1
|
Pradhoshini KP, Priyadharshini M, Santhanabharathi B, Ahmed MS, Parveen MHS, War MUD, Musthafa MS, Alam L, Falco F, Faggio C. Biological effects of ionizing radiation on aquatic biota - A critical review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104091. [PMID: 36870406 DOI: 10.1016/j.etap.2023.104091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ionizing radiation from radionuclides impacts marine aquatic biota and the scope of investigation must be wider than just invertebrates. We intend to detail and illustrate numerous biological effects that occur in both aquatic vertebrates and invertebrates, at various dose rates from all three kinds of ionizing radiation. The characteristics of radiation sources and dosages that would most effectively generate the intended effects in the irradiated organism were assessed once the biological differentiation between vertebrates and invertebrates was determined through multiple lines of evidence. We contend that invertebrates are still more radiosensitive than vertebrates, due to their small genome size, rapid reproduction rates and lifestyle, which help them to compensate for the effects of radiation induced declines in fecundity, life span and individual health. We also identified various research gaps in this field and suggest future directions to be investigated to remedy the lack of data available in this area.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamat Hanifa Shafeeka Parveen
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mehraj Ud Din War
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Franscesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
2
|
Song Y, Zheng K, Brede DA, Gomes T, Xie L, Kassaye Y, Salbu B, Tollefsen KE. Multiomics Point of Departure (moPOD) Modeling Supports an Adverse Outcome Pathway Network for Ionizing Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3198-3205. [PMID: 36799527 PMCID: PMC9979642 DOI: 10.1021/acs.est.2c04917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/07/2023]
Abstract
While adverse biological effects of acute high-dose ionizing radiation have been extensively investigated, knowledge on chronic low-dose effects is scarce. The aims of the present study were to identify hazards of low-dose ionizing radiation to Daphnia magna using multiomics dose-response modeling and to demonstrate the use of omics data to support an adverse outcome pathway (AOP) network development for ionizing radiation. Neonatal D. magna were exposed to γ radiation for 8 days. Transcriptomic analysis was performed after 4 and 8 days of exposure, whereas metabolomics and confirmative bioassays to support the omics analyses were conducted after 8 days of exposure. Benchmark doses (BMDs, 10% benchmark response) as points of departure (PODs) were estimated for both dose-responsive genes/metabolites and the enriched KEGG pathways. Relevant pathways derived using the BMD modeling and additional functional end points measured by the bioassays were overlaid with a previously published AOP network. The results showed that several molecular pathways were highly relevant to the known modes of action of γ radiation, including oxidative stress, DNA damage, mitochondrial dysfunction, protein degradation, and apoptosis. The functional assays showed increased oxidative stress and decreased mitochondrial membrane potential and ATP pool. Ranking of PODs at the pathway and functional levels showed that oxidative damage related functions had relatively low PODs, followed by DNA damage, energy metabolism, and apoptosis. These were supportive of causal events in the proposed AOP network. This approach yielded promising results and can potentially provide additional empirical evidence to support further AOP development for ionizing radiation.
