1
|
Wei Y, Zhou K, Wang C, Du X, Wang Z, Chen G, Zhang H, Hui X. Exosomal miR-142-3p from M1-polarized macrophages suppresses cell growth and immune escape in glioblastoma through regulating HMGB1-mediated PD-1/PD-L1 checkpoint. J Neurochem 2024. [PMID: 39289038 DOI: 10.1111/jnc.16224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma (GBM) is one of the most prevalent cancerous brain tumors. Former studies have reported that exosomes derived from M1-polarized macrophages (M1 exosomes) inhibit tumor occurrence and development through delivery of tumor suppressor genes. Also, microRNA-142-3p (miR-142-3p) has been verified to function as a tumor suppressor. GBM cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay; cell apoptosis was determined by flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mechanism investigations were conducted for analyzing the molecular mechanism by which miR-142-3p and M1 exosomes affect GBM progression. Upregulation of miR-142-3p expression was detected in M1-polarized macrophages and M1 exosomes. M1 exosomes inhibit GBM cell proliferation and trigger cell apoptosis. Functionally, miR-142-3p silencing promotes the proliferation and inhibits the apoptosis of GBM cells treated with M1 exosomes. As for molecular mechanism, miR-142-3p inhibits GBM cell growth via targeting high-mobility group box 1 (HMGB1). In addition, miR-142-3p/HMGB1 axis affects GBM cell immune escape through modulation of programmed death-1/programmed death ligand-1 (PD-1/PD-L1) checkpoint. Our study demonstrated that exosomal miR-142-3p from M1-polarized macrophages suppresses cell growth and immune escape in GBM through regulating HMGB1-mediated PD-1/PD-L1 checkpoint.
Collapse
Affiliation(s)
- Yigong Wei
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhou
- Department of Neurosurgery, Jinyang Hospital Affiliated to Guizhou Medical University (Guiyang Second People's Hospital), Guiyang, China
| | - Cheng Wang
- Department of Neurosurgery, Jinyang Hospital Affiliated to Guizhou Medical University (Guiyang Second People's Hospital), Guiyang, China
| | - Xiaolin Du
- Department of Neurosurgery, Jinyang Hospital Affiliated to Guizhou Medical University (Guiyang Second People's Hospital), Guiyang, China
| | - Zhengdi Wang
- Department of Neurosurgery, Jinyang Hospital Affiliated to Guizhou Medical University (Guiyang Second People's Hospital), Guiyang, China
| | - Guangtang Chen
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Li Y, Yin Y, Zhang T, Wang J, Guo Z, Li Y, Zhao Y, Qin R, He Q. A comprehensive landscape analysis of autophagy in cancer development and drug resistance. Front Immunol 2024; 15:1412781. [PMID: 39253092 PMCID: PMC11381251 DOI: 10.3389/fimmu.2024.1412781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Background Autophagy plays important roles in cancer progression and therapeutic resistance, and the autophagy underlying the tumor pathogenesis and further mechanisms of chemoresistance emergence remains unknown. Methods In this study, via the single-sample gene set enrichment analysis (ssGSEA) method, an autophagy 45-gene list was identified to evaluate samples' autophagy activity, verified through six GEO datasets with a confirmed autophagy phenotype. It was further utilized to distinguish tumors into autophagy score-high and score-low subtypes, and analyze their transcriptome landscapes, including survival analysis, correlation analysis of autophagy- and resistance-related genes, biological functional enrichment, and immune- and hypoxia-related and genomic heterogeneity comparison, in TCGA pan-cancer datasets. Furthermore, we performed an analysis of autophagy status in breast cancer chemoresistance combined with multiple GEO datasets and in vitro experiments to validate the mechanisms of potential anticancer drugs for reversing chemoresistance, including CCK-8 cell viability assays, RT-qPCR, and immunofluorescence. Results The 45-gene list was used to identify autophagy score-high and score-low subtypes and further analyze their multi-dimensional features. We demonstrated that cancer autophagy status correlated with significantly different prognoses, molecular alterations, biological process activations, immunocyte infiltrations, hypoxia statuses, and specific mutational processes. The autophagy score-low subtype displayed a more favorable prognosis compared with the score-high subtype, associated with their immune-activated features, manifested as high immunocyte infiltration, including high CD8+T, Tfh, Treg, NK cells, and tumor-associated macrophages M1/M2. The autophagy score-low subtype also showed a high hypoxia score, and hypoxic tumors showed a significantly differential prognosis in different autophagy statuses. Therefore, "double-edged" cell fates triggered by autophagy might be closely correlated with the immune microenvironment and hypoxia induction. Results demonstrated that dysregulated autophagy was involved in many cancers and their therapeutic resistance and that the autophagy was induced by the resistance-reversing drug response, in five breast cancer GEO datasets and validated by in vitro experiments. In vitro, dihydroartemisinin and artesunate could reverse breast cancer doxorubicin resistance, through inducing autophagy via upregulating LC3B and ATG7. Conclusion Our study provided a comprehensive landscape of the autophagy-related molecular and tumor microenvironment patterns for cancer progression and resistance, and highlighted the promising potential of drug-induced autophagy in the activation of drug sensitivity and reversal of resistance.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yin
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhua Wang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyun Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Zhao
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihong Qin
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
4
|
Liang L, Peng W, Qin A, Zhang J, Chen R, Zhou D, Zhang X, Zhou N, Yu XY, Zhang L. Intracellularly Synthesized Artificial Exosome Treats Acute Lung Injury. ACS NANO 2024. [PMID: 39087239 DOI: 10.1021/acsnano.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), induce high morbidity and mortality rates, which challenge the present approaches for the treatment of ALI/ARDS. The clinically used photosensitizer verteporfin (VER) exhibits great potential in the treatment of acute lung injury and acute respiratory distress syndrome (ALI/ARDS) by regulating macrophage polarization and reducing inflammation. Nevertheless, its hydrophobic characteristics, nonspecificity, and constrained bioavailability hinder its therapeutic efficacy. In this work, we developed a type of VER-cored artificial exosome (EVM), which was produced by using mesoporous silica nanoparticles (MSNs) to load VER, followed by the exocytosis of internalized VER-MSNs from mouse bone marrow-derived mesenchymal stem cells (mBMSCs) without further modification. Both in vitro and in vivo assessments confirmed the powerful anti-inflammation induced by EVM. EVM also showed significant higher accumulation to inflammatory lungs compared with healthy ones, which was beneficial to the treatment of ALI/ARDS. EVM improved pulmonary function, attenuated lung injury, and reduced mortality in ALI mice with high levels of biocompatibility, exhibiting a 5-fold higher survival rate than the control. This type of artificial exosome emitted near-infrared light in the presence of laser activation, which endowed EVM with trackable ability both in vitro and in vivo. Our work developed a type of clinically used photosensitizer-loaded artificial exosome with membrane integrity and traceability. To the best of our knowledge, this kind of intracellularly synthesized artificial exosome was developed and showed great potential in ALI/ARDS therapy.
Collapse
Affiliation(s)
- Lu Liang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Weijie Peng
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Aiping Qin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jiandong Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rongqi Chen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Dazhi Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Lingmin Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
5
|
Dehghanian F, Ghahnavieh LE, Nilchi AN, Khalilian S, Joonbakhsh R. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk. Gene 2024; 916:148424. [PMID: 38588933 DOI: 10.1016/j.gene.2024.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Amirhossein Naghsh Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Rezvan Joonbakhsh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| |
Collapse
|
6
|
Tong P, Zhang J, Liu S, An J, Jing G, Ma L, Wang R, Wang Z. miRNA-142-3p aggravates hydrogen peroxide-induced human umbilical vein endothelial cell premature senescence by targeting SIRT1. Biosci Rep 2024; 44:BSR20231511. [PMID: 38663003 PMCID: PMC11096645 DOI: 10.1042/bsr20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular endothelial cell premature senescence plays an important part in stroke. Many microRNAs (miRNAs) are known to be involved in the pathological process of vascular endothelial cell premature senescence. The present study aimed to investigate the mechanism of hydrogen peroxide (H2O2)-induced premature senescence in human umbilical vein endothelial cells (HUVECs) and effect of miR-142-3p on hydrogen peroxide (H2O2)-induced premature senescence. HUVECs were exposed to H2O2 to establish a model premature senescence in endothelial cells. CCK-8 assay was performed to detect cell viability. Senescence-associated β-galactosidase staining assay and senescence-related proteins p16 and p21 were used to detect changes in the degree of cell senescence. RT-qPCR and Western blot were conducted to measure mRNA and protein levels, respectively. The scratch wound-healing assay, transwell assay, and EdU assay were performed to evaluate the ability of migration and proliferation, respectively. miRNA-142-3p and silencing information regulator 2 related enzyme 1 (SIRT1) binding was verified using Targetscan software and a dual-luciferase assay. We found that miRNA-142-3p is abnormally up-regulated in HUVECs treated with H2O2. Functionally, miRNA-142-3p inhibition may mitigate the degree of HUVEC senescence and improve HUVEC migration and proliferation. Mechanistically, SIRT1 was validated to be targeted by miRNA-142-3p in HUVECs. Moreover, SIRT1 inhibition reversed the effects of miRNA-142-3p inhibition on senescent HUVECs exposed to H2O2. To our knowledge, this is the first study to show that miRNA-142-3p ameliorates H2O2-induced HUVECs premature senescence by targeting SIRT1 and may shed light on the role of the miR-142-3p/SIRT1 axis in stroke treatment.
