1
|
Ibor OR, Khan EA, Arkuwe A. A bioanalytical approach for assessing the effects of soil extracts from solid waste dumpsite in Calabar (Nigeria) on lipid and estrogenic signaling of fish Poeciliopsis lucida hepatocellular carcinoma-1 cells in vitro and in vivo African catfish ( Clarias gariepinus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:774-789. [PMID: 37504673 DOI: 10.1080/15287394.2023.2240839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In applying bioanalytical approaches, the aim of this study was to determine the toxicity of contaminants derived from a solid waste dumpsite in Calabar (Nigeria), by investigating the alterations of lipid and estrogen signaling pathways in Poeciliopsis lucida hepatocellular carcinoma-1 (PLHC-1) cells and compared to in vivo African catfish (Clarias gariepinus), using polar, nonpolar and elutriate extraction methods. Cells were exposed for 48 hr period to different concentrations of the contaminant extracts. The PLHC-1 cells were evaluated for lipid responses as follows adipoRed assay, retinoid x receptor (rxr), peroxisome proliferator-activated receptor isoforms (ppar-α and γ), estrogen receptor (er-α) and vitellogenin (vtg) transcripts. The lipid signaling activation was also assessed in vivo using C. gariepinus, where hepatic levels of ppar-α were determined at both transcript and functional proteins levels. Data showed variable-, extract type and concentration-specific elevations in mRNA and protein levels for lipidomic and estrogenic effects. These effects were either biphasic at low and high concentrations, depending upon extract type, or concentration-dependent elevations. In general, these toxicological responses may be attributed to soil organic and inorganic contaminants burden previously derived from the dumpsite. Thus, our data demonstrate a unique lipid and endocrine-disruptive chemical (EDC) effects of each soil extract, suggesting multiple and complex contaminant interactions in the environment and biota. Analysis of numerous soil- or sediment-bound contaminants have numerous limitations and cost implications for developing countries. Our approach provides a bioanalytical protocol and endpoints for measuring the metabolic and EDC effects of complex environmental matrices for ecotoxicological assessment and monitoring.
Collapse
Affiliation(s)
- Oju Richard Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arkuwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Qiu Z, Xiao J, Zheng S, Huang W, Du T, Au WW, Wu K. Associations between functional polychlorinated biphenyls in adipose tissues and prognostic biomarkers of breast cancer patients. ENVIRONMENTAL RESEARCH 2020; 185:109441. [PMID: 32247153 DOI: 10.1016/j.envres.2020.109441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exposure to polychlorinated biphenyls (PCBs) has been shown to influence expression of some biomarkers that are predictive/prognostic for breast cancer. Therefore, our study was conducted to further investigating associations of different functional PCBs in adipose tissue with breast cancer prognostic biomarkers. METHODS Two hundred and five breast cancer patients were recruited in Shantou, China. Breast adipose tissues were collected during their resection surgery and levels of 7 PCB congeners were analyzed by gas chromatography-mass spectrometry (GC-MS). The PCB congeners were divided into 4 groups according to structure-activity. Socio-demographic, clinical and pathological information were obtained from questionnaire and digital medical records. Odds ratios (ORs) for associations between prognostic biomarkers and PCB levels (tertile 3 [T3], tertile 2 [T2] vs. tertile 1) were estimated from logistic regression models. RESULTS Most PCB congeners were detectable, with a highest level (22.06 ng/g lipid) of PCB153. As for estrogenic PCBs, increased PCB52 exposure was positively associated with PR expression (ORT2 = 2.36, Ptrend = 0.054), but higher PCB101 level was negatively associated with HER-2 (ORT3 = 0.24, Ptrend = 0.029) and tumor size (OR = 0.43). Limited dioxin-like PCB138 exposure was positively associated with ER (ORT2 = 3.23, ORT3 = 3.77, Ptrend = 0.047) but negatively with Top-IIα expression (ORT2 = 0.35, ORT3 = 0.28, Ptrend = 0.080). Higher PCB153 (CYP inducer) level was negatively associated with ER (ORT2 = 0.32, ORT3 = 0.19, Ptrend = 0.038) but positively with Ki-67 expression (ORT2 = 1.43, ORT3 = 3.60, Ptrend = 0.055). Higher neurotoxic PCB28 was positively associated with HER-2 (ORT3 = 5.43, Ptrend = 0.006) and tumor size (OR = 2.37). Moreover, total PCBs exposure was positively associated with VEGF-C (ORT2 = 76.91, ORT3 = 97.96, Ptrend = 0.041) and tumor metastasis (OR = 2.25). CONCLUSIONS Different functional PCB congeners have different associations (both positive and negative) with breast cancer prognostic biomarkers, as well as tumor classification stage. Therefore, the development and aggressiveness of breast cancer may depend upon exposure to specific structure-activity of PCBs.