Collapse
Affiliation(s)
- You Song
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Keke Zheng
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Tânia Gomes
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Yetneberk Kassaye
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Brit Salbu
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
3
|
Tollefsen KE, Alonzo F, Beresford NA, Brede DA, Dufourcq-Sekatcheff E, Gilbin R, Horemans N, Hurem S, Laloi P, Maremonti E, Oughton D, Simon O, Song Y, Wood MD, Xie L, Frelon S. Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network. Int J Radiat Biol 2022; 98:1816-1831. [PMID: 35976054 DOI: 10.1080/09553002.2022.2110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Frédéric Alonzo
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.,School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elizabeth Dufourcq-Sekatcheff
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Rodolphe Gilbin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | | | - Selma Hurem
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Faculty of Veterinary medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Patrick Laloi
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Olivier Simon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sandrine Frelon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| |
Collapse
|
4
|
Fang F, Yu X, Wang X, Zhu X, Liu L, Rong L, Niu D, Li J. Transcriptomic profiling reveals gene expression in human peripheral blood after exposure to low-dose ionizing radiation. JOURNAL OF RADIATION RESEARCH 2022; 63:8-18. [PMID: 34788452 PMCID: PMC8776696 DOI: 10.1093/jrr/rrab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Indexed: 05/15/2023]
Abstract
Although the health effects of exposure to low-dose ionizing radiation have been the focus of many studies, the affected biological functions and underlying regulatory mechanisms are not well-understood. In particular, the influence of radiation exposure at doses of less than 200 mGy on the regulation of genes and pathways remains unclear. To investigate the molecular alterations induced by varying doses of low-dose radiation (LDR), transcriptomic analysis was conducted based on ribonucleic acid (RNA) sequencing following exposure to 50 and 150 mGy doses. Human peripheral blood was collected, and the samples were divided into three groups, including two treatments and one control (no radiation). A total of 876 (318 upregulated and 558 downregulated) and 486 (202 upregulated and 284 downregulated) differentially expressed genes (DEGs) were identified after exposure to 50 mGy and 150 mGy, respectively. Most upregulated genes in both the 50 mGy and 150 mGy groups were associated with 'antigen processing and presentation,' which appeared to be the major targets affected by LDR exposure. Several interacting genes, including HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRB1, and HLA-DRB5 were mapped to 'antigen processing and presentation,' 'immune system-related diseases' and the 'cytokine-mediated signaling pathway,' suggesting that these genes might drive the downstream transmission of these signal transduction pathways. Our results suggest that exposure to LDR may elicit changes in key genes and associated pathways, probably helping further explore the biological processes and molecular mechanism responsible for low-dose occupational or environmental exposures in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Li
- Corresponding author. Department of Scientific Research, Beijing Institute of Occupational Disease Prevention and Treatment (The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry), 50 Xiangshan Yikesong Road, Haidian District, Beijing 100093, China.
| |
Collapse
|
5
|
Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
6
|
Vernon EL, Moore MN, Bean TP, Jha AN. Evaluation of interactive effects of phosphorus-32 and copper on marine and freshwater bivalve mollusks. Int J Radiat Biol 2020; 98:1106-1119. [PMID: 32970511 DOI: 10.1080/09553002.2020.1823032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Contaminants seldom occur in isolation in the aquatic environment. While pollution of coastal and inland water bodies has received considerable attention to date, there is limited information on potential interactive effects between radionuclides and metals. Whether by accidental or controlled release, such contaminants co-exist in aquatic ecosystems and can pose an enhanced threat to biota. Using a range of biological responses, the study aimed to evaluate relative interactive effects on representative freshwater and marine bivalve species. METHODS An integrated, multi-biomarker approach was adopted to investigate response to copper (Cu, 18 μg L-1), a known environmentally relevant genotoxic metal and differing concentrations of phosphorus-32 (32P; 0.1 and 1 mGy d-1), alone and in combination in marine (Mytilus galloprovincialis) and freshwater (Dreissena polymorpha) mussels. Genetic and molecular biomarkers were determined post-exposure and included DNA damage (as measured by the comet assay), micronuclei (MN) formation, γ-H2AX foci induction and the expression of key stress-related genes (i.e. hsp70/90, sod, cat, gst). RESULTS Overall, using a tissue-specific (i.e. gill and digestive gland) approach, genotoxic response was reflective of exposures where Cu had a slight additive effect on 32P-induced damage across the species (but not all), cell types and dose rates. Multivariate analysis found significant correlations between comet and γ-H2AX assays, across both the tissues. Transcriptional expression of selected genes were generally unaltered in response to contaminant exposures, independent of species or tissues. CONCLUSIONS Our study is the first to explore the interactive effects of ionizing radiation (IR) and Cu on two bivalve species representing two ecological habitats. The complexity of IR-metal interactions demonstrate that extrapolation of findings obtained from single stressor studies into field conditions could be misrepresentative of real-world environments. In turn, environmental protective strategies deemed suitable in protecting biota from a single, isolated stressor may not be wholly adequate.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.,European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Truro, UK.,Plymouth Marine Laboratory, Plymouth, UK
| | | | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
7
|
Lerebours A, Robson S, Sharpe C, Nagorskaya L, Gudkov D, Haynes-Lovatt C, Smith JT. Transcriptional Changes in the Ovaries of Perch from Chernobyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10078-10087. [PMID: 32686935 DOI: 10.1021/acs.est.0c02575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fish have been highly exposed to radiation in freshwater systems after the Chernobyl Nuclear Power Plant (NPP) accident in 1986 and in freshwater and marine systems after the more recent Fukushima NPP accident in 2011. In the years after the accident, the radioactivity levels rapidly declined due to radioactive decay and environmental processes, but chronic lower dose exposures persisted. To gain insights into the long-term effects of environmental low dose radiation on fish ovaries development, a high-throughput transcriptomic approach including a de novo assembly was applied to different gonad phenotypes of female perch: developed gonads from reference lakes, developed/irradiated from medium contaminated lake, and both developed/irradiated and undeveloped from more highly contaminated lakes. This is the most comprehensive analysis to date of the gene responses in wildlife reproductive system to radiation. Some gene responses that were modulated in irradiated gonads were found to be involved in biological processes including cell differentiation and proliferation (ggnb2, mod5, rergl), cytoskeleton organization (k1C18, mtpn), gonad development (nell2, tcp4), lipid metabolism (ldah, at11b, nltp), reproduction (cyb5, cyp17A, ovos), DNA damage repair (wdhd1, rad51, hus1), and epigenetic mechanisms (dmap1). Identification of these genes provides a better understanding of the underlying molecular mechanisms underpinning the development of the gonad phenotypes of wild perch and how fish may respond to chronic exposure to radiation in their natural environment, though causal attribution of gene responses remains unclear in the undeveloped gonads.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Samuel Robson
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Colin Sharpe
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Dmitri Gudkov
- Institute of Hydrobiology of the National Academy of Sciences of Ukraine, Kiev UA-04210, Ukraine
| | | | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| |
Collapse
|
8
|
Song Y, Xie L, Lee Y, Brede DA, Lyne F, Kassaye Y, Thaulow J, Caldwell G, Salbu B, Tollefsen KE. Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135912. [PMID: 31846819 DOI: 10.1016/j.scitotenv.2019.135912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Biosciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Fern Lyne
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Newcastle University, Newcastle upon Tyne, UK
| | - Yetneberk Kassaye
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Jens Thaulow
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | | | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
9
|
Affiliation(s)
- Ole Christian Lind
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Deborah Helen Oughton
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
10
|
Gomes T, Song Y, Brede DA, Xie L, Gutzkow KB, Salbu B, Tollefsen KE. Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:206-216. [PMID: 29432932 DOI: 10.1016/j.scitotenv.2018.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Among aquatic organisms, invertebrate species such as the freshwater crustacean Daphnia magna are believed to be sensitive to gamma radiation, although information on responses at the individual, biochemical and molecular level is scarce. Following gamma radiation exposure, biological effects are attributed to the formation of free radicals, formation of reactive oxygen species (ROS) and subsequently oxidative damage to lipids, proteins and DNA in exposed organisms. Thus, in the present study, effects and modes of action (MoA) have been investigated in D. magna exposed to gamma radiation (dose rates: 0.41, 1.1, 4.3, 10.7, 42.9 and 106 mGy/h) after short-term exposure (24 and 48 h). Several individual, cellular and molecular endpoints were addressed, such as ROS formation, lipid peroxidation, DNA damage and global transcriptional changes. The results showed that oxidative stress is one of the main toxic effects in gamma radiation exposed D. magna, mediated by the dose-dependent increase in ROS formation and consequently oxidative damage to lipids and DNA over time. Global transcriptional analysis verified oxidative stress as one of the main MoA of gamma radiation at high dose rates, and identified a number of additional MoAs that may be of toxicological relevance. The present study confirmed that acute exposure to gamma radiation caused a range of cellular and molecular effects in D. magna exposed to intermediate dose rates, and highlights the need for assessing effects at longer and more environmentally relevant exposure durations in future studies.
