128/spectrum.03147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Because biofilm formation is such a problematic feature of Staphylococcus aureus infections, much effort has been put into identifying biofilm inhibitors. However, the results observed with these compounds are often reported in isolation, and the methods used to assess biofilm formation vary between labs, making it impossible to assess relative efficacy and prioritize among these putative inhibitors for further study. The studies we report address this issue by directly comparing putative biofilm inhibitors using a consistent in vitro assay. This assay was previously shown to maximize biofilm formation, and the results observed with this assay have been proven to be relevant in vivo. Of the 19 compounds compared using this method, many had no impact on biofilm formation under these conditions. Indeed, only one proved effective at limiting biofilm formation without also inhibiting growth.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bina Jayana
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hana Hester
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
8
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Peng Z, Lu J, Liu K, Xie L, Wang Y, Cai C, Yang D, Xi J, Yan C, Li X, Shi M. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2023; 37:5639-5656. [PMID: 37690821 DOI: 10.1002/ptr.8011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.
Collapse
Affiliation(s)
- Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
11
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
12
|
Woo S, Marquez L, Crandall WJ, Risener CJ, Quave CL. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep 2023; 40:1271-1290. [PMID: 37439502 PMCID: PMC10472255 DOI: 10.1039/d2np00090c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: 2018 to 2022Antimicrobial resistance (AMR) poses a significant global health threat. There is a rising demand for innovative drug scaffolds and new targets to combat multidrug-resistant bacteria. Before the advent of antibiotics, infections were treated with plants chosen from traditional medicine practices. Of Earth's 374 000 plant species, approximately 9% have been used medicinally, but most species remain to be investigated. This review illuminates discoveries of antimicrobial natural products from plants covering 2018 to 2022. It highlights plant-derived natural products with antibacterial, antivirulence, and antibiofilm activity documented in lab studies. Additionally, this review examines the development of novel derivatives from well-studied parent natural products, as natural product derivatives have often served as scaffolds for anti-infective agents.
Collapse
Affiliation(s)
- Sunmin Woo
- Center for the Study of Human Health, Emory University, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - William J Crandall
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, USA
- Department of Dermatology, Emory University School of Medicine, USA.
| |
Collapse
|
13
|
Kong H, Qin S, Yan D, Shen B, Zhang T, Wang M, Li S, Ampomah-Wireko M, Bai M, Zhang E, Cai J. Development of Aromatic-Linked Diamino Acid Antimicrobial Peptide Mimics with Low Hemolytic Toxicity and Excellent Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2023. [PMID: 37192339 DOI: 10.1021/acs.jmedchem.2c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have become one of the biggest threats to public health. To develop new antibacterial agents against MRSA, a series of diamino acid compounds with aromatic nuclei linkers were designed and synthesized. Compound 8j, which exhibited low hemolytic toxicity and the best selectivity against S. aureus (SI > 2000), showed good activity against clinical MRSA isolates (MIC = 0.5-2 μg/mL). Compound 8j was able to quickly kill bacteria without inducing bacterial resistance. A mechanistic study and transcriptome analysis revealed that compound 8j can act on phosphatidylglycerol and induce the accumulation of endogenous reactive oxygen species, which can destroy bacterial membranes. Importantly, compound 8j achieved a 2.75 log reduction of MRSA count at 10 mg/kg/d in a mouse subcutaneous infection model. These findings suggested that compound 8j had the potential to be an antibacterial agent against MRSA.
