1
|
Makaras T, Stankevičiūtė M. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14479-14496. [PMID: 34617211 DOI: 10.1007/s11356-021-16783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and have become well established as role model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni, and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). The performed behavioural analysis showed the main effect on the interaction between time, species, and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species' responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after a 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitius as model species for aquatic biomonitoring and environmental risk assessments.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania.
| | | |
Collapse
|
2
|
Love AC, Crooks N, Ford AT. The effects of wastewater effluent on multiple behaviours in the amphipod, Gammarus pulex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115386. [PMID: 33254653 DOI: 10.1016/j.envpol.2020.115386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 06/24/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of pharmaceuticals and personal care products (PPCPs) in lotic habitats is increasing, with the main source of these contaminants being effluent from waste water treatment works (WwTW). There is still much uncertainty about the impacts of these PPCPs at environmentally relevant concentrations and their potential effects on aquatic ecology. Behaviour is a sensitive endpoint which can help evaluate possible population level effects from changes in physiology. This paper evaluates the effects of WwTW effluent on a range of behaviours in the freshwater invertebrate, Gammarus pulex. Effluent taken from the outflow of two WwTW in southern England was used in the study. Behavioural analyses, namely feeding rate, phototaxis, activity, velocity and precopula pairing, were measured in G. pulex following a period of one and three weeks after exposure to a 50% or 100% effluent and a control. Mortality remained very low throughout the 3 week experiment (0-10%, n = 20) and no significant changes in moulting frequency were observed (p > 0.05). No significant effects on feeding or velocity or phototaxis following 3 weeks of effluent exposures were observed (p > 0.05). However, significant reductions were observed in the overall activity over 3 weeks across which appeared to be exacerbated by exposure to effluents. Interestingly, males exposed for 3 weeks to WwTW effluent re-paired with unexposed females significantly faster (4-6x) than control animals. This result was consistent between the effluents taken from the two WwTW. The implications of these behavioural changes are currently unknown but highlight the need for a varied set of tools to study the behavioural changes in wildlife.
Collapse
Affiliation(s)
- Adrian C Love
- Fisheries Department, Sparsholt College, Westley Lane, Hampshire, SO21 2NF, UK; Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Neil Crooks
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4HP, UK
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK.
| |
Collapse
|
3
|
Ågerstrand M, Arnold K, Balshine S, Brodin T, Brooks BW, Maack G, McCallum ES, Pyle G, Saaristo M, Ford AT. Emerging investigator series: use of behavioural endpoints in the regulation of chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:49-65. [PMID: 31898699 DOI: 10.1039/c9em00463g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interest in behavioural ecotoxicology is growing, partly due to technological and computational advances in recording behaviours but also because of improvements of detection capacity facilitating reporting effects at environmentally relevant concentrations. The peer-reviewed literature now contains studies investigating the effects of chemicals, including pesticides and pharmaceuticals, on migration, dispersal, aggression, sociability, reproduction, feeding and anti-predator behaviours in vertebrates and invertebrates. To understand how behavioural studies could be used in regulatory decision-making we: (1) assessed the legal obstacles to using behavioural endpoints in EU chemicals regulation; (2) analysed the known cases of use of behavioural endpoints in EU chemicals regulation; and (3) provided examples of behavioural endpoints of relevance for population level effects. We conclude that the only legal obstacle to the use of behavioural endpoints in EU chemicals regulation is whether an endpoint is considered to be relevant at the population level or not. We also conclude that ecotoxicity studies investigating behavioural endpoints are occasionally used in the EU chemicals regulation, and underscore that behavioural endpoints can be relevant at the population level. To improve the current use of behavioural studies in regulatory decision-making contribution from all relevant stakeholders is required. We have the following recommendations: (1) researchers should conduct robust, well-designed and transparent studies that emphasize the relevance of the study for regulation of chemicals; (2) editors and scientific journals should promote detailed, reliable and clearly reported studies; (3) regulatory agencies and the chemical industry need to embrace new behavioural endpoints of relevance at the population level.