Collapse
Affiliation(s)
- Pengfei Tong
- Department of Neurosurgery, The Third People’s Hospital of Henan Province, Zhengzhou 450006, China
| | - Jingke Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiyang An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gehan Jing
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Laifeng Ma
- Department of Neurosurgery, The Third People’s Hospital of Henan Province, Zhengzhou 450006, China
| | - Ruihua Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Li Y, Zhao K, Hu Y, Yang F, Li P, Liu Y. MicroRNA-142-3p alleviated high salt-induced cardiac fibrosis via downregulating optineurin-mediated mitophagy. iScience 2024; 27:109764. [PMID: 38726368 PMCID: PMC11079474 DOI: 10.1016/j.isci.2024.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
High salt can induce cardiac damage. The aim of this present study was to explore the effect and the mechanism of microRNA (miR)-142-3p on the cardiac fibrosis induced by high salt. Rats received high salt diet to induce cardiac fibrosis in vivo, and neonatal rat cardiac fibroblasts (NRCF) treated with sodium chloride (NaCl) to induce fibrosis in vitro. The fibrosis and mitochondrial autophagy levels were increased the heart and NRCF treated with NaCl, which were alleviated by miR-142-3p upregulation. The fibrosis and mitochondrial autophagy levels were elevated in NRCF after treating with miR-142-3p antagomiR. Optineurin (OPTN) expression was increased in the mitochondria of NRCF induced by NaCl, which was attenuated by miR-142-3p agomiR. OPTN downregulation inhibited the increases of fibrosis and mitochondrial autophagy levels induced by NaCl in NRCF. These results miR-142-3p could alleviate high salt-induced cardiac fibrosis via downregulation of OPTN to reduce mitophagy.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cardiology, The People’s Hospital of Qijiang District, Qijiang, Chongqin, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifang Hu
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fengze Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No.300 Guang Zhou Road, Nanjing, Jiangsu 210029, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
8
|
Lv G, Yang M, Gai K, Jia Q, Wang Z, Wang B, Li X. Multiple functions of HMGB1 in cancer. Front Oncol 2024; 14:1384109. [PMID: 38725632 PMCID: PMC11079206 DOI: 10.3389/fonc.2024.1384109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein with a dual role in cancer, acting as an oncogene and a tumor suppressor. This protein regulates nucleosomal structure, DNA damage repair, and genomic stability within the cell, while also playing a role in immune cell functions. This review comprehensively evaluates the biological and clinical significance of HMGB1 in cancer, including its involvement in cell death and survival, its potential as a therapeutic target and cancer biomarker, and as a prosurvival signal for the remaining cells after exposure to cytotoxic anticancer treatments. We highlight the need for a better understanding of the cellular markers and mechanisms involved in the involvement of HMGB1in cancer, and aim to provide a deeper understanding of its role in cancer progression.
Collapse
Affiliation(s)
- Guangyao Lv
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Menglin Yang
- Quality Management Department, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Keke Gai
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiong Jia
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhenzhen Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Bin Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xueying Li
- School of Health, Binzhou Polytechnic, Binzhou, China
| |
Collapse
|
9
|
Zareifar P, Ahmed HM, Ghaderi P, Farahmand Y, Rahnama N, Esbati R, Moradi A, Yazdani O, Sadeghipour Y. miR-142-3p/5p role in cancer: From epigenetic regulation to immunomodulation. Cell Biochem Funct 2024; 42:e3931. [PMID: 38379239 DOI: 10.1002/cbf.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs (miRNAs) play critical roles in cancer pathobiology, acting as regulators of gene expression and pivotal drivers of tumorigenesis. It is believed that miRNAs act through canonical mechanisms, involving the binding of mature miRNAs to target messenger RNAs (mRNAs) and subsequent repression of protein translation or degradation of target mRNAs. miR-142-3p/5p has been extensively studied and established as a key regulator in various malignancies. Recent discoveries have revealed miR-142-3p/5p serve as either oncogene or tumor suppressor in cancer. By targeting epigenetic factor and cancer-related signaling pathway, miR-142-3p/5p can regulate wide range of downstream genes. The immune modulatory role of miR-142-3p/5p has been shown in various cancers, which provides significant insight into immunosuppression and tumor escape from the immune response. Exosomes with miR-142-3p/5p facilitate cell communication and can affect cancer cell behavior, offering potential therapeutic, and diagnosis applications in cancer therapy. In this review, for the first time, we comprehensively summarize the current knowledge regarding mentioned functions of miR-142-3p/5p in cancer pathobiology.
Collapse
Affiliation(s)
- Parisa Zareifar
- Golestan University of Medical Science, Gorgan, Golestan, Iran
| | | | - Pouya Ghaderi
- Department of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Wang Z, Wei B, Ma S. EGR1/ LINC00839/SOX5 axis modulates migration, invasion and Gemcitabine resistance of bladder cancer cells. Cancer Biol Ther 2023; 24:2270106. [PMID: 37862152 PMCID: PMC10591773 DOI: 10.1080/15384047.2023.2270106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common malignant tumors of the urinary system, and its incidence is increasing worldwide. However, the underlying mechanisms that trigger migration, invasion and chemotherapy resistance are unclear. RESULTS Bioinformatics analysis of bladder cancer cohort indicated that LINC00839 is deregulated in bladder cancer. LINC00839 was validated and highly expressed in bladder cancer patients and cell lines. In addition, LINC00839 induced the migration, invasion and Gemcitabine resistance of bladder cancer cells. We identified that the transcription factor EGR1 directly repressed LINC00839 and thereby suppressed the migration and invasion of bladder cancer cells. Furthermore, LINC00839 interacted with miR-142, which subsequently regulated the expression of SOX5, a well-studied oncogene and targeted by miR-142. In addition, EGR1 served as a suppressive transcription factor of SOX5. Therefore, EGR1 directly or indirectly regulates SOX5 via LINC00839/miR-142 axis. LINC00839 induced Gemcitabine resistance by promoting autophagy. CONCLUSIONS EGR1, LINC00839/miR-142 and SOX5 form a coherent feed-forward loop that modulates the migration, invasion and Gemcitabine resistance of bladder cancer.
Collapse
Affiliation(s)
- Zunxian Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Oncology Comprehensive Treatment, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Bo Wei
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shuxia Ma
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
12
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
14
|
Jiang Y, Liu Y, Zhang Y, Ouyang J, Feng Y, Li S, Wang J, Zhang C, Tan L, Zhong J, Zou L. MicroRNA-142-3P suppresses the progression of papillary thyroid carcinoma by targeting FN1 and inactivating FAK/ERK/PI3K signaling. Cell Signal 2023:110792. [PMID: 37406787 DOI: 10.1016/j.cellsig.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Yufei Jiang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China; Aculty of Healty Science, University of Macau, Macau 999078, People's Republic of China
| | - Yarong Liu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yiyuan Zhang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Shumei Li
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jingjing Wang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Chaojie Zhang
- Department of Papillary Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Lihong Tan
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Jie Zhong
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| |
Collapse
|
15
|
Liang L, Xu W, Shen A, Fu X, Cen H, Wang S, Lin Z, Zhang L, Lin F, Zhang X, Zhou N, Chang J, Chen Z, Li C, Yu X. Inhibition of YAP1 activity ameliorates acute lung injury through promotion of M2 macrophage polarization. MedComm (Beijing) 2023; 4:e293. [PMID: 37287755 PMCID: PMC10242261 DOI: 10.1002/mco2.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
The balance of M1/M2 macrophage polarization plays an important role in regulating inflammation during acute lung injury (ALI). Yes-associated protein (YAP1) is a key protein in the Hippo-YAP1 signaling pathway and is involved in macrophage polarization. We aimed to determine the role of YAP1 in pulmonary inflammation following ALI and regulation of M1/M2 polarization. Pulmonary inflammation and injury with upregulation of YAP1 were observed in lipopolysaccharide (LPS)-induced ALI. The YAP1 inhibitor, verteporfin, attenuated pulmonary inflammation and improved lung function in ALI mice. Moreover, verteporfin promoted M2 polarization and inhibited M1 polarization in the lung tissues of ALI mice and LPS-treated bone marrow-derived macrophages (BMMs). Additionally, siRNA knockdown confirmed that silencing Yap1 decreased chemokine ligand 2 (CCL2) expression and promoted M2 polarization, whereas silencing large tumor suppressor 1 (Lats1) increased CCL2 expression and induced M1 polarization in LPS-treated BMMs. To investigate the role of inflammatory macrophages in ALI mice, we performed single-cell RNA sequencing of macrophages isolated from the lungs. Thus, verteporfin could activate the immune-inflammatory response, promote the potential of M2 macrophages, and alleviate LPS-induced ALI. Our results reveal a novel mechanism where YAP1-mediated M2 polarization alleviates ALI. Therefore, inhibition of YAP1 may be a target for the treatment of ALI.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Huiyu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Siran Wang
- Department of Preventive DentistryAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhongxiao Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyAvenida WailongTaipaMacauChina
| | - Lingmin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Fangyu Lin
- Department of OphthalmologyB5500 Clinic B1365B Clifton Road NEEmory UniversityAtlantaGeorgiaUSA
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyAvenida WailongTaipaMacauChina
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyAvenida WailongTaipaMacauChina
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesInstitute for BiotechnologyCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Chuwen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe State & NMPA Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Ke X, Yu S, Situ S, Lin Z, Yuan Y. Morroniside inhibits Beclin1-dependent autophagic death and Bax-dependent apoptosis in cardiomyocytes through repressing BCL2 phosphorylation. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00768-0. [PMID: 37155079 DOI: 10.1007/s11626-023-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Morroniside can prevent myocardial injury caused by ischemia and hypoxia, which can be used to treat acute myocardial infarction (AMI). Hypoxia can cause apoptosis and autophagic death of cardiomyocytes. Morroniside has the ability to inhibit apoptosis and autophagy. However, the relationship between Morroniside-protected cardiomyocytes and two forms of death is unclear. The effects of Morroniside on the proliferation, apoptosis level, and autophagic activity of rat cardiomyocyte line H9c2 under hypoxia were first observed. Next, the roles of Morroniside in the phosphorylation of JNK and BCL2, BCL2-Beclin1, and BCL2-Bax complexes as well as mitochondrial membrane potential in H9c2 cells were evaluated upon hypoxia. Finally, the significance of BCL2 or JNK in Morroniside-regulated autophagy, apoptosis, and proliferation in H9c2 cells was assessed by combining Morroniside and BCL2 competitive inhibitor (ABT-737) or JNK activator (Anisomycin). Our results showed that hypoxia promoted autophagy and apoptosis of H9c2 cells, and inhibited their proliferation. However, Morroniside could block the effect of hypoxia on H9c2 cells. In addition, Morroniside could inhibit JNK phosphorylation, BCL2 phosphorylation at the Ser70 and Ser87 sites, and the dissociation of BCL2-Beclin1 and BCL2-Bax complexes in H9c2 cells upon hypoxia. Moreover, the reduction of mitochondrial membrane potential in H9c2 cells caused by hypoxia was improved by Morroniside administration. Importantly, the inhibited autophagy, apoptosis, and promoted proliferation in H9c2 cells by Morroniside were reversed by the application of ABT-737 or Anisomycin. Overall, Morroniside inhibits Beclin1-dependent autophagic death and Bax-dependent apoptosis via JNK-mediated BCL2 phosphorylation, thereby improving the survival of cardiomyocytes under hypoxia.
