1
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Zhou J, Jiang Z, Sun R, Pan D, Du Q, Zhou X, Chen Y, Chen Y, Peng J. Comparison of cell delivery and cell membrane camouflaged PLGA nanoparticles in the delivery of shikonin for colorectal cancer treatment. Colloids Surf B Biointerfaces 2024; 241:114017. [PMID: 38865869 DOI: 10.1016/j.colsurfb.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Inspired by the "natural camouflage" strategy, cell-based biomimetic drug delivery systems (BDDS) have shown great potential in cancer therapy. Red blood cell (RBC) delivery vehicles and red blood cell membrane (RBCm)-camouflaged vehicles were commonly used strategies for drug delivery. We prepared shikonin-encapsulated PLGA nanoparticles (PLGA/SK) with different surface charges to obtain both RBC delivery and RBCm-camouflaged PLGA NPs. The physicochemical properties, in vivo circulation and antitumor effects of these biomimetic preparations were studied. Since the positive PLGA NPs may affect the morphology and function of RBCs, the biomimetic preparations prepared by the negative PLGA NPs showed better in vitro stability. However, positive PLGA NP-based biomimetic preparations exhibited longer circulation time and higher tumor region accumulation, leading to stronger anti-tumor effects. Meanwhile, the RBC delivery PLGA(+) NPs possessed better in vitro cytotoxicity, longer circulation time and higher tumor accumulation than RBCm-camouflaged PLGA(+) NPs. Collectively, RBC delivery vehicles possessed more potential than RBCm-camouflaged vehicles on drug delivery for tumor treatment, especially with positive NPs-loaded.
Collapse
Affiliation(s)
- Jia Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Zhaohui Jiang
- The First People's Hospital of Guiyang, Guizhou 550002, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Jiangsu 210008, China
| | - Di Pan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210006, China
| | - Xiang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
3
|
Misra R, Sanjana Sharath N. Red blood cells based nanotheranostics: A smart biomimetic approach for fighting against cancer. Int J Pharm 2024; 661:124401. [PMID: 38986966 DOI: 10.1016/j.ijpharm.2024.124401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The technique of engineering drug delivery vehicles continues to develop, which bring enhancements in working more efficiently and minimizing side effects to make it more effective and safer. The intense capability of therapeutic agents to remain undamaged in a harsh extracellular environment is helpful to the success of drug development efforts. With this in mind, alterations of biopharmaceuticals with enhanced stability and decreased immunogenicity have been an increasingly active focus of such efforts. Red blood cells (RBCs), also known as erythrocytes have undergone extensive scrutiny as potential vehicles for drug delivery due to their remarkable attributes over the years of research. These include intrinsic biocompatibility, minimal immunogenicity, flexibility, and prolonged systemic circulation. Throughout the course of investigation, a diverse array of drug delivery platforms based on RBCs has emerged. These encompass genetically engineered RBCs, non-genetically modified RBCs, and RBC membrane-coated nanoparticles, each devised to cater to a range of biomedical objectives. Given their prevalence in the circulatory system, RBCs have gained significant attention for their potential to serve as biomimetic coatings for artificial nanocarriers. By virtue of their surface emulation capabilities and customizable core materials, nanocarriers mimicking these RBCs, hold considerable promise across a spectrum of applications, spanning drug delivery, imaging, phototherapy, immunomodulation, sensing, and detection. These multifaceted functionalities underscore the considerable therapeutic and diagnostic potential across various diseases. Our proposed review provides the synthesis of recent strides in the theranostic utilization of erythrocytes in the context of cancer. It also delves into the principal challenges and prospects intrinsic to this realm of research. The focal point of this review pertains to accentuating the significance of erythrocyte-based theranostic systems in combating cancer. Furthermore, it precisely records the latest and the most specific methodologies for tailoring the attributes of these biomimetic nanoscale formulations, attenuating various discoveries for the treatment and management of cancer.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain (Deemed-to-be University), JC Road, Bengaluru 560027, Karnataka, India.