Collapse
Affiliation(s)
- Marlene Ågerstrand
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden.
| | - Kathryn Arnold
- Department of Environment and Geography, University of York, York, UK
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, TX, USA and School of Environment, Jinan University, Guangzhou, China
| | - Gerd Maack
- Department of Pharmaceuticals, German Environment Agency (UBA), Dessau, Germany
| | - Erin S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Greg Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
4
|
McLean AR, Du SN, Choi JA, Culbert BM, McCallum ES, Scott GR, Balshine S. Proximity to wastewater effluent alters behaviour in bluegill sunfish (Lepomis machrochirus). BEHAVIOUR 2019. [DOI: 10.1163/1568539x-00003576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Wastewater from municipal, agricultural and industrial sources is a pervasive contaminant of aquatic environments worldwide. Most studies that have investigated the negative impacts of wastewater on organisms have taken place in a laboratory. Here, we tested whether fish behaviour is altered by exposure to environmentally relevant concentrations of wastewater effluent in the field. We caged bluegill sunfish (Lepomis macrochirus) for 28 days at two sites downstream (adjacent to and 870 m) from a wastewater treatment plant and at a reference site without wastewater inputs. We found that exposed fish had a dampened response to simulated predation compared to unexposed fish, suggesting that fish may be at greater risk of predation after exposure to wastewater effluent. Fish held at the different sites did not differ in activity and exploration. Our results suggest that predator avoidance may be impaired in fish exposed to wastewater effluent, which could have detrimental implications for aquatic communities.
Collapse
Affiliation(s)
- Adrienne R. McLean
- aDepartment of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Sherry N.N. Du
- bDepartment of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Jasmine A. Choi
- bDepartment of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Brett M. Culbert
- aDepartment of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Erin S. McCallum
- aDepartment of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Graham R. Scott
- bDepartment of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Sigal Balshine
- aDepartment of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
5
|
Mintram KS, Brown AR, Maynard SK, Liu C, Parker SJ, Tyler CR, Thorbek P. Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Dzieweczynski TL, Portrais KB, Stevens MA, Kane JL, Lawrence JM. Risky business: Changes in boldness behavior in male Siamese fighting fish, Betta splendens, following exposure to an antiandrogen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:1015-1021. [PMID: 29366512 DOI: 10.1016/j.envpol.2018.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Components of boldness, such as activity level and locomotion, influence an individual's ability to avoid predators and acquire resources, generating fitness consequences. The presence of endocrine disrupting chemicals (EDCs) in the aquatic environment may affect fitness by changing morphology or altering behaviors like courtship and exploration. Most research on EDC-generated behavioral effects has focused on estrogen mimics and reproductive endpoints. Far fewer studies have examined the effects of other types of EDCs or measured non-reproductive behaviors. EDCs with antiandrogenic properties are present in waterways yet we know little about their effects on exposed individuals although they may produce effects similar to those caused by estrogen mimics because they act on the same hormonal pathway. To examine the effects of antiandrogens on boldness, this study exposed male Siamese fighting fish, Betta splendens, to a high or low dose of one of two antiandrogens, vinclozolin or flutamide, and observed behavior in three boldness assays, both before and after exposure. Overall, antiandrogen exposure increased boldness behavior, especially following exposure to the higher dose. Whether or not antiandrogen exposure influenced boldness, as well as the nature and intensity of the effect, was assay-dependent. This demonstrates the importance of studying EDC effects in a range of contexts and, at least within this species, suggests that antiandrogenic compounds may generate distinct physiological effects in different situations. How and why the behavioral effects differ from those caused by exposure to an estrogen mimic, as well as the potential consequences of increased activity levels, are discussed. Exposure to an antiandrogen, regardless of dose, produced elevated activity levels and altered shoaling and exploration in male Siamese fighting fish. These modifications may have fitness consequences.
Collapse
Affiliation(s)
- Teresa L Dzieweczynski
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME, 04005, USA.