Collapse
Affiliation(s)
- Xueping Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Shicheng Yu
- Department of Medicine, Liwan Central Hospital of Guangzhou, Guangzhou, 510145, China
| | - Shubiao Situ
- Department of Medicine, Liwan Central Hospital of Guangzhou, Guangzhou, 510145, China
| | - Zhenqian Lin
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450008, Henan, China
| | - Yiqiang Yuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Cardiology, Zheng Zhou NO.7 People's Hospital, No.17, Jingnan 5th Road, Zhengzhou Economic and Technological Development Zone, Zhengzhou, 450016, China.
| |
Collapse
|
17
|
Zhang Y, Ma S, Zhang J, Lou L, Liu W, Gao C, Miao L, Sun F, Chen W, Cao X, Wei J. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci Rep 2023; 13:5935. [PMID: 37045834 PMCID: PMC10097650 DOI: 10.1038/s41598-022-21447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/27/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs play a critical regulatory role in different cancers, but their functions in renal cell carcinoma (RCC) have not been elucidated. Reportedly, miR-142-3p is involved in the tumorigenesis and the development of RCC in vitro and is clinically correlated with the poor prognosis of RCC patients. However, the molecular target of miR-142-3p and the underlying mechanism are unclear. In this study, we found that miR-142-3p was upregulated in RCC tumor tissues and downregulated in exosomes compared to normal tissues. The expression of miR-142-3p was inversely associated with the survival of patients with kidney renal clear cell carcinoma (KIRC). RhoBTB3 was reduced in RCC, and miR-142-3p plays an inverse function with RhoBTB3 in KIRC. The direct interaction between RhoBTB3 and miR-142-3p was demonstrated by a dual luciferase reporter assay. miR-142-3p promoted metastasis in the xenograft model, and the suppression of miR-142-3p upregulated RhoBTB3 protein expression and inhibited the mRNAs and proteins of HIF1A, VEGFA, and GGT1. Also, the miR-142-3p overexpression upregulated the mRNA of HIF1A, VEGFA, and GGT1. In conclusion, miR-142-3p functions as an oncogene in RCC, especially in KIRC, by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways, which needs further exploration.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Sha Ma
- Department of Hematopathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, China
| | - Lu Lou
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wanqi Liu
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Chao Gao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Long Miao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Fanghao Sun
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wei Chen
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Xiliang Cao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| | - Jin Wei
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| |
Collapse
|
18
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
19
|
miR-142-3p improves paclitaxel sensitivity in resistant breast cancer by inhibiting autophagy through the GNB2-AKT-mTOR Pathway. Cell Signal 2023; 103:110566. [PMID: 36539001 DOI: 10.1016/j.cellsig.2022.110566] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer has overtaken lung cancer as the most prevalent cancer worldwide. The development of advanced drug resistance inhibits the efficacy of paclitaxel(PTX)as a first-line chemotherapeutic agent for breast cancer. Autophagy and microRNAs (miRNAs) play a key role in chemoresistance. This study investigated the miR-142-3p effect on PTX resistance by regulating autophagy. A PTX-resistant breast cancer cell line was constructed, and miR-142-3p and G protein beta polypeptide 2 (GNB2) were filtered out using RNA sequencing and protein microarray analysis. The study revealed that miR-142-3p expression was lower in drug-resistant cells compared parental cells. Higher miR-142-3p expression inhibited the viability, migration, and autophagic flux of drug-resistant cells, while promoting apoptosis and sensitivity to PTX treatment. Mechanistically, miR-142-3p was found to amend PTX resistance by targeting GNB2, further revealing that the knockdown of GNB2 expression could activate the AKT-mTOR pathway. This study suggests that GNB2 is an essential target for miR-142-3p to restrain autophagy, providing a new reference value for improving breast cancer PTX treatment.
Collapse
|
20
|
Abstract
SIGNIFICANCE As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. RECENT ADVANCES HMGB1 is a non-histone nuclear protein that acts as a DNA chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depends on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on tumor types and stages. CRITICAL ISSUES A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. FUTURE DIRECTIONS Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease.
Collapse
Affiliation(s)
- Ruochan Chen
- Central South University, 12570, Changsha, Hunan, China;
| | - Ju Zou
- Central South University, 12570, Changsha, Hunan, China;
| | - Rui Kang
- UTSW, 12334, Dallas, Texas, United States;
| | - Doalin Tang
- UTSW, 12334, Surgery, 5323 Harry Hines Blvd, Dallas, Texas, United States, 75390-9096;
| |
Collapse
|
21
|
MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. Breast Cancer Res 2023; 25:3. [PMID: 36635685 PMCID: PMC9837947 DOI: 10.1186/s13058-022-01599-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The chemotherapy of triple-negative breast cancer based on doxorubicin (DOX) regimens suffers from great challenges on toxicity and autophagy raised off-target. In this study, a conjugate methotrexate-polyethylene glycol (shorten as MTX-PEG)-modified CG/DMMA polymeric micelles were prepared to endue DOX tumor selectivity and synergistic autophagic flux interference to reduce systematic toxicity and to improve anti-tumor capacity. The micelles could effectively promote the accumulation of autophagosomes in tumor cells and interfere with the degradation process of autophagic flux, collectively inducing autophagic death of tumor cells. In vivo and in vitro experiments showed that the micelles could exert improved anti-tumor effect and specificity, as well as reduced accumulation and damage of chemotherapeutic drugs in normal organs. The potential mechanism of synergistic autophagic death exerted by the synthesized micelles in MDA-MB-231 cells has been performed by autophagic flux-related pathway.
Collapse
|
22
|
Zhang S, Chen Y, Hu Q, Zhao T, Wang Z, Zhou Y, Wei Y, Zhao H, Wang J, Yang Y, Zhang J, Shi S, Zhang Y, Yang L, Fu Z, Liu K. SOX2 inhibits LLGL2 polarity protein in esophageal squamous cell carcinoma via miRNA-142-3p. Cancer Biol Ther 2022; 23:1-15. [PMID: 36131361 PMCID: PMC9519027 DOI: 10.1080/15384047.2022.2126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATIONS CCK-8, Cell Counting Kit 8; Chip, Chromatin Immunoprecipitation; EC, Esophageal cancer; EMT, epithelial-to-mesenchymal transition; ESCC, Esophageal squamous cell carcinomas; LLGL2, lethal (2) giant larvae protein homolog 2; LLGL2ov, LLGL2 overexpression; MET, mesenchymal-epithelial transition; miRNAs, MicroRNAs; PRM-MS, Parallel reaction monitoring-Mass spectrometry; SD, Standard deviation; SOX, sex determining region Y (SRY)-like box; SOX2-Kd, SOX2-knockdwon; TUNEL, TdT-mediated dUTP Nick-End Labeling.