Collapse
Affiliation(s)
- Hongtao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Dachao Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Boyuan Shen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Sen Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Mengmeng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
14
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
15
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
16
|
Ma Q, Wang G, Li N, Wang X, Kang X, Mao Y, Wang G. Insights into the Effects and Mechanism of Andrographolide-Mediated Recovery of Susceptibility of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Microbiol Spectr 2023; 11:e0297822. [PMID: 36602386 PMCID: PMC9927479 DOI: 10.1128/spectrum.02978-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
The frequent resistance associated with β-lactam antibiotics and the high frequency of mutations in β-lactamases constitute a major clinical challenge that can no longer be ignored. Andrographolide (AP), a natural active compound, has been shown to restore susceptibility to β-lactam antibiotics. Fluorescence quenching and molecular simulation showed that AP quenched the intrinsic fluorescence of β-lactamase BlaZ and stably bound to the residues in the catalytic cavity of BlaZ. Of note, AP was found to reduce the stability of the cell wall (CW) in methicillin-resistant Staphylococcus aureus (MRSA), and in combination with penicillin G (PEN), it significantly induced CW roughness and dispersion and even caused its disintegration, while the same concentration of PEN did not. In addition, transcriptome sequencing revealed that AP induced a significant stress response and increased peptidoglycan (PG) synthesis but disrupted its cross-linking, and it repressed the expression of critical genes such as mecA, blaZ, and sarA. We also validated these findings by quantitative reverse transcription-PCR (qRT-PCR). Association analysis using the GEO database showed that the alterations caused by AP were similar to those caused by mutations in the sarA gene. In summary, AP was able to restore the susceptibility of MRSA to β-lactam antibiotics, mainly by inhibiting the β-lactamase BlaZ, by downregulating the expression of critical resistance genes such as mecA and blaZ, and by disrupting CW homeostasis. In addition, restoration of susceptibility to antibiotics could be achieved by inhibiting the global regulator SarA, providing an effective solution to alleviate the problem of bacterial resistance. IMPORTANCE Increasingly, alternatives to antibiotics are being used to mitigate the rapid onset and development of bacterial resistance, and the combination of natural compounds with traditional antibiotics has become an effective therapeutic strategy. Therefore, we attempted to discover more mechanisms to restore susceptibility and effective dosing strategies. Andrographolide (AP), as a natural active ingredient, can mediate recovery of susceptibility of MRSA to β-lactam antibiotics. AP bound stably to the β-lactamase BlaZ and impaired its hydrolytic activity. Notably, AP was able to downregulate the expression of critical resistance genes such as mecA, blaZ, and sarA. Meanwhile, it disrupted the CW cross-linking and homeostasis, while the same concentration of penicillin could not. The multiple inhibitory effect of AP resensitizes intrinsically resistant bacteria to β-lactam antibiotics, effectively prolonging the use cycle of these antibiotics and providing an effective solution to reduce the dosage of antibiotics and providing a theoretical reference for the prevention and control of MRSA.
Collapse
Affiliation(s)
- Qiang Ma
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guilai Wang
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia, China
| | - Na Li
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xin Wang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xinyun Kang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yanni Mao
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guiqin Wang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
17
|
Antibacterial Activity of an FtsZ Inhibitor Celastrol and Its Synergistic Effect with Vancomycin against Enterococci In Vitro and In Vivo. Microbiol Spectr 2023; 11:e0369922. [PMID: 36622182 PMCID: PMC9927571 DOI: 10.1128/spectrum.03699-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enterococci can cause various infectious diseases, including urinary tract infection, wound infection, and life-threatening endocarditis and meningitis. The emergence and transmission of vancomycin-resistant enterococci (VRE) have presented a challenge to clinical treatment. There is an urgent need to develop new strategies to fight against this pathogen. This study investigated the antibacterial and anti-biofilm activity of celastrol (CEL), a natural product originating from Tripterygium wilfordii Hook F, against enterococci, and its adjuvant capacity of restoring the susceptibility of VRE to vancomycin in vitro and in vivo. CEL inhibited all enterococcus strains tested, with MICs ranging from 0.5 to 4 μg/mL. More than 50% of biofilm was eliminated by CEL at 16 μg/mL after 24 h of exposure. The combination of CEL and vancomycin showed a synergistic effect against all 23 strains tested in checkerboard assays. The combination of sub-MIC levels of CEL and vancomycin showed a synergistic effect in a time-kill assay and exhibited significant protective efficacy in Galleria mellonella larval infection model compared with either drug used alone. The underlying mechanisms of CEL were explored by conducting biomolecular binding interactions and an enzyme inhibition assay of CEL on bacterial cell-division protein FtsZ. CEL presented strong binding and suppression ability to FtsZ, with Kd and IC50 values of 2.454 μM and 1.04 ± 0.17 μg/mL, respectively. CEL exhibits a significant antibacterial and synergic activity against VRE in vitro and in vivo and has the potential to be a new antibacterial agent or adjuvant to vancomycin as a therapeutic option in combating VRE. IMPORTANCE The emergence and transmission of VRE pose a significant medical and public health challenge. CEL, well-known for a wide range of biological activities, has not previously been investigated for its synergistic effect with vancomycin against VRE. In the present study, CEL exhibited antibacterial activity against enterococci, including VRE strains, and restored the activity of vancomycin against VRE in vitro and in vivo. Hence, CEL has the potential to be a new antibacterial adjuvant to vancomycin and could provide a promising therapeutic option in combating VRE.