| | - Kelley B Portrais
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME, 04005, USA
| | - Megan A Stevens
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME, 04005, USA
| | - Jessica L Kane
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME, 04005, USA
| | - Jaslynn M Lawrence
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME, 04005, USA
| |
Collapse
|
7
|
McCallum ES, Krutzelmann E, Brodin T, Fick J, Sundelin A, Balshine S. Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:578-588. [PMID: 28672246 DOI: 10.1016/j.scitotenv.2017.06.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceutical active compounds (PhACs) are increasingly being reported in wastewater effluents and surface waters around the world. The presence of these products, designed to modulate human physiology and behaviour, has created concern over whether PhACs similarly affect aquatic organisms. Though laboratory studies are beginning to address the effects of individual PhACs on fish behaviour, few studies have assessed the effects of exposure to complex, realistic wastewater effluents on fish behaviour. In this study, we exposed a wild, invasive fish species-the round goby (Neogobius melanostomus)-to treated wastewater effluent (0%, 50% or 100% effluent dilutions) for 28days. We then determined the impact of exposure on fish aggression, an important behaviour for territory acquisition and defense. We found that exposure to 100% wastewater effluent reduced the number of aggressive acts that round goby performed. We complimented our behavioural assay with measures of pharmaceutical uptake in fish tissues. We detected 11 of 93 pharmaceutical compounds that we tested for in round goby tissues, and we found that concentration was greatest in the brain followed by plasma, then gonads, then liver, and muscle. Fish exposed to 50% and 100% effluent had higher tissue concentrations of pharmaceuticals and concentrated a greater number of pharmaceutical compounds compare to control fish exposed to no (0%) effluent. Exposed fish also showed increased ethoxyresorufin-O-deethylase (EROD) activity in liver tissue, suggesting that fish were exposed to planar halogenated/polycyclic aromatic hydrocarbons (PHHs/PAHs) in the wastewater effluent. Our findings suggest that fish in effluent-dominated systems may have altered behaviours and greater tissue concentration of PhACs. Moreover, our results underscore the importance of characterizing exposure to multiple pollutants, and support using behaviour as a sensitive tool for assessing animal responses to complex contaminant mixtures, like wastewater effluent.
Collapse
Affiliation(s)
- Erin S McCallum
- Department of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| | - Emily Krutzelmann
- Department of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Sundelin
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sigal Balshine
- Department of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| |
Collapse
|
8
|
Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius auratus. Sci Rep 2017; 7:17001. [PMID: 29208964 PMCID: PMC5717243 DOI: 10.1038/s41598-017-15989-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) have been found in wastewater treatment plant (WWTP) effluents and their recipient watersheds. To assess the potential of WWTP effluents to alter fish behaviour, we caged male goldfish (Carassius auratus) for 21-days at three sites along a contamination gradient downstream from a WWTP which discharges into Cootes Paradise Marsh, on the western tip of Lake Ontario. We also included a fourth caging site as an external reference site within Lake Ontario at the Jordan Harbour Conservation Area. We then measured concentrations of PPCPs and monoamine neurotransmitters in caged goldfish plasma, and conducted behavioural assays measuring activity, startle response, and feeding. We detected fifteen different PPCPs in goldfish plasma including six serotonin reuptake inhibitors (amitriptyline, citalopram, fluoxetine/norfluoxetine, sertraline, venlafaxine, and diphenhydramine). Plasma concentrations of serotonin were significantly greater in plasma of fish caged closer to the WWTP effluent outfall site. The fish caged near and downstream of the WWTP effluent were bolder, more exploratory, and more active overall than fish caged at the reference site. Taken together, our results suggest that fish downstream of WWTPs are accumulating PPCPs at levels sufficient to alter neurotransmitter concentrations and to also impair ecologically-relevant behaviours.
Collapse
|
9
|
McCallum ES, Du SNN, Vaseghi-Shanjani M, Choi JA, Warriner TR, Sultana T, Scott GR, Balshine S. In situ exposure to wastewater effluent reduces survival but has little effect on the behaviour or physiology of an invasive Great Lakes fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:37-48. [PMID: 28086147 DOI: 10.1016/j.aquatox.2016.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Treated effluents from wastewater treatment plants (WWTP) are a significant source of anthropogenic contaminants, such as pharmaceuticals, in the aquatic environment. Although our understanding of how wastewater effluent impacts fish reproduction is growing, we know very little about how effluent affects non-reproductive physiology and behaviours associated with fitness (such as aggression and activity). To better understand how fish cope with chronic exposure to wastewater effluent in the wild, we caged round goby (Neogobius melanostomus) for three weeks at different distances from a wastewater outflow. We evaluated the effects of this exposure on fish survival, behaviour, metabolism, and respiratory traits. Fish caged inside the WWTP and close to the outfall experienced higher mortality than fish from the reference site. Interestingly, those fish that survived the exposure performed similarly to fish caged at the reference site in tests of aggressive behaviour, startle-responses, and dispersal. Moreover, the fish near WWTP outflow displayed similar resting metabolism (O2 consumption rates), hypoxia tolerance, haemoglobin concentration, haematocrit, and blood-oxygen binding affinities as the fish from the more distant reference site. We discuss our findings in relation to exposure site water quality, concentrations of pharmaceutical and personal care product pollutants, and our test species tolerance.