Collapse
Affiliation(s)
- Shihui Zhang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yunyun Chen
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiong Hu
- School of Medicine, Xiamen University, Xiamen, China
- Department of Clinic Medical Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Tingting Zhao
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhuo Wang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yijian Zhou
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yuxuan Wei
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Junkai Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaxin Yang
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Jiaying Zhang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, China
| | - Yujun Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Ling Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhichao Fu
- Department of radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, China
| | - Kuancan Liu
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
24
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
25
|
Meng X, Li W, Meng Z, Li Y. EIF4A3-induced circBRWD3 promotes tumorigenesis of breast cancer through miR-142-3p_miR-142-5p/RAC1/PAK1 signaling. BMC Cancer 2022; 22:1225. [PMID: 36443711 PMCID: PMC9703775 DOI: 10.1186/s12885-022-10200-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
CircBRWD3 is a newly discovered circRNA, and its potential function has not been probed. Here, we aimed to molecularly dissect the role of circBRWD3 in the tumorigenesis and progression of breast cancer (BC). qRT-PCR analysis revealed that circBRWD3 expression was dramatically upregulated in BC tissues, a feature that was positively correlated with the poor prognosis of patients with BC. CircBRWD3 knockdown repressed cell proliferation and metastasis, while promoting cell apoptosis in vitro. Consistently, an in vivo circBRWD3 deficiency model exhibited suppressed tumor metastasis and oncogenesis. On the other hand, circBRWD3 overexpression promoted cancer cell activity and tumorigenesis. Further, mechanistic studies elucidated that circBRWD3 sponged both miR-142-3p and miR-142-5p to modulate RAC1 expression, which subsequently activated the RAC1/PAK1 signaling to facilitate the tumorigenesis and progression of BC. Moreover, we discovered that EIF4A3 facilitated circBRWD3 expression by targeting the upstream of BRWD3 pre-mRNA. In conclusion, our study reveals that circBRWD3 facilitates BC tumorigenesis by regulating the circBRWD3/miR-142-3p_miR-142-5p /RAC1/PAK1 axis. In addition, circBRWD3 expression is positively regulated by an RNA-binding protein, EIFA3. Our results provide valuable scientific data for early diagnosis and therapy for breast cancer patients.
Collapse
Affiliation(s)
- Xianguo Meng
- grid.460018.b0000 0004 1769 9639College of Sports Medicines and Rehabilitation, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, 250118 Shandong China
| | - Wei Li
- grid.460018.b0000 0004 1769 9639College of Sports Medicines and Rehabilitation, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, 250118 Shandong China
| | - Ziqi Meng
- grid.443413.50000 0000 9074 5890Accounting Institute, Shandong University of Finance and Economics, No. 7366 East Second Ring Road, Jinan, 250220 Shandong China
| | - Yan Li
- grid.460018.b0000 0004 1769 9639College of Sports Medicines and Rehabilitation, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, 250118 Shandong China
| |
Collapse
|
26
|
Liang L, Xu WY, Shen A, Cen HY, Chen ZJ, Tan L, Zhang LM, Zhang Y, Fu JJ, Qin AP, Lei XP, Li SP, Qin YY, Huang JH, Yu XY. Promoter methylation-regulated miR-148a-3p inhibits lung adenocarcinoma (LUAD) progression by targeting MAP3K9. Acta Pharmacol Sin 2022; 43:2946-2955. [PMID: 35388129 PMCID: PMC9622742 DOI: 10.1038/s41401-022-00893-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Yan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui-Yu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhi-Jun Chen
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Lin Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ling-Min Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Jun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ai-Ping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xue-Ping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Song-Pei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Yan Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jiong-Hua Huang
- Department of Cardiovascular Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Xi-Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
27
|
Liu JH, Yang HL, Deng ST, Hu Z, Chen WF, Yan WW, Hou RT, Li YH, Xian RT, Xie YY, Su Y, Wu LY, Xu P, Zhu ZB, Liu X, Deng YL, Wang YB, Liu Z, Fang WY. The small molecule chemical compound cinobufotalin attenuates resistance to DDP by inducing ENKUR expression to suppress MYH9-mediated c-Myc deubiquitination in lung adenocarcinoma. Acta Pharmacol Sin 2022; 43:2687-2695. [PMID: 35296779 PMCID: PMC9525298 DOI: 10.1038/s41401-022-00890-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The small molecule chemical compound cinobufotalin (CB) is reported to be a potential antitumour drug that increases cisplatin (DDP) sensitivity in nasopharyngeal carcinoma. In this study, we first found that CB decreased DDP resistance, migration and invasion in lung adenocarcinoma (LUAD). Mechanistic studies showed that CB induced ENKUR expression by suppressing PI3K/AKT signalling to downregulate c-Jun, a negative transcription factor of ENKUR. Furthermore, ENKUR was shown to function as a tumour suppressor by binding to β-catenin to decrease c-Jun expression, thus suppressing MYH9 transcription. Interestingly, MYH9 is a binding protein of ENKUR. The Enkurin domain of ENKUR binds to MYH9, and the Myosin_tail of MYH9 binds to ENKUR. Downregulation of MYH9 reduced the recruitment of the deubiquitinase USP7, leading to increased c-Myc ubiquitination and degradation, decreased c-Myc nuclear translocation, and inactivation of epithelial-mesenchymal transition (EMT) signalling, thus attenuating DDP resistance. Our data demonstrated that CB is a promising antitumour drug and may be a candidate chemotherapeutic drug for LUAD patients.
Collapse
Affiliation(s)
- Jia-Hao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Ling Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Shu-Ting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhe Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Feng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Wei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ren-Tao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Hao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rui-Ting Xian
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Ying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun Su
- Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Yang Wu
- Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping Xu
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China
| | - Zhi-Bo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiong Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Ling Deng
- Department of Chinese Medicine Rehabilitation, Pingxiang People's Hospital, Pingxiang, 337055, China
| | - Yu-Bing Wang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wei-Yi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Liang L, Cen H, Huang J, Qin A, Xu W, Wang S, Chen Z, Tan L, Zhang Q, Yu X, Yang X, Zhang L. The reversion of DNA methylation-induced miRNA silence via biomimetic nanoparticles-mediated gene delivery for efficient lung adenocarcinoma therapy. Mol Cancer 2022; 21:186. [PMID: 36171576 PMCID: PMC9516831 DOI: 10.1186/s12943-022-01651-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Lung cancer is one of the fatal cancers worldwide, and over 60% of patients are lung adenocarcinoma (LUAD). Our clinical data demonstrated that DNA methylation of the promoter region of miR-126-3p was upregulated, which led to the decreased expression of miR-126-3p in 67 cases of lung cancer tissues, implying that miR-126-3p acted as a tumor suppressor. Transduction of miR-126-3p is a potential therapeutic strategy for treating LUAD, yet the physiological environment and properties of miRNA challenge current transduction approaches. Methods We evaluated the expression of miR-126-3p in 67 pairs of lung cancer tissues and the corresponding adjacent non-tumorous tissues by Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The relationship between the overall survival of lung cancer patients and miR-126-3p was analyzed by the Cancer Genome Atlas cohort database (Oncolnc, http://www.oncolnc.org). We analyzed DNA methylation Methylation-specific PCR (MSP) analysis. To determine whether ADAM9 is the direct target of miR-126-3p, we performed the 3′-UTR luciferase reporter assay. The protein levels in the cells or tissues were evaluated with western blotting (WB) analysis. The biodistribution of nanoparticles were monitored by in vivo tracking system. Results We describe the development of novel stealth and matrix metalloproteinase 2 (MMP2)-activated biomimetic nanoparticles, which are constructed using MMP2-responsive peptides to bind the miR-126-3p (known as MAIN), and further camouflaged with red blood cell (RBC) membranes (hence named REMAIN). REMAIN was able to effectively transduce miRNA into lung cancer cells and release them via MMP2 responsiveness. Additionally, REMAIN possessed the advantages of the natural RBC membrane, including extended circulation time, lower toxicity, better biocompatibility, and immune escape. Moreover, in vitro and in vivo results demonstrated that REMAIN effectively induced apoptosis of lung cancer cells and inhibited LUAD development and progression by targeting ADAM9. Conclusion The novel style of stealth and MMP2-activated biomimetic nanoparticles show great potential in miRNA delivery. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01651-4.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiyu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jionghua Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Department of Cardiovascular Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Siran Wang
- Department of Preventive Dentistry, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, 510182, Guangzhou, China
| | - Zhijun Chen
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Lin Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiqi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xin Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Lingmin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
29
|
Xiong Y, Xiong C, Li P, Shan X. Rutaecarpine prevents the malignant biological properties of breast cancer cells by the miR-149-3p/S100A4 axis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:930. [PMID: 36172090 PMCID: PMC9511192 DOI: 10.21037/atm-22-3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Background Breast cancer (BC) is a frequent malignancy that endangers women's health, and its fatality rate ranks 1st among female malignancies. Research has shown that rutaecarpine (RUT), which is a Chinese herbal medicine, blocks the proliferation of cancer cells by a variety of molecular mechanisms. However, the possible effects and mechanism of RUT in the autophagy and angiogenesis of BC cells has not been clearly articulated. Methods MiR-149-3p and S100A4 expression levels were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the optimal concentration and time of RUT was confirmed by Cell Counting Kit-8 (CCK-8) assays of the BC cells. After treatment, changes in cell proliferation and the cell cycle were evaluated by CCK-8 assays, clone formation assays, and flow cytometry, and the levels of apoptosis, autophagy, and angiogenesis-related proteins were identified by Western blot. The targeted regulation of miR-149-3p on S100A4 was also examined by luciferase reporter assays. Results We found that RUT inhibited cell growth and upregulated miR-149-3p in MDA-MB-231 cells. In relation to the biological function activity, RUT attenuated proliferation and angiogenesis, and induced cell-cycle arrest and autophagy by miR-149-3p in the MDA-MB-231 cells. Additionally, miR-149-3p downregulated S100A4 by targeting binding to S100A4, and S100A4 was required for miR-149-3p to play a role in BC progression. We also discovered that an autophagy agonist (rapamycin) or an angiogenesis inhibitor (TNP-470) changed BC progression mediated by the RUT/miR-149-3p/S100A4 axis. Conclusions RUT blocks the malignant behaviors of BC cells through the miR-149-3p/S100A4 axis and thus alters autophagy and angiogenesis. Thus, the RUT-mediated miR-149-3p/S100A4 axis might be an underlying therapeutic agent and target for BC.