| | - Naomi Sanjana Sharath
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain (Deemed-to-be University), JC Road, Bengaluru 560027, Karnataka, India
| |
Collapse
|
4
|
Ban Z, Sun M, Ji H, Ning Q, Cheng C, Shi T, He M, Chen X, Lu H, He X, Guo C, He Y, Shao D, He Y. Immunogenicity-masking delivery of uricase against hyperuricemia and gout. J Control Release 2024; 372:862-873. [PMID: 38906421 DOI: 10.1016/j.jconrel.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Improving the activity of uricase and lowering its immunogenicity remain significant challenges in the enzyme replacement management of hyperuricemia and related inflammatory diseases. Herein, an immunogenicity-masking strategy based on engineered red blood cells (RBCs) was developed for effective uricase delivery against both hyperuricemia and gout. The dynamic membrane of RBCs enabled high resistance to protease inactivation and hydrogen peroxide accumulation. Benefiting from these advantages, a single infusion of RBC-loaded uricase (Uri@RBC) performed prolonged blood circulation and sustained hyperuricemia management. Importantly, RBCs masked the immunogenicity of uricase, leading to the maintenance of UA-lowering performance after repeated infusion through reduced antibody-mediated macrophage clearance. In an acute gout model, Uri@RBC profoundly alleviated joint edema and inflammation with minimal systemic toxicity. This study supports the employment of immunogenicity-masking tools for efficient and safe enzyme delivery, and this strategy may be leveraged to improve the usefulness of enzyme replacement therapies for managing a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Zhenglan Ban
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Madi Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Huihong Ji
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, PR China
| | - Quanxin Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Tongfei Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Minghao He
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xuenian Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Huanfen Lu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xuan He
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Chenyang Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yan He
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
5
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
Aghili ZS, Magnani M, Ghatrehsamani M, Nourian Dehkordi A, Mirzaei SA, Banitalebi Dehkordi M. Intelligent berberine-loaded erythrocytes attenuated inflammatory cytokine productions in macrophages. Sci Rep 2024; 14:9381. [PMID: 38654085 DOI: 10.1038/s41598-024-60103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Erythrocytes are impressive tools for drug delivery, especially to macrophages. Therefore, berberine was loaded into erythrocytes using both hypotonic pre-swelling and endocytosis methods to target macrophages. Physicochemical and kinetic parameters of the resulting carrier cells, such as drug loading/release kinetics, osmotic fragility, and hematological indices, were determined. Drug loading was optimized for the study using Taguchi experimental design and lab experiments. Loaded erythrocytes were targeted to macrophages using ZnCl2 and bis-sulfosuccinimidyl-suberate, and targeting was evaluated using flow cytometry and Wright-Giemsa staining. Differentiated macrophages were stimulated with lipopolysaccharide, and the inflammatory profiles of macrophages were evaluated using ELISA, western blotting, and real-time PCR. Findings indicated that the endocytosis method is preferred due to its low impact on the erythrocyte's structural integrity. Maximum loading achieved (1386.68 ± 22.43 μg/ml) at 1500 μg/ml berberine treatment at 37 °C for 2 h. Berberine successfully inhibited NF-κB translation in macrophages, and inflammatory response markers such as IL-1β, IL-8, IL-23, and TNF-α were decreased by approximately ninefold, sixfold, twofold, eightfold, and twofold, respectively, compared to the LPS-treated macrophages. It was concluded that berberine-loaded erythrocytes can effectively target macrophages and modulate the inflammatory response.