Collapse
Affiliation(s)
- Erin S McCallum
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada.
| | - Sherry N N Du
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Maryam Vaseghi-Shanjani
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Jasmine A Choi
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Theresa R Warriner
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Tamanna Sultana
- School of Environment, Trent University, 1600 West Bank Drive Peterborough, ON K9J 7B8, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
10
|
Sebire M, Elphinstone Davis J, Hatfield R, Winberg S, Katsiadaki I. Prozac affects stickleback nest quality without altering androgen, spiggin or aggression levels during a 21-day breeding test. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:78-89. [PMID: 26453812 DOI: 10.1016/j.aquatox.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 05/25/2023]
Abstract
Pharmaceuticals are increasingly being used in human and veterinary medicine, and their presence in the aquatic environment may present a threat to non-target aquatic organisms. The selective serotonin reuptake inhibitor fluoxetine (Prozac) has been reported to affect diverse behaviours (feeding, aggression, and reproduction) and also the endocrine system (steroid biosynthesis pathway) in fish. To investigate these claims further, and in particular effects on androgen synthesis, male three-spined sticklebacks (Gasterosteus aculeatus) were exposed to fluoxetine at 0, 3.2, 10 and 32μg/L in a flow-through system for 21 days. Their sex was determined prior to exposure using a non-invasive method to collect DNA for determining the genetic sex, reported here for the first time. This was necessary as the exposure required males of a non-breeding status which had not developed secondary characteristics. Post exposure a number of biochemical (serotonin, steroid and spiggin levels) and apical (aggressive behaviour) endpoints were measured. No effects were detected on morphometric parameters, spiggin or androgen (11-ketotestosterone) levels. However, all fluoxetine-exposed male fish had higher cortisol levels in comparison to the control fish, although this effect only persisted throughout the whole exposure duration at the highest concentration (32μg/L). In addition, the ratio of 5-HIAA/5-HT (serotonin metabolite/serotonin) was significantly lower in the brains of males exposed to fluoxetine at all concentrations tested. Although we found no differences in the number of nests built by the males, the quality of the nests produced by the fluoxetine-exposed males was generally inferior consisting only of a basic, rudimentary structure. Males exposed to 32μg/L of fluoxetine displayed a delayed response to a simulated threat (rival male via own mirror image) and were less aggressive (number of bites and attacks) toward their mirror image, but these differences were not statistically significant. In summary, fluoxetine exposure resulted in reduced serotonergic activity in the male three-spined stickleback brain suggesting that the mechanism of action between humans and fish is at least partially conserved. Furthermore, this study provided additional evidence of cross-talk between the serotonergic and stress axes as demonstrated by the perturbations in cortisol levels. This potentially complex interaction at brain level may be responsible for the effects observed on nest quality, an endpoint with serious ecological consequences for this species. Finally, despite our hypothesis (an effect on steroid biosynthesis, based on limited literature evidence), we observed no effects of fluoxetine exposure (at the concentrations and duration employed) on male stickleback androgen levels.
Collapse
Affiliation(s)
- Marion Sebire
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom.