Collapse
Affiliation(s)
- Yi Xiong
- General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,General Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Chao Xiong
- General Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Peng Li
- General Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Xuehua Shan
- General Surgery, Wuhan Asia General Hospital, Wuhan, China
| |
Collapse
|
30
|
Sharma P, Yadav P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. HMGB3 inhibition by miR-142-3p/sh-RNA modulates autophagy and induces apoptosis via ROS accumulation and mitochondrial dysfunction and reduces the tumorigenic potential of human breast cancer cells. Life Sci 2022; 304:120727. [PMID: 35753437 DOI: 10.1016/j.lfs.2022.120727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
AIMS High mobility group box (HMGB) family proteins, HMGB1, HMGB2, HMGB3, and HMGB4 are oncogenic. The oncogenic nature of HMGB1 is characterized by its association with autophagy, ROS, and MMP. Since HMGB3 is its paralog, we hypothesized that it might also modulate autophagy, ROS, and MMP. Hence, we targeted HMGB3 using its shRNA or miR-142-3p and assessed the changes in autophagy, ROS, MMP, and tumorigenic properties of human breast cancer cells. MAIN METHODS Cell viability was assessed by resazurin staining and annexin-V/PI dual staining was used for confirming apoptosis. Colony formation, transwell migration, invasion and luciferase reporter (for miRNA-target validation) assays were also performed. ROS and MMP were detected using DHE and MitoTracker dyes, respectively. A zebrafish xenograft model was used to assess the role of miR-142-3p on in vivo metastatic potential of breast cancer cells. KEY FINDINGS Breast cancer tissues from Indian patients and TCGA samples exhibit overexpression of HMGB3. miR-142-3p binds to 3' UTR of HMGB3, leading to its downregulation that subsequently inhibits colony formation and induces apoptosis involving increased ROS accumulation and decreased MMP, phospho-mTOR and STAT3. Our findings show that HMGB3 is directly involved in the miR-142-3p-mediated disruption of autophagy and induction of apoptotic cell death via modulation of LC3, cleaved PARP and Bcl-xL. In addition, miR-142-3p inhibited migration, invasion and metastatic potential of breast cancer cells. SIGNIFICANCE Our findings highlighted the role of HMGB3, for the first time, in the modulation of autophagy and apoptosis in human breast cancer cells, and these results have therapeutic implications.
Collapse
Affiliation(s)
- Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
31
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
32
|
Dastmalchi N, Safaralizadeh R, Khojasteh SMB, Shadbad MA, Hosseinpourfeizi MA, Azarbarzin S, Rajabi A, Baradaran B. The combined restoration of miR-424-5p and miR-142-3p effectively inhibits MCF-7 breast cancer cell line via modulating apoptosis, proliferation, colony formation, cell cycle and autophagy. Mol Biol Rep 2022; 49:8325-8335. [PMID: 35666424 DOI: 10.1007/s11033-022-07646-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The combined restoration of tumor-suppressive microRNAs (miRs) has been identified as a promising approach for inhibiting breast cancer development. This study investigated the effect of the combined restoration of miR-424-5p and miR-142-3p on MCF-7 cells and compared the efficacy of the combined therapy with the monotherapies with miR-424-5p and miR-142-3p. METHODS After transfection of miR-424-5p and miR-142-3p mimics into MCF-7 cells in the combined and separated manner, the proliferation of tumoral cells was assessed by the MTT assay. Also, the apoptosis, autophagy, and cell cycle of the cells were analyzed by flow cytometry. Western blot and qRT-PCR were used to study the expression levels of c-Myc, Bcl-2, Bax, STAT-3, Oct-3, and Beclin-1. RESULTS Our results have demonstrated that the combined restoration of miR-424-5p and miR-142-3p is more effective in inhibiting tumor proliferation via upregulating Bax and Beclin-1 and downregulating Bcl-2 and c-Myc. Besides, the combined therapy has arrested the cell cycle in the sub-G1 and G2 phases and has suppressed the clonogenicity via downregulating STAT-3 and Oct-3, respectively. CONCLUSION The combined restoration of miR-424-5p and miR-142-3p is more effective in inhibiting MCF-7 breast cancer development than monotherapies with miR-424-5p and miR-142-3p.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | | | | | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Yang L, Liu S, Yang L, Xu B, Wang M, Kong X, Song Z. miR‑217‑5p suppresses epithelial‑mesenchymal transition and the NF‑κB signaling pathway in breast cancer via targeting of metadherin. Oncol Lett 2022; 23:162. [PMID: 35399330 PMCID: PMC8987938 DOI: 10.3892/ol.2022.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been associated with a number of human malignancies, including breast cancer (BC). However, the expression, biological function and fundamental underlying mechanism of miR-217-5p in BC remain unclear. Therefore, in the present study, the expression levels of miR-217-5p and metadherin (MTDH) were examined in BC tissues and BC cell lines using reverse transcription-quantitative PCR. Cell Counting Kit-8 assays, cell proliferation, wound healing assays, Transwell assays and western blotting were used to examine the effects of miR-217-5p on cell proliferation, migration, the epithelial-mesenchymal transition (EMT) and NF-κB signaling pathway expression. The direct relationship between miR-217-5p and MTDH was assessed using a dual-luciferase reporter assay. The results demonstrated that significantly reduced expression levels of miR-217-5p but significantly increased mRNA expression levels of MTDH were observed in BC tissues from 35 patients with BC compared with non-tumor breast tissues. Furthermore, BC cell lines SK-BR3 and BT549 expressed miR-217-5p at markedly lower levels and MTDH at markedly higher levels compared with the breast epithelial MCF10A cell line. miR-217-5p overexpression significantly inhibited cell proliferation, invasion and migration and suppressed the EMT in BC cells. miR-217-5p overexpression also inhibited the NF-κB signaling pathway by markedly decreasing p65 mRNA and protein expression levels but significantly increasing IκBα expression levels. Furthermore, miR-217-5p knockdown markedly increased MTDH mRNA and protein expression levels. The expression levels of miR-217-5p were negatively correlated with those of MTDH in BC tissues. These results suggested that restoration of MTDH expression levels could potentially attenuate the inhibitory effects of miR-217-5p overexpression on BC cell proliferation. Therefore, in conclusion miR-217-5p overexpression may inhibit cell migration, invasion, the EMT and NF-κB signaling pathway in BC via targeting of MTDH. miR-217-5p may serve as an important potential target in BC therapy.
Collapse
Affiliation(s)
- Lixian Yang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuo Liu
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liu Yang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bin Xu
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meiqi Wang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiangshun Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Zhenchuan Song
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
34
|
Hu Z, Zhou X, Zeng D, Lai J. Shikonin induces cell autophagy via modulating the microRNA -545-3p/guanine nucleotide binding protein beta polypeptide 1 axis, thereby disrupting cellular carcinogenesis in colon cancer. Bioengineered 2022; 13:5928-5941. [PMID: 35192430 PMCID: PMC8973937 DOI: 10.1080/21655979.2021.2024638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023] Open
Abstract
Shikonin (SHK), a major component of shiverweed, was provided with anti-tumor effects via multiple targets and signal pathways. Nevertheless, the specific mechanism of its function in colorectal cancer (CRC) still needed to be further explored. The study was designed to examine the role of SHK in CRC and its specific mechanism on the cell tumor behavior of CRC. Collection of clinical samples was performed, and test of microRNA (miR)-545-3p and guanine nucleotide-binding protein beta polypeptide 1 (GNB1) in the samples was conducted; Selection of CRC cell line was exerted, and examination of miR-545-3p and GNB1 was performed; After treatment of shikonin (SHK), correlated plasmids were transfected, test of cell advancement was performed. Test of the protein of autophagy-correlated proteins light chain 3-II/light chain 3I and p63 was performed. The interaction of miR-545-3p with GNB1 was explored, and the action of SHK in vivo was tested. SHK repressed the advancement of SW480 cells with elevated apoptosis and autophagy and the cells quantities in G0/G1 phase. MiR-545-3p was elevated in CRC. SHK boosted miR-545-3p, repression of miR-545-3p or augmentation of GNB1 was able to turn around the function of SHK on CRC, and GNB1 was the target gene of miR-545-3p.All in all, SHK stimulates apoptosis and autophagy in CRC via miR-545-3p/GNB1 signaling axis, firstly demonstrating the regulatory mechanism of SHK in CRC via miR-545-3p/GNB1 axis.