Collapse
Affiliation(s)
- Zhaolong Qiu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Taifeng Du
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
4
|
Licata P, Tardugno R, Pergolizzi S, Capillo G, Aragona M, Colombo A, Gervasi T, Pellizzeri V, Cicero N, Calò M. In vivo effects of PCB-126 and genistein on vitellogenin expression in zebrafish. Nat Prod Res 2018; 33:2507-2514. [PMID: 29607746 DOI: 10.1080/14786419.2018.1455048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, the vitellogenin (Vtg) modulation by genistein and polychlorinated biphenyl-126 (PCB-126) exposure in zebrafishes has been investigated. Both PCB-126 and genistein have been identified as aquatic pollutants and can further increase estrogenicity of waterways. Vtg is egg yolk precursor protein release by the hepatocytes during vitellogenesis. This process occurs normally in the hepatocytes in response to the activation with the estrogens such as 17-β-estradiol. Our immunohistochemical findings showed a Vtg expression that increases at 12 h and at 72 h in the liver of treated fishes with both PCB-126 and genistein, individually and in combination. Furthermore, for the first time, also hepatic stellate cells (HSC) in the liver parenchyma were strongly positive for vitellogenin.
Collapse
Affiliation(s)
- Patrizia Licata
- a Department of Veterinary Science, Veterinary Pharmacology and Toxicology , University of Messina , Messina , Italy
| | - Roberta Tardugno
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Simona Pergolizzi
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Gioele Capillo
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Marialuisa Aragona
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Antonio Colombo
- d Azienda Sanitaria Provinciale Messina (ASP) , Messina , Italy
| | - Teresa Gervasi
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Vito Pellizzeri
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Nicola Cicero
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy.,e Science4Life s.r.l., A Spin-off of the University of Messina , Messina , Italy
| | - Margherita Calò
- a Department of Veterinary Science, Veterinary Pharmacology and Toxicology , University of Messina , Messina , Italy
| |
Collapse
|
5
|
Zhang S, Li S, Zhou Z, Fu H, Xu L, Xie HQ, Zhao B. Development and Application of a Novel Bioassay System for Dioxin Determination and Aryl Hydrocarbon Receptor Activation Evaluation in Ambient-Air Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2926-2933. [PMID: 29437390 DOI: 10.1021/acs.est.7b06376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Airborne persistent toxic substances are associated with health impacts resulting from air pollution, for example, dioxins, dioxin-like polychlorinated biphenyls, and certain polycyclic aromatic hydrocarbons (PAHs), which activate aryl hydrocarbon receptors (AhR) and thereby produce adverse outcomes. Thus, a bioassay for evaluating AhR activation is required for risk assessment of ambient-air samples, and for this purpose, we developed a new and sensitive recombinant mouse hepatoma cell line, CBG2.8D, in which a novel luciferase-reporter plasmid containing two copies of a newly designed dioxin-responsive domain and a minimal promoter derived from a native gene were integrated. The minimal detection limit for 2,3,7,8-tetrachlorodibenzo- p-dioxin with this assay system was 0.1 pM. We used CBG2.8D to determine dioxin levels in 45 ambient-air samples collected in Beijing. The measured bioanalytical equivalent (BEQ) values were closely correlated with the toxic equivalent values obtained from chemical analysis. In haze ambient-air samples, the total activation of aryl hydrocarbon receptors (TAA) was considerably higher than the BEQ of dioxin-rich fractions, according to the results of the cell-based bioassay. Notably, the haze samples contained abundant amounts of PAHs, whose relative toxicity equivalent was correlated with the TAA; this finding suggests that PAHs critically contribute to the AhR-related biological impacts of haze ambient-air samples.
Collapse
Affiliation(s)
- Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuaizhang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control , National Research Center for Environmental Analysis and Measurement , Beijing 100029 , China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
6
|
He Y, Peng L, Huang Y, Peng X, Zheng S, Liu C, Wu K. Association of breast adipose tissue levels of polychlorinated biphenyls and breast cancer development in women from Chaoshan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4778-4790. [PMID: 27981482 DOI: 10.1007/s11356-016-8208-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are implied to be potential risk factors for breast cancer in wildlife and in in vivo and in vitro studies. Epidemiological studies revealed some individual or groups of PCB congeners associated with breast cancer risk, but consistent conclusions are scarce. This study aimed to explore the association between PCB exposure and breast cancer development. Breast adipose tissues were collected, and seven PCB congeners were analyzed by gas chromatography-mass spectrometry (GC-MS). Demographic characteristics, basic clinical data, and pathological diagnosis information were obtained from medical records. The differences in PCB exposure levels among different groups and indices were compared, and the correlation among PCB congeners was evaluated. The order of congener profile by molar concentration was PCB-153 > PCB-138 > PCB-180 > PCB-118 > PCB-101 > PCB-52 > PCB-28. ∑PCB level differed by occupation and residence and was significantly higher at 55-59-year-old group than at the other age groups. ∑PCB level was higher in postmenopausal than in premenopausal women. Decreasing ∑PCB levels were related with increasing parity among women with progesterone receptor (PR)-positive breast tumors. With increased clinical stage, the ∑PCB level increased significantly. ∑PCB level did not differ by tumor-node-metastasis classification and PR or human epidermal growth factor receptor 2 (HER2) expression but did differ by estrogen receptor (ER) expression (P = 0.04) without a regularly increasing trend in breast adipose tissue. These results suggest a potential association between PCB exposure and breast cancer development. Further in vitro and in vivo studies are needed to confirm these findings and explain the underlying mechanisms. Graphical Abstract Total PCBs level among different clinical stages in breast cancer patients.