Collapse
|
18
|
(+)/(-)-Yanhusamides A-C, three pairs of unprecedented benzylisoquinoline-pyrrole hetero-dimeric alkaloid enantiomers from Corydalis yanhusuo. Acta Pharm Sin B 2023; 13:754-764. [PMID: 36873186 PMCID: PMC9979263 DOI: 10.1016/j.apsb.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A chemical investigation on the aqueous extract of Corydalis yanhusuo tubers led to the isolation and structural elucidation of three pairs of trace enantiomeric hetero-dimeric alkaloids, (+)/(-)-yanhusamides A-C (1-3), featuring an unprecedented 3,8-diazatricylco[5.2.2.02,6]undecane-8,10-diene bridged system. Their structures were exhaustively characterized by X-ray diffraction, comprehensive spectroscopic data analysis, and computational methods. Guided by the hypothetical biosynthetic pathway for 1-3, a gram-scale biomimetic synthesis of (±)-1 was achieved in 3 steps using photoenolization/Diels-Alder (PEDA) [4+2] cycloaddition. Compounds 1‒3 exhibited potent inhibition of NO production induced by LPS in RAW264.7 macrophages. The in vivo assay showed that oral administration of 30 mg/kg of (±)-1 attenuated the severity of rat adjuvant-induced arthritis (AIA). Additionally, (±)-1 induced a dose-dependent antinociceptive effect in the acetic acid-induced mice writhing assay.
Collapse
|
19
|
Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121714. [PMID: 36551372 PMCID: PMC9774152 DOI: 10.3390/antibiotics11121714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.
Collapse
|
20
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
21
|
Choudhary N, Collignon TE, Tewari D, Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154356. [PMID: 35985181 DOI: 10.1016/j.phymed.2022.154356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging studies indicate that hypericin has diverse pharmacological actions and exhibits potential for treatment of various types of cancer. PURPOSE The current review evaluates the pharmacological activity, associated molecular mechanism, and therapeutic application of hypericin as an anticancer agent according to the most recent state of knowledge with special emphasis on clinical trials and safety profile. METHOD This review follows The Preferred Reporting Items for Systematic Reviews criteria. Various databases, including PubMed, Scopus and Science Direct, were used to search and collect relevant literature. The major keywords used included the following: cancer, distribution, property, signaling pathway, pharmacological effect, treatment, prevention, in vitro and in vivo studies, toxicity, bioavailability, and clinical trials. RESULTS One hundred three articles met the established inclusion and exclusion criteria. Hypericin has shown anticancer activity against the expansion of several cell types including breast cancer, cervical cancer, colorectal cancer, colon cancer, hepatocellular carcinoma, stomach carcinoma, leukemia, lung cancer, melanoma, and glioblastoma cancer. Hypericin exerts its anticancer activity by inhibiting pro-inflammatory mediators, endothelial growth factor, fibroblast growth factor, cell adhesion, angiogenesis, and mitochondrial thioredoxin. It has also been shown to cause an increase in the levels of caspase-3 and caspase-4, arrest the cell cycle at metaphase leading to cancer cell apoptosis, and affect various protein and gene expression patterns. CONCLUSION Hypericin exhibits significant inhibitory activity against various types of in vitro and in vivo cancer models. However, well-designed, high quality, large-scale and multi-center randomized clinical studies are required to establish the safety and clinical utility of hypericin in cancer patients.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab 151101, India
| | - Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
22
|
Singh D, Chauhan N, Koli M, Nayak SK, Subramanian M. Dimer stilbene, a resveratrol analogue exhibits synergy with antibiotics that target protein synthesis in eradicating Staphylococcus aureus infection. Biochimie 2022; 201:128-138. [PMID: 35772578 DOI: 10.1016/j.biochi.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance has become a major hurdle for successful treatment of several infections resulting in increased length of stay in hospitals and mortality. One of the notorious pathogens that wreaks havoc due to antibiotic resistance is Staphylococcus aureus. There is an urgent need to discover and understand the function of newer molecules that could serve in the arsenal to combat these bacteria. Our recent work identified important structural determinants of stilbenes that could aid in better antibacterial activity and identified Dimer stilbene (DS) as a potent inhibitor of S. aureus. Contrasting reports exist in literature about the combination of stilbenes with different antibiotics. In this study we evaluated the ability of DS to synergize with different classes of antibiotics. A screen revealed DS exhibited positive co-operativity with antibiotics that target protein synthesis. DS exhibited synergy with the aminoglycoside kanamycin and additive effect with tetracycline. Resistance generation to DS was null while to that of kanamycin was rapid. Kanamycin resistant S. aureus was equally susceptible to DS compared to wildtype. The efficacy of DS against clinical isolates susceptible and resistant to methicillin were similar. Laboratory generated kanamycin resistant strain and clinical strains were sensitized to kanamycin by pre-treatment with DS. DS cured S. aureus infection in mice as a standalone drug as well as in conjunction with kanamycin. Synergy with kanamycin was also observed in other stilbenes apart from DS. Thus our study reveals stilbenes could be exploited towards combating S. aureus infections either as standalone drugs or in combination with existing antibiotics.