Collapse
Affiliation(s)
- ZhiWei Hu
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| | - XinDong Zhou
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| | - DeQiang Zeng
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| | - JiaJun Lai
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| |
Collapse
|
35
|
Long non-coding RNA MALAT1 affects intermittent hypoxia-induced endothelial injury by regulating miR-142-3p/HMGB1. Sleep Breath 2022; 26:2015-2024. [DOI: 10.1007/s11325-021-02545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
|
36
|
Ghafouri-Fard S, Khanbabapour Sasi A, Abak A, Shoorei H, Khoshkar A, Taheri M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front Oncol 2021; 11:768949. [PMID: 34804971 PMCID: PMC8602198 DOI: 10.3389/fonc.2021.768949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among females. Gene expression profiling methods have shown the deregulation of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast cancer at the genomic level. microRNAs (miRNAs) are among the recently appreciated contributors in breast carcinogenic processes. These small-sized transcripts have been shown to partake in breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial-mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis, therapeutic intervention with their expression might affect the course of this disorder. Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these transcripts as tools for non-invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshkar
- Department of Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Zhu Q, Li Y, Li L, Guo M, Zou C, Xu Y, Yang Z. MicroRNA-889-3p restrains the proliferation and epithelial-mesenchymal transformation of lung cancer cells via down-regulation of Homeodomain-interacting protein kinase 1. Bioengineered 2021; 12:10945-10958. [PMID: 34723781 PMCID: PMC8810057 DOI: 10.1080/21655979.2021.2000283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dysregulated microRNAs (miRNAs) are common in human cancers and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, the aim of this study was to evaluate the expression and biological function of miR-889-3p in lung cancer (LC). MiR-889-3p and Homeodomain-interacting protein kinase 1 (HIPK1) expression was detected in human LC tissues and cells. The correlation of miR-889-3p with the clinicopathology of LC patients was observed. After the transfection of miR-889-3p and HIPK1-related plasmids in human LC cell line A549, several studies were employed for detection of cell growth. In addition, the targeting of miR-889-3p with HIPK1 was verified. The results clarified miR-889-3p was down-regulated, while HIPK1 was up-regulated in LC tissues. Elevated miR-889-3p or repressed HIPK1 weakened the viability, epithelial–mesenchymal transition (EMT), invasion, migration of LC cells, whereas strengthened apoptosis. MiR-889-3p targeted HIPK1; MiR-889-3p mediated HIPK1 to affect the proliferation and EMT of LC cells. Therefore, it is concluded that miR-889-3p repressing HIPK1 restrains the proliferation and EMT of LC cells, providing a novel target for LC therapy.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yun Li
- Department of Respiratory Medicine, The Eighth Medical Center of Pla General Hospital, Beijing, China
| | - Lina Li
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Mingxue Guo
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Chenxi Zou
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yi Xu
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| |
Collapse
|
38
|
Long X, Huang Y, He J, Zhang X, Zhou Y, Wei Y, Tang Y, Liu L. Upregulation of miR‑335 exerts protective effects against sepsis‑induced myocardial injury. Mol Med Rep 2021; 24:806. [PMID: 34542164 PMCID: PMC8477184 DOI: 10.3892/mmr.2021.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Septicemia is associated with excessive inflammation, oxidative stress and apoptosis, causing myocardial injury that results in high mortality and disability rates worldwide. The abnormal expression of multiple microRNAs (miRNAs/miRs) is associated with more severe sepsis‑induced myocardial injury (SIMI) and miR‑335 has been shown to protect cardiomyocytes from oxidative stress. The present study aimed to investigate the role of miR‑335 in SIMI. An SIMI model was established by cecal ligation and puncture (CLP) in mice. An miRNA‑335 precursor (pre‑miR‑335) was transfected to accelerate miR‑335 expression and an miR‑335 inhibitor (anti‑miR‑335) was used to inhibit miR‑335 expression. CLP or sham surgery was performed on pre‑miR‑335, anti‑miR‑335 and wild‑type mice and miR‑335 expression was determined by reverse transcription‑quantitative PCR. Inflammatory factors (TNF‑α, IL‑6 and IL‑10) and troponin (cTNI), brain natriuretic peptide (BNP), creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were assessed using commercial kits. Apoptosis was detected by flow cytometry and cardiac function was assessed using a Langendorff isolated cardiac perfusion system. miR‑335 expression was upregulated and an elevation in inflammatory factors and cTNI, BNP, CK, LDH and AST was observed. Compared with the wild‑type control group, pre‑miR‑335 mice treated with CLP exhibited significantly reduced left ventricular development pressure, maximum pressure increased reduction rates, as well as decreased levels of TNF‑α, IL‑6 and IL‑10, myocardial injury and apoptosis; by contrast, these features were amplified in CLP‑treated anti‑miR‑335 mice. In conclusion, the upregulation of miR‑335 exerted ameliorative effects on myocardial injury following sepsis and may indicate a novel therapeutic intervention for SIMI.
Collapse
Affiliation(s)
- Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
- Department of Pharmacology, Hunan Academy of Chinese Medicine, Changsha, Hunan 410008, P.R. China
- Department of Pharmacology, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Yongpan Huang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan 418000, P.R. China
| | - Xiang Zhang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yan Zhou
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yingmin Wei
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Ying Tang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Lijing Liu
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
39
|
Kim R, Kin T. Current and Future Therapies for Immunogenic Cell Death and Related Molecules to Potentially Cure Primary Breast Cancer. Cancers (Basel) 2021; 13:cancers13194756. [PMID: 34638242 PMCID: PMC8507525 DOI: 10.3390/cancers13194756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary How a cure for primary breast cancer after (neo)adjuvant therapy can be achieved at the molecular level remains unclear. Immune activation by anticancer drugs may contribute to the eradication of residual tumor cells by postoperative (neo)adjuvant chemotherapy. In addition, chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation by memory effector T cells, leading to the curing of primary breast cancer. In this review, we discuss the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted therapy against damage-associated molecular patterns. Our aim was to gain a better understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines. Abstract How primary breast cancer can be cured after (neo)adjuvant therapy remains unclear at the molecular level. Immune activation by anticancer agents may contribute to residual tumor cell eradication with postsurgical (neo)adjuvant chemotherapy. Chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation with memory effector T cells, leading to a primary breast cancer cure. Anthracycline and taxane treatments cause ICD and immunogenic modulations, resulting in the activation of antitumor immunity through damage-associated molecular patterns (DAMPs), such as adenosine triphosphate, calreticulin, high mobility group box 1, heat shock proteins 70/90, and annexin A1. This response may eradicate residual tumor cells after surgical treatment. Although DAMP release is also implicated in tumor progression, metastasis, and drug resistance, thereby representing a double-edged sword, robust immune activation by anticancer agents and the subsequent acquisition of long-term antitumor immune memory can be essential components of the primary breast cancer cure. This review discusses the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted anti-DAMP therapy. Our aim was to improve the understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
- Correspondence:
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
40
|
Torki Z, Ghavi D, Hashemi S, Rahmati Y, Rahmanpour D, Pornour M, Alivand MR. The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: an update. Cancer Chemother Pharmacol 2021; 88:771-793. [PMID: 34510251 DOI: 10.1007/s00280-021-04337-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is an effective chemotherapy agent against a wide variety of tumors. However, intrinsic or acquired resistance diminishes the sensitivity of cancer cells to DOX, which leads to a cancer relapse and treatment failure. Resolutions to this challenge includes identification of the molecular pathways underlying DOX sensitivity/resistance and the development of innovative techniques to boost DOX sensitivity. DOX is classified as a Topoisomerase II poison, which is cytotoxic to rapidly dividing tumor cells. Molecular mechanisms responsible for DOX resistance include effective DNA repair and resumption of cell proliferation, deregulated development of cancer stem cell and epithelial to mesenchymal transition, and modulation of programmed cell death. MicroRNAs (miRNAs) have been shown to potentiate the reversal of DOX resistance as they have gene-specific regulatory functions in DOX-responsive molecular pathways. Identifying the dysregulation patterns of miRNAs for specific tumors following treatment with DOX facilitates the development of novel combination therapies, such as nanoparticles harboring miRNA or miRNA inhibitors to eventually prevent DOX-induced chemoresistance. In this article, we summarize recent findings on the role of miRNAs underlying DOX sensitivity/resistance molecular pathways. Also, we provide latest strategies for utilizing deregulated miRNA patterns as biomarkers or miRNAs as tools to overcome chemoresistance and enhance patient's response to DOX treatment.