Collapse
Affiliation(s)
- Yuanfang He
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaodong Peng
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China.
| |
Collapse
|
7
|
Liu D, Perkins JT, Petriello MC, Hennig B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65. Toxicol Appl Pharmacol 2015; 289:457-65. [PMID: 26519613 DOI: 10.1016/j.taap.2015.10.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
Abstract
Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 induced the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications.
Collapse
Affiliation(s)
- Dandan Liu
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States
| | - Jordan T Perkins
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Graduate Center for Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
8
|
Qian Y, Zhang S, Guo W, Ma J, Chen Y, Wang L, Zhao M, Liu S. Polychlorinated Biphenyls (PCBs) Inhibit Hepcidin Expression through an Estrogen-Like Effect Associated with Disordered Systemic Iron Homeostasis. Chem Res Toxicol 2015; 28:629-40. [DOI: 10.1021/tx500428r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Qian
- College
of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuping Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute
for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenli Guo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meirong Zhao
- College
of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Liu H, Tang S, Zheng X, Zhu Y, Ma Z, Liu C, Hecker M, Saunders DMV, Giesy JP, Zhang X, Yu H. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1823-33. [PMID: 25565004 DOI: 10.1021/es503833q] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), 6-hydroxy-tetrabromodiphenyl ether (6-OH-BDE-47), and 6-methoxy-tetrabromodiphenyl ether (6-MeO-BDE-47) are the most detected congeners of polybrominated diphenyl ethers (PBDEs), OH-BDEs, and MeO-BDEs, respectively, in aquatic organisms. Although it has been demonstrated that BDE-47 can interfere with certain endocrine functions that are mediated through several nuclear hormone receptors (NRs), most of these findings were from mammalian cell lines exposed in vitro. In the present study, embryos and larvae of zebrafish were exposed to BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to compare their accumulation, biotransformation, and bioconcentration factors (BCF) from 4 to 120 hpf. In addition, effects on expression of genes associated with eight different pathways regulated by NRs were investigated at 120 hpf. 6-MeO-BDE-47 was most bioaccumulated and 6-OH-BDE-47, which was the most potent BDE, was least bioaccumulated. Moreover, the amount of 6-MeO-BDE-47, but not BDE-47, transformed to 6-OH-BDE-47 increased in a time-dependent manner, approximately 0.01%, 0.04%, and 0.08% at 48, 96, and 120 hpf, respectively. Expression of genes regulated by the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and mineralocorticoid receptor (MR) was affected in larvae exposed to 6-OH-BDE-47, whereas genes regulated by AhR, ER, and the glucocorticoid receptor (GR) were altered in larvae exposed to BDE-47. The greatest effect on expression of genes was observed in larvae exposed to 6-MeO-BDE-47. Specifically, 6-MeO-BDE-47 affected the expression of genes regulated by AhR, ER, AR, GR, and thyroid hormone receptor alpha (TRα). These pathways were mostly down-regulated at 2.5 μM. Taken together, these results demonstrate the importance of usage of an internal dose to assess the toxic effects of PBDEs. BDE-47 and its analogs elicited distinct effects on expression of genes of different hormone receptor-mediated pathways, which have expanded the knowledge of different mechanisms of endocrine disrupting effects in aquatic vertebrates. Because some of these homologues are natural products, assessments of risks of anthropogenic PBDE need to be made against the background of concentrations from naturally occurring products. Even though PBDEs are being phased out as flame retardants, the natural products remain.