Collapse
Affiliation(s)
- Deepti Singh
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Sandip Kumar Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
23
|
Li J, Feng S, Liu X, Jia X, Qiao F, Guo J, Deng S. Effects of Traditional Chinese Medicine and its Active Ingredients on Drug-Resistant Bacteria. Front Pharmacol 2022; 13:837907. [PMID: 35721131 PMCID: PMC9204478 DOI: 10.3389/fphar.2022.837907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing and widespread application of antibacterial drugs makes antibiotic resistance a prominent and growing concern in clinical practice. The emergence of multidrug-resistant bacteria presents a global threat. However, the development and use of novel antibacterial agents involves time-consuming and costly challenges that may lead to yet further drug resistance. More recently, researchers have turned to traditional Chinese medicine to stem the rise of antibiotic resistance in pathogens. Many studies have shown traditional Chinese medicines to have significant bacteriostatic and bactericidal effects, with the advantage of low drug resistance. Some of which when combined with antibiotics, have also demonstrated antibacterial activity by synergistic effect. Traditional Chinese medicine has a variety of active components, including flavonoids, alkaloids, phenols, and quinones, which can inhibit the growth of drug-resistant bacteria and be used in combination with a variety of antibiotics to treat various drug-resistant bacterial infections. We reviewed the interaction between the active ingredients of traditional Chinese medicines and antibiotic-resistant bacteria. At present, flavonoids and alkaloids are the active ingredients that have been most widely studied, with significant synergistic activity demonstrated when used in combination with antibiotics against drug-resistant bacteria. The reviewed studies show that traditional Chinese medicine and its active ingredients have antimicrobial activity on antibiotic-resistant bacteria, which may enhance the susceptibility of antibiotic-resistant bacteria, potentially reduce the required dosage of antibacterial agents and the rate of drug resistance. Our results provide direction for finding and developing alternative methods to counteract drug-resistant bacteria, offering a new therapeutic strategy for tackling antibiotic resistance.
Collapse
Affiliation(s)
- Jimin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Shanshan Feng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
24
|
Kalelkar PP, Moustafa DA, Riddick M, Goldberg JB, McCarty NA, García AJ. Bacteriophage-Loaded Poly(lactic-co-glycolic acid) Microparticles Mitigate Staphylococcus aureus Infection and Cocultures of Staphylococcus aureus and Pseudomonas aeruginosa. Adv Healthc Mater 2022; 11:e2102539. [PMID: 34957709 PMCID: PMC9117426 DOI: 10.1002/adhm.202102539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Indexed: 01/04/2023]
Abstract
Lung infections caused by Gram-positive Staphylococcus aureus (S. aureus) and coinfections caused by S. aureus and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) are challenging to treat, especially with the rise in the number of antibiotic-resistant strains of these pathogens. Bacteriophage (phage) are bacteria-specific viruses that can infect and lyse bacteria, providing a potentially effective therapy for bacterial infections. However, the development of bacteriophage therapy is impeded by limited suitable biomaterials that can facilitate effective delivery of phage to the lung. Here, the ability of porous microparticles engineered from poly(lactic-co-glycolic acid) (PLGA), a biodegradable polyester, to effectively deliver phage to the lung, is demonstrated. The phage-loaded microparticles (phage-MPs) display potent antimicrobial efficacy against various strains of S. aureus in vitro and in vivo, and arrest the growth of a clinical isolate of S. aureus in the presence of sputum supernatant obtained from cystic fibrosis patients. Moreover, phage-MPs efficiently mitigate in vitro cocultures of S. aureus and P. aeruginosa and display excellent cytocompatibility with human lung epithelial cells. Therefore, phage-MPs represents a promising therapy to treat bacterial lung infection.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Dina A. Moustafa
- Department of Pediatrics and Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airway Diseases Research Emory University School of Medicine 1510 Clifton Road NE Atlanta GA 30322 USA
| | - Milan Riddick
- Wallace H. Coulter Department of Biomedical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Joanna B. Goldberg
- Department of Pediatrics and Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airway Diseases Research Emory University School of Medicine 1510 Clifton Road NE Atlanta GA 30322 USA
| | - Nael A. McCarty