| | | | - Robert Hatfield
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Svante Winberg
- Uppsala University, Department of Neuroscience, Box 593, 751 24 Uppsala, Sweden
| | - Ioanna Katsiadaki
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
11
|
Lange A, Sebire M, Rostkowski P, Mizutani T, Miyagawa S, Iguchi T, Hill EM, Tyler CR. Environmental chemicals active as human antiandrogens do not activate a stickleback androgen receptor but enhance a feminising effect of oestrogen in roach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:48-59. [PMID: 26440146 DOI: 10.1016/j.aquatox.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 05/22/2023]
Abstract
Sexual disruption is reported in wild fish populations living in freshwaters receiving discharges of wastewater treatment works (WwTW) effluents and is associated primarily with the feminisation of males by exposure to oestrogenic chemicals. Antiandrogens could also contribute to the feminisation of male fish, but there are far less data supporting this hypothesis and almost nothing is known for the effects of oestrogens in combination with antiandrogens in fish. We conducted a series of in vivo exposures in two fish species to investigate the potency on reproductive-relevant endpoints of the antiandrogenic antimicrobials triclosan (TCS), chlorophene (CP) and dichlorophene (DCP) and the resin, abietic acid (AbA), all found widely in WwTW effluents. We also undertook exposures with a mixture of antiandrogens and a mixture of antiandrogens in combination with the oestrogen 17α-ethinyloestradiol (EE2). In stickleback (Gasterosteus aculeatus), DCP showed a tendency to reduce spiggin induction in females androgenised by dihydrotestosterone (DHT), but these findings were not conclusive. In roach (Rutilus rutilus), exposures to DCP (178 days), or a mixture of TCS, CP and AbA (185 days), or to the model antiandrogen flutamide (FL, 178 days) had no effect on gonadal sex ratio or on the development of the reproductive ducts. Exposure to EE2 (1.5ng/L, 185 days) induced feminisation of the ducts in 17% of the males and in the mixture of antiandrogens (TCS, CP, AbA) in combination with EE2, almost all (96%) of the males had a feminised reproductive ducts. In stickleback androgen receptor (ARα and ARβ) transactivation assays, the model antiandrogens, FL and procymidone inhibited 11-ketotestosterone (11-KT) induced receptor activation, but none of the human antiandrogens, TCS, CP, DCP and AbA had an effect. These data indicate that antimicrobial antiandrogens in combination can contribute to the feminisation process in exposed males, but they do not appear to act through the androgen receptor in fish.
Collapse
Affiliation(s)
- Anke Lange
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4QD, United Kingdom.
| | - Marion Sebire
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4QD, United Kingdom; Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Pawel Rostkowski
- University of Sussex, School of Life Sciences, Brighton BN1 9QJ, United Kingdom
| | - Takeshi Mizutani
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Elizabeth M Hill
- University of Sussex, School of Life Sciences, Brighton BN1 9QJ, United Kingdom
| | - Charles R Tyler
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4QD, United Kingdom.
| |
Collapse
|
12
|
Cassese A, Guindani M, Antczak P, Falciani F, Vannucci M. A Bayesian model for the identification of differentially expressed genes in Daphnia magna exposed to munition pollutants. Biometrics 2015; 71:803-11. [PMID: 25771699 DOI: 10.1111/biom.12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 02/01/2015] [Indexed: 11/29/2022]
Abstract
In this article we propose a Bayesian hierarchical model for the identification of differentially expressed genes in Daphnia magna organisms exposed to chemical compounds, specifically munition pollutants in water. The model we propose constitutes one of the very first attempts at a rigorous modeling of the biological effects of water purification. We have data acquired from a purification system that comprises four consecutive purification stages, which we refer to as "ponds," of progressively more contaminated water. We model the expected expression of a gene in a pond as the sum of the mean of the same gene in the previous pond plus a gene-pond specific difference. We incorporate a variable selection mechanism for the identification of the differential expressions, with a prior distribution on the probability of a change that accounts for the available information on the concentration of chemical compounds present in the water. We carry out posterior inference via MCMC stochastic search techniques. In the application, we reduce the complexity of the data by grouping genes according to their functional characteristics, based on the KEGG pathway database. This also increases the biological interpretability of the results. Our model successfully identifies a number of pathways that show differential expression between consecutive purification stages. We also find that changes in the transcriptional response are more strongly associated to the presence of certain compounds, with the remaining contributing to a lesser extent. We discuss the sensitivity of these results to the model parameters that measure the influence of the prior information on the posterior inference.