Collapse
Affiliation(s)
- Zahra Torki
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Hashemi
- Department of Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Yang X, Shang P, Yu B, Jin Q, Liao J, Wang L, Ji J, Guo X. Combination therapy with miR34a and doxorubicin synergistically inhibits Dox-resistant breast cancer progression via down-regulation of Snail through suppressing Notch/NF- κB and RAS/RAF/MEK/ERK signaling pathway. Acta Pharm Sin B 2021; 11:2819-2834. [PMID: 34589399 PMCID: PMC8463267 DOI: 10.1016/j.apsb.2021.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to breast cancer (BCa) chemotherapy severely hampers the patient's prognosis. MicroRNAs provide a potential therapeutic prospect for BCa. In this study, the reversal function of microRNA34a (miR34a) on doxorubicin (Dox) resistance of BCa and the possible mechanism was investigated. We found that the relative level of miR34a was significantly decreased in Dox-resistant breast cancer cell MCF-7 (MCF-7/A) compared with Dox-sensitive MCF-7 cells. Transfection with miR34a significantly suppressed the invasion, migration, adhesion of MCF-7/A cells without inhibiting their growth obviously. The combination of miR34a and Dox could significantly inhibit the proliferation, migration, invasion and induce the apoptosis of MCF-7/A cells. The synergistic effect of this combination on resistant MCF-7/A cells has no obvious relation with the expressions of classical drug-resistant proteins P-GP, MRP and GST-π, while closely related with the down-regulation on TOP2A and BCRP. Moreover, we found both protein and mRNA expression of Snail were significantly up-regulated in MCF-7/A cells in comparison with MCF-7 cells. Transfection with small interfering RNA (siRNA) of Snail could inhibit the invasion, migration and adhesion of drug-resistant MCF-7/A cells, while high-expression of Snail could remarkably promote the invasion, migration and adhesion of MCF-7 cells, which might be related with regulation of N-cadherin and E-cadherin. Transfection with miR34a in MCF-7/A cells induced a decrease of Snail expression. The potential binding sites of miR34a with 3' UTR of Snail were predicted by miRDB target prediction software, which was confirmed by luciferase reporter gene method. Results showed that the relative activity of luciferase was reduced in MCF-7/A cells after co-transfection of miR34a and wild type (wt)-Snail, while did not change by co-transfection with miR34a and 3' UTR mutant type (mut) Snail. Combination of miR34a and Dox induced a stronger decrease of Snail in MCF-7/A cells in comparison to miR34a or Dox treatment alone. What' more, for the first time, we also found miR34a combined with Dox could obviously inhibit the expression of Snail through suppressing Notch/NF-κB and RAS/RAF/MEK/ERK pathway in MCF-7/A cells. In vivo study indicated that combination of miR34a and Dox significantly slowed down tumor growth in MCF-7/A nude mouse xenograft model compared with Dox alone, which was manifested by the down-regulation of Snail and pro-apoptosis effect in tumor xenografts. These results together underline the relevance of miR34a-driven regulation of Snail in drug resistance and co-administration of miR34a and Dox may produce an effective therapy outcome in the future in clinic.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Pengfei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Bingfang Yu
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Qiuyang Jin
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jing Liao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiuli Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Gong G, She J, Fu D, Zhen D, Zhang B. Circular RNA circ_0084927 regulates proliferation, apoptosis, and invasion of breast cancer cells via miR-142-3p/ERC1 pathway. Am J Transl Res 2021; 13:4120-4136. [PMID: 34150003 PMCID: PMC8205726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We aimed to investigate the mechanism of circular RNA circ_0084927 in the progression of breast cancer (BC). METHODS The levels of circ_0084927, miR-142-3p, and ELKS/RAB6-interacting/CAST family member-1 (ERC1) mRNA in the BC tissues and cells were detected by qRT-PCR. CCK8, colony formation, Transwell, and flow cytometry assays were performed to examine the cell proliferation, colony formation, cell invasion, and apoptosis, respectively, in the BC cells with regulated expressions of circ_0084927, miR-142-3p, and ERC1. RNase R treatment was employed to verify the circular structure of circ_0084927. Nucleocytoplasmic separation experiment, bioinformatics analysis, dual-luciferase reporter assay, and RNA immunoprecipitation were performed to investigate the ceRNA mechanism of circ_0084927. RESULTS High levels of circ_0084927 and ERC1 and low levels of miR-142-3p were detected in the BC tissues and cells. Knockdown of circ_0084927 promoted apoptosis and inhibited proliferation, colony formation, and invasion of BC cells (all P<0.05), whereas overexpression of circ_0084927 in the BC cells achieved the opposite effects. miR-142-3p is the target of circ_0084927. Overexpression of miR-142-3p could inhibit BC cell proliferation, colony formation, and cell invasion and induce apoptosis of the BC cells (all P<0.05), and the effects of miR-142-3p knockout on the BC cells could be reversed by silencing circ_0084927. miR-142-3p could target ERC1. Both ERC1 silencing and circ_0084927 knockout in the BC cells could achieve the tumor-suppressing effect, and this effect could be more remarkable under simultaneous ERC1 silencing and circ_0084927 knockout (all P<0.05). CONCLUSION Circ_0084927 can promote the progression of BC by regulating the miR-142-3p/ERC1 axis.
Collapse
Affiliation(s)
- Guohua Gong
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia Autonomous Region, China
- First Clinical Medical of Inner Mongolia University for NationalitiesTongliao, Inner Mongolia Autonomous Region, China
| | - Jikai She
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia Autonomous Region, China
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The NationalitiesTongliao, Inner Mongolia Autonomous Region, China
| | - Danni Fu
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia Autonomous Region, China
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The NationalitiesTongliao, Inner Mongolia Autonomous Region, China
| | - Dong Zhen
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia Autonomous Region, China
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The NationalitiesTongliao, Inner Mongolia Autonomous Region, China
| | - Bin Zhang
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia Autonomous Region, China
- First Clinical Medical of Inner Mongolia University for NationalitiesTongliao, Inner Mongolia Autonomous Region, China
| |
Collapse
|
43
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Yu L, Shi Q, Jin Y, Liu Z, Li J, Sun W. Blockage of AMPK-ULK1 pathway mediated autophagy promotes cell apoptosis to increase doxorubicin sensitivity in breast cancer (BC) cells: an in vitro study. BMC Cancer 2021; 21:195. [PMID: 33632157 PMCID: PMC7905888 DOI: 10.1186/s12885-021-07901-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Activation of autophagy flux contributed to resistance of breast cancer (BC) cells to current chemotherapeutic drugs, which seriously limited their therapeutic efficacy and facilitated BC recurrence in clinic. However, the detailed mechanisms are still not fully understood. In the present study, we identified that inactivation of AMPK-ULK1 signaling cascade mediated protective autophagy sensitized BC cells to doxorubicin in vitro. Methods Cell counting kit-8 (CCK-8) assay and colony formation assay were performed to evaluate cell proliferation abilities. Trypan blue staining assay was used to examine cell viability, and Annexin V-FITC/PI double staining method was conducted to determine cell apoptosis. The autophagosomes in BC cells were observed and photographed by electronic microscope (EM). Western Blot analysis was employed to examine genes expressions at protein levels. Results The parental doxorubicin-sensitive BC (DS-BC) cells were exposed to increasing concentrations of doxorubicin to establish doxorubicin-resistant BC (DR-BC) cells, and the DR-BC cells were much more resistant to high-dose doxorubicin treatment compared to the DS-BC cells. Interestingly, high-dose doxorubicin specifically increased LC3B-II/I ratio, promoted autophagosomes formation and decreased p62 expression levels to facilitate autophagy in DR-BC cells, instead of DS-BC cells, and the autophagy inhibitor 3-methyladenine (3-MA) enhanced the cytotoxic effects of high-dose doxorubicin on DR-BC cells. In addition, we proved that high-dose doxorubicin triggered protective autophagy in DR-BC cells by activating AMPK-ULK1 pathway. Functionally, high-dose doxorubicin increased the expression levels of phosphorylated AMPK (p-AMPK) and ULK1 (p-ULK1) to activate AMPK-ULK1 pathway in DR-BC cells, and the inhibitors for AMPK (compound C) and ULK1 (SBI-0206965) blocked autophagy to promote cell death and slow down cell growth in DR-BC cells treated with high-dose doxorubicin. Conclusions Collectively, our in vitro data indicated that blockage of AMPK-ULK1 signaling cascade mediated protective autophagy might be a promising strategy to increase doxorubicin sensitivity for BC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07901-w.
Collapse
Affiliation(s)
- Libo Yu
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Qingtao Shi
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Yan Jin
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Zhixin Liu
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Jiaxin Li
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Wenzhou Sun
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
45
|
Lu J, Ma X, Lin J, Hou P. Circ_0020123 Increases ZFX Expression to Facilitate Non-Small Cell Lung Cancer Progression by Sponging miR-142-3p. Cancer Manag Res 2021; 13:1687-1698. [PMID: 33633466 PMCID: PMC7901561 DOI: 10.2147/cmar.s295595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNA (circRNA) is involved in the progression of various cancers and has been shown to be an important potential target for cancer therapy. Circ_0020123 has been found to act as oncogene to participate in the malignant progression of non-small cell lung cancer (NSCLC). Therefore, exploring new mechanisms of circ_0020123 regulating NSCLC progression will help us better understand its role in NSCLC. Methods Relative expression levels of circ_0020123, microRNA (miR)-142-3p, and zinc-finger protein X-linked (ZFX) in tissues and cells were determined by quantitative real-time PCR (qRT-PCR). Cell proliferation, apoptosis, migration and invasion were assessed using cell counting kit 8 (CCK8) assay, colony formation assay, flow cytometry and transwell assay. Western blot (WB) analysis was used to detect relative protein level. Besides, the interaction between miR-142-3p and circ_0020123 or ZFX was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Our results showed that circ_0020123 was upregulated in NSCLC, and its knockdown could suppress NSCLC cell proliferation, migration, invasion, and promote apoptosis. Circ_0020123 was found to interact with miR-142-3p. The inhibition effect of circ_0020123 silencing on NSCLC progression could be reversed by miR-142-3p inhibitor. ZFX could be targeted by miR-142-3p. The silencing of ZFX could hinder the progression of NSCLC and abolish the promotion effect of miR-142-3p inhibitor on NSCLC progression. In addition, circ_0020123 silencing inhibited NSCLC tumorigenesis by the miR-142-3p/ZFX axis. Conclusion These findings suggested that circ_0020123 might be a potential therapy target for NSCLC, which could promote NSCLC progression through regulating the miR-142-3p/ZFX axis.