- Department of Pediatrics and Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research Emory University School of Medicine 2015 Uppergate Drive Atlanta GA 30322 USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| |
Collapse
|
25
|
Xia S, Ma L, Wang G, Yang J, Zhang M, Wang X, Su J, Xie M. In vitro Antimicrobial Activity and the Mechanism of Berberine Against Methicillin-Resistant Staphylococcus aureus Isolated from Bloodstream Infection Patients. Infect Drug Resist 2022; 15:1933-1944. [PMID: 35469308 PMCID: PMC9034846 DOI: 10.2147/idr.s357077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To investigate the antimicrobial activity of berberine and the mechanism by which it combats methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bloodstream infections. Methods Fifteen clinical MRSA isolates were collected, and their Multi-locus Sequence Types (MLST) were examined. The minimum inhibitory concentration (MIC) and combined antibacterial activity of berberine alone, and when combined with clindamycin and rifampicin separately, were determined. Additionally, two MRSA strains (ST239 and ST5) were selected to perform the time-killing assay and biofilm formation test. Cell wall alterations and cell membrane integrity were measured by confocal laser scanning microscopy (CLSM) and electron microscopy to assess the influence on cell morphology. Results Our data showed berberine was effective against MRSA at MIC values varying from 256 to 64 mg*L−1 for different MLST types. Berberine alone, and when combined with clindamycin and rifampicin separately, displayed excellent antibacterial activity which reduced the bacterial counts by 2lgCFU*mL within 24h and significantly weakened biofilm formation compared with control strain. Additionally, bacterial cytological profiling indicates that berberine destroyed the structure of the cell walls, membrane integrity and further changed the cell morphology with concentration increased. Conclusion In our study, berberine has excellent anti-MRSA activities and has synergistic antibacterial property when combined with clindamycin and rifamycin separately, and the mechanism of activities involves the destruction of cell wall and membrane.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Liyan Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Guoxing Wang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jie Yang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Meiying Zhang
- Department of Emergency Center, Peking University First Hospital, Peking University, Beijing, 100050, People’s Republic of China
| | - Xuechen Wang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Jianrong Su, Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing, 100050, People’s Republic of China, Email
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Miaorong Xie, Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing, 100050, People’s Republic of China, Email
| |
Collapse
|
26
|
Dorcheh FA, Balmeh N, Sanjari S. In-silico investigation of antibacterial herbal compounds in order to find new antibiotic against Staphylococcus aureus and its resistant subtypes. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
28
|
Ultra-short-course and intermittent TB47-containing oral regimens produce stable cure against Buruli ulcer in a murine model and prevent the emergence of resistance for Mycobacterium ulcerans. Acta Pharm Sin B 2021; 11:738-749. [PMID: 33777679 PMCID: PMC7982501 DOI: 10.1016/j.apsb.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with rifampin-streptomycin or rifampin-clarithromycin daily for 8 weeks recommended by World Health Organization (WHO). These options are lengthy with severe side effects. A new anti-tuberculosis drug, TB47, targeting QcrB in cytochrome bc1:aa3 complex is being developed in China. TB47-containing regimens were evaluated in a well-established murine model using an autoluminescent M. ulcerans strain. High-level TB47-resistant spontaneous M. ulcerans mutants were selected and their qcrB genes were sequenced. The in vivo activities of TB47 against both low-level and high-level TB47-resistant mutants were tested in BU murine model. Here, we show that TB47-containing oral 3-drug regimens can completely cure BU in ≤2 weeks for daily use or in ≤3 weeks given twice per week (6 doses in total). All high-level TB47-resistant mutants could only be selected using the low-level mutants which were still sensitive to TB47 in mice. This is the first report of double mutations in QcrB in mycobacteria. In summary, TB47-containing regimens have promise to cure BU highly effectively and prevent the emergence of drug resistance. Novel QcrB mutations found here may guide the potential clinical molecular diagnosis of resistance and the discovery of new drugs against the high-level resistant mutants.
Collapse
|