Collapse
Affiliation(s)
- Alberto Cassese
- Department of Statistics, Rice University, Houston, Texas 77005, U.S.A.,Department of Biostatistics, UT MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Michele Guindani
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Philipp Antczak
- Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas 77005, U.S.A
| |
Collapse
|
13
|
Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. CHEMOSPHERE 2015; 120:764-77. [PMID: 25439131 DOI: 10.1016/j.chemosphere.2014.09.068] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 05/02/2023]
Abstract
To elucidate the effects of chemicals on populations of different species in the environment, efficient testing and modeling approaches are needed that consider multiple stressors and allow reliable extrapolation of responses across species. An adverse outcome pathway (AOP) is a concept that provides a framework for organizing knowledge about the progression of toxicity events across scales of biological organization that lead to adverse outcomes relevant for risk assessment. In this paper, we focus on exploring how the AOP concept can be used to guide research aimed at improving both our understanding of chronic toxicity, including delayed toxicity as well as epigenetic and transgenerational effects of chemicals, and our ability to predict adverse outcomes. A better understanding of the influence of subtle toxicity on individual and population fitness would support a broader integration of sublethal endpoints into risk assessment frameworks. Detailed mechanistic knowledge would facilitate the development of alternative testing methods as well as help prioritize higher tier toxicity testing. We argue that targeted development of AOPs supports both of these aspects by promoting the elucidation of molecular mechanisms and their contribution to relevant toxicity outcomes across biological scales. We further discuss information requirements and challenges in application of AOPs for chemical- and site-specific risk assessment and for extrapolation across species. We provide recommendations for potential extension of the AOP framework to incorporate information on exposure, toxicokinetics and situation-specific ecological contexts, and discuss common interfaces that can be employed to couple AOPs with computational modeling approaches and with evolutionary life history theory. The extended AOP framework can serve as a venue for integration of knowledge derived from various sources, including empirical data as well as molecular, quantitative and evolutionary-based models describing species responses to toxicants. This will allow a more efficient application of AOP knowledge for quantitative chemical- and site-specific risk assessment as well as for extrapolation across species in the future.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Raquel N Carvalho
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, 21027 Ispra, Italy
| | | | - Nancy D Denslow
- University of Florida, Department of Physiological Sciences, Center for Environmental and Human Toxicology and Genetics Institute, 32611 Gainesville, FL, USA
| | - Marlies Halder
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Cheryl A Murphy
- Michigan State University, Fisheries and Wildlife, Lyman Briggs College, 48824 East Lansing, MI, USA
| | - Dick Roelofs
- VU University, Institute of Ecological Science, 1081 HV Amsterdam, The Netherlands
| | - Alexandra Rolaki
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Karen H Watanabe
- Oregon Health & Science University, Institute of Environmental Health, Division of Environmental and Biomolecular Systems, 97239-3098 Portland, OR, USA
| |
Collapse
|
14
|
Bhatia H, Kumar A, Chapman JC, McLaughlin MJ. Effects of short-term exposure to the model anti-androgen, flutamide on reproductive function based endpoints in female Murray rainbowfish (Melanotaenia fluviatilis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:143-151. [PMID: 25193785 DOI: 10.1016/j.ecoenv.2014.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to evaluate the responses of female Murray rainbowfish (Melanotaenia fluviatilis) to the model anti-androgen, flutamide in a short-term exposure. Adult female Murray rainbowfish were exposed to nominal (measured) concentrations of 125 (104), 250 (163), 500 (378) and 1000 (769) µg/L of flutamide for seven days in a semi-static set-up. Plasma vitellogenin (VTG), 11-keto testosterone (11-KT) and 17β-estradiol (E2) concentrations, brain aromatase activity and ovarian histology were assessed following the exposure. No treatment-related mortality was found in rainbowfish and there was no effect of flutamide on the developmental stage of the ovaries. Histological investigation revealed absence of mature oocytes in flutamide-treated fish. In addition, a significant reduction in the sizes of the vitellogenic oocytes was found after treatment with 500 and 1000 µg/L flutamide. The circulating levels of VTG and the activity of aromatase in the brain were also significantly reduced in fish treated with 500 and 1000 µg/L flutamide. Treatment with higher concentrations of flutamide reduced the levels of 11-KT and E2 in plasma. The results from this study demonstrate that a short-term exposure to the model anti-androgen, flutamide can adversely affect the reproductive function based on end-points such as plasma VTG, 11-KT and E2; brain aromatase activity and sizes of the oocytes in female Murray rainbowfish. Further, a positive correlation between these experimental variables suggests hormonal imbalance.