Collapse
MESH Headings
- Animals
- Anisoles/pharmacokinetics
- Anisoles/toxicity
- Biotransformation
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Endocrine Disruptors/pharmacokinetics
- Endocrine Disruptors/toxicity
- Flame Retardants/pharmacokinetics
- Flame Retardants/toxicity
- Gene Expression Regulation, Developmental/drug effects
- Halogenated Diphenyl Ethers/pharmacokinetics
- Halogenated Diphenyl Ethers/toxicity
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Polybrominated Biphenyls/pharmacokinetics
- Polybrominated Biphenyls/toxicity
- Receptors, Androgen/genetics
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Estrogen/genetics
- Receptors, Glucocorticoid/genetics
- Receptors, Mineralocorticoid/genetics
- Receptors, Thyroid Hormone/genetics
- Water Pollutants, Chemical/pharmacokinetics
- Water Pollutants, Chemical/toxicity
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Calò M, Licata P, Bitto A, Lo Cascio P, Interdonato M, Altavilla D. Role of AHR, AHRR and ARNT in response to dioxin-like PCBs in Spaurus aurata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:14226-14231. [PMID: 25060310 DOI: 10.1007/s11356-014-3321-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates a variety of biological responses to ubiquitous dioxin and PCB dioxin-like. AHR together with ARNT, AHRR, represent a novel basic helix-loop-helix/PAS family of transcriptional regulators. Their interplay may affect the xenobiotic response. The aim of this study was to investigate, by histological, immunohistochemical investigations and western-blot analysis, the expression of AHR, ARNT and AHRR in liver of seabrem (Spaurus aurata) after exposure at different time to dioxin-like PCB126 in order to deep the knowledge about their specific role. The findings showed a significant increase of AHR and ARNT expression in juvenile fishes after 12 h than control group. The induction of AHR and ARNT is also significant at 24 and 72 hours compared to the control group. Furthemore, induction of AHRR expression has proved to increase both 12 h but this induction does not seem significant to 24 and 72 hours. The most important data of this work is that the induction of AHRR, when the action of the toxic persistence substances, as dioxin and PCB-126, it is not enough to reduce AHR signaling and thus its hyperactivation leads to toxic effects in seabrem (Spaurus aurata). All this confirms the importance of AHR ligands as new class of drugs that can be directed against severe disease such as cancer.
Collapse
Affiliation(s)
- Margherita Calò
- Department of Veterinary Science, University of Messina, Italy, Polo SS Annunziata, 98168, Messina, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Rigaud C, Couillard CM, Pellerin J, Légaré B, Hodson PV. Applicability of the TCDD-TEQ approach to predict sublethal embryotoxicity in Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:133-144. [PMID: 24607689 DOI: 10.1016/j.aquatox.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent quantity (TCDD-TEQ) approach was used successfully to predict lethal embryotoxicity in salmonids, but its applicability to sublethal effects of mixtures of organohalogenated compounds in other fish species is poorly known. The sublethal toxicity of two dioxin-like compounds (DLCs), 3,3',4,4'-tetrachlorobiphenyl (PCB77) and 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PnCDF), two non-dioxin-like (NDL) polychlorinated biphenyls (PCBs), 2,2',5,5'-tetrachlorobiphenyl (PCB52) and 2,3,3',4',6-pentachlorobiphenyl (PCB110), and of Aroclor 1254, a complex commercial mixture of PCBs, was assessed in Fundulus heteroclitus embryos exposed by intravitelline injection. At 16 days post-fertilization, the two DLCs and Aroclor 1254 altered prey capture ability in addition to inducing classical aryl hydrocarbon receptor-mediated responses: ethoxyresorufin-O-deethylase (EROD) induction, craniofacial deformities and reduction in body length. None of these responses was induced by the two NDL PCBs, at doses up to 5400 ng g(-1)wet weight. Dose-response curves for prey capture ability for the 2 DLCs tested were not parallel to that of TCDD, violating a fundamental assumption for relative potency (ReP) estimation. Dose-response curves for EROD induction were parallel for 2,3,4,7,8-PnCDF and TCDD, but the ReP of 2,3,4,7,8-PnCDF for F. heteroclitus was 5-fold higher than the World Health Organization (WHO) fish toxic equivalent factor (TEF) based on embryolethality in salmonids. The chemically derived TCDD-TEQs of Aroclor 1254, calculated using 3,3',4,4',5-pentachlorobiphenyl (PCB126) concentrations and it ReP for F. heteroclitus, overestimated its potency to induce EROD activity possibly due to antagonistic interactions among PCBs. This study highlights the limitations of using TEFs based on salmonid toxicity data alone for risk assessment to other fish species. There is a need to assess the variability of RePs of DLCs in different species for a variety of endpoints and to better understand interactions between DLCs and other toxic chemicals.
Collapse
Affiliation(s)
- Cyril Rigaud
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 3A1, Canada; Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada.
| | - Catherine M Couillard
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada.
| | - Jocelyne Pellerin
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Benoît Légaré
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada
| | - Peter V Hodson
- Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|