Collapse
Affiliation(s)
- Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Kristine B Gutzkow
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
11
|
Song Y, Asselman J, De Schamphelaere KAC, Salbu B, Tollefsen KE. Deciphering the Combined Effects of Environmental Stressors on Gene Transcription: A Conceptual Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5479-5489. [PMID: 29641900 DOI: 10.1021/acs.est.8b00749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of classical mixture toxicity models to predict the combined effects of environmental stressors based on toxicogenomics (OMICS) data is still in its infancy. Although several studies have made attempts to implement mixture modeling in OMICS analysis to understand the low-dose interactions of stressors, it is not clear how interactions occur at the molecular level and how results generated from such approaches can be better used to inform future studies and cumulative hazard assessment of multiple stressors. The present work was therefore conducted to propose a conceptual approach for combined effect assessment using global gene expression data, as illustrated by a case study on assessment of combined effects of gamma radiation and depleted uranium (DU) on Atlantic salmon ( Salmo salar). Implementation of the independent action (IA) model in reanalysis of a previously published microarray gene expression dataset was performed to describe gene expression patterns of combined effects and identify key gene sets and pathways that were relevant for understanding the interactive effects of these stressors. By using this approach, 3120 differentially expressed genes (DEGs) were found to display additive effects, whereas 279 (273 synergistic, 6 antagonistic) were found to deviate from additivity. Functional analysis further revealed that multiple toxicity pathways, such as oxidative stress responses, cell cycle regulation, lipid metabolism, and immune responses were enriched by DEGs showing synergistic gene expression. A key toxicity pathway of DNA damage leading to enhanced tumorigenesis signaling is highlighted and discussed in detail as an example of how to take advantage of the approach. Furthermore, a conceptual workflow describing the integration of combined effect modeling, OMICS analysis, and bioinformatics is proposed. The present study presents a conceptual framework for utilizing OMICS data in combined effect assessment and may provide novel strategies for dealing with data analysis and interpretation of molecular responses of multiple stressors.
Collapse
Affiliation(s)
- You Song
- Section of Ecotoxicology and Risk Assessment , Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , N-0349 Oslo , Norway
- Centre for Environmental Radioactivity (CERAD) , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Ås , Norway
| | - Jana Asselman
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology (GhEnToxLab) , Ghent University , Campus Coupure Building F, Second Floor, Coupure Links 653 , B9000 Ghent , Belgium
| | - Karel A C De Schamphelaere
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology (GhEnToxLab) , Ghent University , Campus Coupure Building F, Second Floor, Coupure Links 653 , B9000 Ghent , Belgium
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD) , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Ås , Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment , Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , N-0349 Oslo , Norway
- Centre for Environmental Radioactivity (CERAD) , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Ås , Norway
| |
Collapse
|
12
|
Simon O, Gagnaire B, Camilleri V, Cavalié I, Floriani M, Adam-Guillermin C. Toxicokinetic and toxicodynamic of depleted uranium in the zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:9-18. [PMID: 29425915 DOI: 10.1016/j.aquatox.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/12/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
This study investigated the accumulation pattern and biological effects (genotoxicity and histopathology) to adult zebrafish (male and female) exposed to a nominal waterborne concentration of 20 μg L-1 of depleted uranium (DU) for 28 days followed by 27 days of depuration. Accumulation pattern showed that (i) DU accumulated in brain, (ii) levels in digestive tract were higher than those measured in gills and (iii) levels remained high in kidney, brain and ovary despite the 27 days of depuration period. Genotoxicity, assessed by comet assay, was significant not only during DU exposure, but also during depuration phase. Gonads, in particular the testes, were more sensitive than gills. The histology of gonads indicated severe biological damages in males. This study improved knowledge of ecotoxic profile of uranium, for which a large range of biological effects has already been demonstrated.