Collapse
Affiliation(s)
- Harpreet Bhatia
- School of Agriculture, Food and Wine, PMB 1, The University of Adelaide, Australia; Water for a Healthy Country Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia.
| | - Anupama Kumar
- Water for a Healthy Country Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia
| | - John C Chapman
- Office of Environment and Heritage, PMB 29, Lidcombe, NSW 1825, Australia
| | - Mike J McLaughlin
- School of Agriculture, Food and Wine, PMB 1, The University of Adelaide, Australia; Water for a Healthy Country Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia
| |
Collapse
|
15
|
Saaristo M, Myers J, Jacques-Hamilton R, Allinson M, Yamamoto A, Allinson G, Pettigrove V, Wong BBM. Altered reproductive behaviours in male mosquitofish living downstream from a sewage treatment plant. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:58-64. [PMID: 24569133 DOI: 10.1016/j.aquatox.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Freshwater environments are common repositories for the discharge of large volumes of domestic and industrial waste, particularly through wastewater effluent. One common group of chemical pollutants present in wastewater are endocrine disrupting chemicals (EDCs), which can induce morphological and behavioural changes in aquatic organisms. The aim of this study was to compare the reproductive behaviour and morphology of a freshwater fish, the mosquitofish (Gambusia holbrooki), collected from two sites (wastewater treatment plant (WWTP) and a putative pristine site). The mosquitofish is a sexually dimorphic livebearer with a coercive mating system. Males inseminate females using their modified anal fin as an intromittent organ. Despite this, females are able to exert some control over the success of male mating attempts by selectively associating with, or avoiding, certain males over others. Using standard laboratory assays of reproductive behaviour, we found that mosquitofish males living in close proximity to WWTP showed increased mating activity compared to those inhabiting a pristine site. More specifically, during behavioural trials in which males were allowed to interact with females separated by a transparent divider, we found that WWTP-males spent more time associating with females. Concordant with this, when males and females were subsequently allowed to interact freely, WWTP-males also spent more time chasing and orienting towards the females. As a result, females from both sites showed more interest towards the WWTP-site males. Male anal fin morphology, however, did not differ between sites. Our study illustrates that lifetime exposure to WWTP-effluents can greatly affect male behaviour. The results underscore the importance of behaviour as a potential tool for investigating unknown contaminants in the environment.
Collapse
Affiliation(s)
- Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Åbo Akademi University, Department of Biosciences, Turku, Finland.
| | - Jackie Myers
- Centre for Aquatic Pollution Identification and Management (CAPIM), Department of Zoology, The University of Melbourne, Victoria, Australia.
| | | | - Mayumi Allinson
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of Chemistry, The University of Melbourne, Victoria, Australia.
| | - Atsushi Yamamoto
- Urban Environment Group, Osaka City Institute for Public Health and Environmental Sciences, Osaka, Japan.
| | - Graeme Allinson
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of Chemistry, The University of Melbourne, Victoria, Australia.
| | - Vincent Pettigrove
- Centre for Aquatic Pollution Identification and Management (CAPIM), Department of Zoology, The University of Melbourne, Victoria, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
16
|
Hamilton PB, Nicol E, De-Bastos ESR, Williams RJ, Sumpter JP, Jobling S, Stevens JR, Tyler CR. Populations of a cyprinid fish are self-sustaining despite widespread feminization of males. BMC Biol 2014; 12:1. [PMID: 24417977 PMCID: PMC3922797 DOI: 10.1186/1741-7007-12-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treated effluents from wastewater treatment works can comprise a large proportion of the flow of rivers in the developed world. Exposure to these effluents, or the steroidal estrogens they contain, feminizes wild male fish and can reduce their reproductive fitness. Long-term experimental exposures have resulted in skewed sex ratios, reproductive failures in breeding colonies, and population collapse. This suggests that environmental estrogens could threaten the sustainability of wild fish populations. RESULTS Here we tested this hypothesis by examining population genetic structures and effective population sizes (N(e)) of wild roach (Rutilus rutilus L.) living in English rivers contaminated with estrogenic effluents. N(e) was estimated from DNA microsatellite genotypes using approximate Bayesian computation and sibling assignment methods. We found no significant negative correlation between N(e) and the predicted estrogen exposure at 28 sample sites. Furthermore, examination of the population genetic structure of roach in the region showed that some populations have been confined to stretches of river with a high proportion of estrogenic effluent for multiple generations and have survived, apparently without reliance on immigration of fish from less polluted sites. CONCLUSIONS These results demonstrate that roach populations living in some effluent-contaminated river stretches, where feminization is widespread, are self-sustaining. Although we found no evidence to suggest that exposure to estrogenic effluents is a significant driving factor in determining the size of roach breeding populations, a reduction in N(e) of up to 65% is still possible for the most contaminated sites because of the wide confidence intervals associated with the statistical model.