Collapse
Affiliation(s)
- Zahra Sadat Aghili
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, PU, Italy
| | - Mehdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azar Nourian Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mehdi Banitalebi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Biagiotti S, Perla E, Magnani M. Drug transport by red blood cells. Front Physiol 2023; 14:1308632. [PMID: 38148901 PMCID: PMC10750411 DOI: 10.3389/fphys.2023.1308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
This review focuses on the role of human red blood cells (RBCs) as drug carriers. First, a general introduction about RBC physiology is provided, followed by the presentation of several cases in which RBCs act as natural carriers of drugs. This is due to the presence of several binding sites within the same RBCs and is regulated by the diffusion of selected compounds through the RBC membrane and by the presence of influx and efflux transporters. The balance between the influx/efflux and the affinity for these binding sites will finally affect drug partitioning. Thereafter, a brief mention of the pharmacokinetic profile of drugs with such a partitioning is given. Finally, some examples in which these natural features of human RBCs can be further exploited to engineer RBCs by the encapsulation of drugs, metabolites, or target proteins are reported. For instance, metabolic pathways can be powered by increasing key metabolites (i.e., 2,3-bisphosphoglycerate) that affect oxygen release potentially useful in transfusion medicine. On the other hand, the RBC pre-loading of recombinant immunophilins permits increasing the binding and transport of immunosuppressive drugs. In conclusion, RBCs are natural carriers for different kinds of metabolites and several drugs. However, they can be opportunely further modified to optimize and improve their ability to perform as drug vehicles.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| |
Collapse
|
8
|
Gutierrez-Millan C, Barez Diaz C, Alvarez Vizan L, Colino CI. Evaluation of Two Osmosis-Based Methods for the Preparation of Drug Delivery Systems Based on Red Blood Cells. Pharmaceutics 2023; 15:2281. [PMID: 37765250 PMCID: PMC10536362 DOI: 10.3390/pharmaceutics15092281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Erythrocytes have been thoroughly investigated as drug delivery systems for a wide range of therapeutic molecules and using different kinds of loading methods, outstanding the osmosis-based methods as the most used ones. Most of them involve too much handling of blood components and the immediate obtention of fresh blood. Based on our group's considerable experience in dialysis-based carrier erythrocyte preparation, this study details a simple method based on hypotonic dilution and subsequent resealing that has been developed for stavudine using packed erythrocytes from a local blood bank. Properties of the obtained carrier erythrocytes were studied in comparison to those prepared by dialysis. Erythrocytes' morphology, osmotic fragility, hematological parameters, and in vitro release profiles were evaluated. Loaded erythrocytes obtained with the proposed method did not show impaired properties in comparison with those obtained with our reference method, provided that the buffer composition remained the same. In the present work, we have optimized a simplified method for erythrocytes' drug loading, which can use blood transfusion products and could be easily automatized and scalable.
Collapse
Affiliation(s)
- Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Celia Barez Diaz
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Lydia Alvarez Vizan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
9
|
Chen M, Leng Y, He C, Li X, Zhao L, Qu Y, Wu Y. Red blood cells: a potential delivery system. J Nanobiotechnology 2023; 21:288. [PMID: 37608283 PMCID: PMC10464085 DOI: 10.1186/s12951-023-02060-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the body, possessing unique biological and physical properties. RBCs have demonstrated outstanding potential as delivery vehicles due to their low immunogenicity, long-circulating cycle, and immune characteristics, exhibiting delivery abilities. There have been several developments in understanding the delivery system of RBCs and their derivatives, and they have been applied in various aspects of biomedicine. This article compared the various physiological and physical characteristics of RBCs, analyzed their potential advantages in delivery systems, and summarized their existing practices in biomedicine.
Collapse
Affiliation(s)
- Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan He
- Guang'an People's Hospital, Guang'an, 638001, Sichuan, People's Republic of China
| | - Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Delivery Systems Based on Red Blood Cells and Their Membrane-Derived Nanoparticles. ACS NANO 2023; 17:5187-5210. [PMID: 36896898 DOI: 10.1021/acsnano.2c11965] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Red blood cells (RBCs) and RBC membrane-derived nanoparticles have been historically developed as bioinspired drug delivery systems to combat the issues of premature clearance, toxicity, and immunogenicity of synthetic nanocarriers. RBC-based delivery systems possess characteristics including biocompatibility, biodegradability, and long circulation time, which make them suited for systemic administration. Therefore, they have been employed in designing optimal drug formulations in various preclinical models and clinical trials to treat a wide range of diseases. In this review, we provide an overview of the biology, synthesis, and characterization of drug delivery systems based on RBCs and their membrane including whole RBCs, RBC membrane-camouflaged nanoparticles, RBC-derived extracellular vesicles, and RBC hitchhiking. We also highlight conventional and latest engineering strategies, along with various therapeutic modalities, for enhanced precision and effectiveness of drug delivery. Additionally, we focus on the current state of RBC-based therapeutic applications and their clinical translation as drug carriers, as well as discussing opportunities and challenges associated with these systems.
Collapse
Affiliation(s)
- Phuong Hoang Diem Nguyen
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Minh T N Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|