Collapse
Affiliation(s)
- Jiancong Lu
- Department of Respiratory Diseases, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Ximiao Ma
- Department of Thoracic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, People's Republic of China
| | - Junhong Lin
- Department of Respiratory Diseases, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Peifeng Hou
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, 350001, Fujian, People's Republic of China.,Fujian Medical University Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| |
Collapse
|
46
|
Shi Y, Qi W, Xu Q, Wang Z, Cao X, Zhou L, Ye L. The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:78-88. [PMID: 33217042 DOI: 10.1002/em.22414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental endocrine disruptors (EEDs) seriously endanger human health by interfering with the normal function of reproductive systems. In males, EEDs can affect sperm formation and semen quality as well spermatogenesis, ultimately reducing fertility. In females, EEDs can affect uterine development and the expression levels of reproduction-related genes, ultimately reducing female fertility and the normal development of the fetus. There are a large number of putative mechanisms by which EEDs can induce reproductive toxicity, and many studies have shown the involvement of epigenetics. In this review, we summarize the role of DNA methylation, noncoding RNAs, genomic imprinting, chromatin remodeling and histone modification in the reproductive toxicity of EEDs.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaolian Cao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
47
|
Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. Deciphering the Role of the Coagulation Cascade and Autophagy in Cancer-Related Thrombosis and Metastasis. Front Oncol 2020; 10:605314. [PMID: 33365273 PMCID: PMC7750537 DOI: 10.3389/fonc.2020.605314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Thrombotic complications are the second leading cause of death among oncology patients worldwide. Enhanced thrombogenesis has multiple origins and may result from a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of coagulation factors in the liver, and coagulation factor signaling upon cancer and the tumor microenvironment (TME). While a hypercoagulable state has been attributed to factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF) expression on cancer cells, further reports have suggested that coagulation factors can enhance metastasis through increased endothelial-cancer cell adhesion and enhanced endothelial cell activation. Autophagy is highly associated with cancer survival as a double-edged sword, as can both inhibit and promote cancer progression. In this review, we shall dissect the crosstalk between the coagulation cascade and autophagic pathway and its possible role in metastasis and cancer-associated thrombosis formation. The signaling of the coagulation cascade through the autophagic pathway within the hematopoietic stem cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation cascade, we also examine the role of autophagy-related pathways in cancer treatment. In this review, we aim to bring to light possible new areas of cancer investigation and elucidate strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Charlotte Nicole Hill
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Catalina Asencio
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Begoña Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Solis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
48
|
Wei Z, Qin X, Kang X, Zhou H, Wang S, Wei D. MiR-142-3p inhibits adipogenic differentiation and autophagy in obesity through targeting KLF9. Mol Cell Endocrinol 2020; 518:111028. [PMID: 32911017 DOI: 10.1016/j.mce.2020.111028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND MiR-142-3p has been shown to be suppressed in obese patients, while the underlying regulatory mechanism is unclear. METHODS Body shape indexes as well as peripheral blood for biochemical parameter analysis were obtained from obese and healthy subjects. When 3T3-L1 cells were induced to differentiate, miR-142-3p expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of miR-142-3p on triglyceride (TG) and adipogenic differentiation-related genes during the adipogenic differentiation of 3T3-L1 cells were detected by transfection, Oil Red O staining, and Western blot. The targeting relationship between miR-142-3p and Krueppel-like transcription factor 9 (KLF9) was verified by TargetScan and dual-luciferase experiment. The specific regulatory effects of miR-142-3p on cell adipogenic differentiation and autophagy were analyzed by rescue experiments. In vivo experiments further validated the results of in vitro experiments through obese mouse models. RESULTS Obesity-marked biochemical indicators increased whereas high density lipoprotein and miR-142-3p decreased in obese patients. The content of miR-142-3p gradually decreased with cell lipid differentiation. Overexpression of miR-142-3p reduced TG deposition in cells by down-regulating lipid formation and fatty acid synthesis genes and up-regulating fatty acid oxidation genes. KLF9 targeting miR-142-3p was suppressed by miR-142-3p. KLF9 overexpression partially reversed the inhibitory effect of miR-142-3p mimic on adipogenic differentiation and the expressions of autophagy related-genes in 3T3-L1 cells. MiR-142-3p overexpression also inhibited fat cell differentiation and autophagy in obese mice. CONCLUSION Overexpressed miR-142-3p inhibited adipogenic differentiation and autophagy through targeting KLF9.
Collapse
Affiliation(s)
- Ziwen Wei
- Department of Invasive Intervention, Tongji Medical College of HUST, Wuhan, Hubei, 430030, China
| | - Xiaoli Qin
- Department of Invasive Intervention, Neihuang County No.2 People's Hospital, Anyang City, Henan Province, 456300, China
| | - Xiaojie Kang
- Department of Invasive Intervention, Neihuang County No.2 People's Hospital, Anyang City, Henan Province, 456300, China
| | - Haixia Zhou
- Department of Invasive Intervention, Neihuang County No.2 People's Hospital, Anyang City, Henan Province, 456300, China
| | - Shaodan Wang
- Department of Invasive Intervention, Neihuang County No.2 People's Hospital, Anyang City, Henan Province, 456300, China
| | - Dong Wei
- Department of Invasive Intervention, Neihuang County No.2 People's Hospital, Anyang City, Henan Province, 456300, China.
| |
Collapse
|
49
|
Zhang L, Wei Z, Wang Y, Xu F, Cheng Z. Long noncoding RNA ROR1-AS1 enhances STC2-mediated cell growth and autophagy in cervical cancer through miR-670-3p. J Recept Signal Transduct Res 2020; 41:582-592. [PMID: 33081599 DOI: 10.1080/10799893.2020.1836495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Longyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fuxia Xu
- Department of Obstetrics and Gynecology, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Zhongyu Cheng
- Department of Obstetrics and Gynecology, Anhui No.2 Provincial People’s Hospital, Hefei, China
| |
Collapse
|
50
|
Lei W, Huo Z. Jervine inhibits non-small cell lung cancer (NSCLC) progression by suppressing Hedgehog and AKT signaling via triggering autophagy-regulated apoptosis. Biochem Biophys Res Commun 2020; 533:397-403. [PMID: 32972750 DOI: 10.1016/j.bbrc.2020.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) has been identified as a leading cause of tumor-associated death around the world. Presently, it is necessary to find effective and safe therapy for its treatment in clinic. Jervine (Jer), a sterodial alkaloid from rhizomes of Veratrum album, exhibits anti-inflammatory and anti-cancer effects. However, its effects on lung cancer progression are still unknown. In this study, we explored if Jer showed any influences on NSCLC development, as well as the underlying molecular mechanisms. The results showed that Jer time- and dose-dependently reduced the proliferation of NSCLC cells, along with inhibited colony formation capacity. Apoptosis was highly induced by Jer in NSCLC cells through promoting the expression of cleaved Caspase-3. Furthermore, Jer treatment led to autophagy in cancer cells, as evidenced by the fluorescence microscopy results and increases of LC3II. Autophagy inhibitor bafilomycinA1 (BafA1) abrogated the inhibitory effects of Jer on cell proliferation and apoptosis induction, showing that Jer triggered autophagy-mediated apoptosis in NSCLC cells. Additionally, AKT and mammalian target of Rapamycin (mTOR) signaling pathway was highly repressed in cancer cells. Importantly, promoting AKT activation greatly rescued the cell survival, while attenuated autophagy and apoptosis in Jer-incubated NSCLC cells, revealing that Jer-modulated autophagic cell death was through the blockage of AKT signaling. Hedgehog signaling pathway was then found to be suppressed by Jer, as proved by the decreased expression of Sonic Hedgehog (Shh), Hedgehog receptor protein patched homolog 1 (PTCH1), smoothened (SMO) and glioma-associated oncogene homolog 1 (Gli1) in NSCLC cells. Of note, enhancing Shh signaling dramatically diminished the stimulative effects of Jer on autophagy-mediated apoptosis in vitro, demonstrating the importance of Hedgehog signaling in Jer-regulated cell death. Moreover, Jer treatment effectively reduced tumor growth in A549-bearing mice with few toxicity. Together, Jer may be a promising and effective therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Wei Lei
- Department of Chinese Medicine, Linyi People's Hospital, Shandong, 276000, China
| | - Zhenyun Huo
- Department of Pediatric Surgery, Linyi People's Hospital, Shandong, 276000, China.
| |
Collapse
|