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Elizabeth Nicol
- Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | - Eliane SR De-Bastos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - John P Sumpter
- Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | - Susan Jobling
- Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | - Jamie R Stevens
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
17
|
Blocker TD, Ophir AG. Cryptic confounding compounds: A brief consideration of the influences of anthropogenic contaminants on courtship and mating behavior. Acta Ethol 2013; 16:10.1007/s10211-012-0137-x. [PMID: 24244068 PMCID: PMC3827776 DOI: 10.1007/s10211-012-0137-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Contaminants, like pesticides, polychlorinated biphenyls (PCBs), dioxins and metals, are persistent and ubiquitous and are known to threaten the environment. Traditionally, scientists have considered the direct physiological risks that these contaminants pose. However, scientists have just begun to integrate ethology and toxicology to investigate the effects that contaminants have on behavior. This review considers the potential for contaminant effects on mating behavior. Here we assess the growing body of research concerning disruptions in sexual differentiation, courtship, sexual receptivity, arousal, and mating. We discuss the implications of these disruptions on conservation efforts and highlight the importance of recognizing the potential for environmental stressors to affect behavioral experimentation. More specifically, we consider the negative implications for anthropogenic contaminants to affect the immediate behavior of animals, and their potential to have cascading and/or long-term effects on the behavioral ecology and evolution of populations. Overall, we aim to raise awareness of the confounding influence that contaminants can have, and promote caution when interpreting results where the potential for cryptic affects are possible.
Collapse
Affiliation(s)
- Tomica D Blocker
- Department of Zoology, Oklahoma State University, Stillwater, OK 74078
| | | |
Collapse
|
18
|
Lange A, Katsu Y, Miyagawa S, Ogino Y, Urushitani H, Kobayashi T, Hirai T, Shears JA, Nagae M, Yamamoto J, Ohnishi Y, Oka T, Tatarazako N, Ohta Y, Tyler CR, Iguchi T. Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:250-258. [PMID: 22000336 DOI: 10.1016/j.aquatox.2011.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/06/2011] [Accepted: 09/11/2011] [Indexed: 05/27/2023]
Abstract
Exposure to estrogenic chemicals discharged into the aquatic environment has been shown to induce feminization in wild freshwater fish and although fish species have been reported to differ in their susceptibility for these effects, empirical studies that directly address this hypothesis are lacking. In this study, in vitro ERα activation assays were applied in a range of fish species used widely in chemical testing (including, zebrafish, fathead minnow, medaka) and/or as environmental monitoring species (including, roach, stickleback, carp) to assess their comparative responsiveness to natural (estrone, estradiol, estriol) and synthetic (17α-ethinylestradiol (EE2), diethylstilbestrol (DES)) estrogens. In vivo exposures to EE2 via the water (nominal 2 and 10 ng/L for 7 days) were also conducted for seven fish species to compare their responsiveness for hepatic vitellogenin (VTG) mRNA induction (an ER mediated response). Of the fish species tested, zebrafish ERα was found to be the most responsive and carp and stickleback ERα the least responsive to natural steroid estrogens. This was also the case for exposure to EE2 with an ERα-mediated response sensitivity order of zebrafish > medaka > roach > fathead minnow > carp > stickleback. For VTG mRNA induction in vivo, the order of species responsiveness was: rainbow trout (not tested in the ERα activation assays) > zebrafish > fathead minnow > medaka > roach > stickleback > carp. Overall, the responses to steroid estrogens in vitro via ERα compared well with those seen in vivo (VTG induction for exposure to EE2) showing in vitro screening of chemicals using fish ERα-mediated responses indicative of estrogenic responses (VTG induction) in vivo.
Collapse
Affiliation(s)
- Anke Lange
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4PS, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|