Collapse
Affiliation(s)
- Olivier Simon
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France.
| | - Béatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Isabelle Cavalié
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| |
Collapse
|
13
|
Anbumani S, Mohankumar MN. Gene expression in Catla catla (Hamilton) subjected to acute and protracted doses of gamma radiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:153-157. [PMID: 27497304 DOI: 10.1016/j.aquatox.2016.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Studies on transcriptional modulation after gamma radiation exposure in fish are limited. Cell cycle perturbations and expression of apoptotic genes were investigated in the fish, Catla catla after acute and protracted exposures to gamma radiation over a 90day period. Significant changes in gene expression were observed between day 1 and 90 post-exposure. Gamma radiation induced a significant down-regulation of target genes gadd45α, cdk1 and bcl-2 from day 1 to day 3 after protracted exposure, whereas it persists till day 6 upon acute exposure. From day 12 onwards, Gadd45α, cdk1 and bcl-2 genes were up-regulated following protracted exposure, indicating DNA repair, cell-cycle arrest and apoptosis. There exists a linear correlation between these genes (gadd45α - r=0.85, p=0.0073; cdk1 - r=0.86, p=0.0053; bcl-2 - r=0.89, p=0.0026) at protracted exposures. This is the first report on the dual role of bcl-2 gene in fish exposed to acute and protracted radiation and correlation among the aforementioned genes that work in concert to promote 'repair' and 'death' circuitries in fish blood cells.
Collapse
Affiliation(s)
- S Anbumani
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu 603102 India.
| | - Mary N Mohankumar
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu 603102 India.
| |
Collapse
|
14
|
Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:270-279. [PMID: 27100007 DOI: 10.1016/j.scitotenv.2016.03.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Radionuclides are a special group of substances posing both radiological and chemical hazards to organisms. As a preliminary approach to understand the combined effects of radionuclides, exposure studies were designed using gamma radiation (Gamma) and depleted uranium (DU) as stressors, representing a combination of radiological (radiation) and chemical (metal) exposure. Juvenile Atlantic salmon (Salmo salar) were exposed to 70mGy external Gamma dose delivered over the first 5h of a 48h period (14mGy/h), 0.25mg/L DU were exposed continuously for 48h and the combination of the two stressors (Combi). Water and tissue concentrations of U were determined to assess the exposure quality and DU bioaccumulation. Hepatic gene expression changes were determined using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Effects at the higher physiological levels were determined as plasma glucose (general stress) and hepatic histological changes. The results show that bioaccumulation of DU was observed after both single DU and the combined exposure. Global transcriptional analysis showed that 3122, 2303 and 3460 differentially expressed genes (DEGs) were significantly regulated by exposure to gamma, DU and Combi, respectively. Among these, 349 genes were commonly regulated by all treatments, while the majority was found to be treatment-specific. Functional analysis of DEGs revealed that the stressors displayed similar mode of action (MoA) across treatments such as induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation, but also stressor-specific mechanisms such as cellular stress and injury, metabolic disorder, programmed cell death, immune response. No changes in plasma glucose level as an indicator of general stress and hepatic histological changes were observed. Although no direct linkage was successfully established between molecular responses and adverse effects at the organism level, the study has enhanced the understanding of the MoA of single radionuclides and mixtures of these.
Collapse
Affiliation(s)
- You Song
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences (NMBU), Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management (INA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
15
|
Salbu B. Environmental impact and risk assessments and key factors contributing to the overall uncertainties. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:352-360. [PMID: 26546475 DOI: 10.1016/j.jenvrad.2015.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
There is a significant number of nuclear and radiological sources that have contributed, are still contributing, or have the potential to contribute to radioactive contamination of the environment in the future. To protect the environment from radioactive contamination, impact and risk assessments are performed prior to or during a release event, short or long term after deposition or prior and after implementation of countermeasures. When environmental impact and risks are assessed, however, a series of factors will contribute to the overall uncertainties. To provide environmental impact and risk assessments, information on processes, kinetics and a series of input variables is needed. Adding problems such as variability, questionable assumptions, gaps in knowledge, extrapolations and poor conceptual model structures, a series of factors are contributing to large and often unacceptable uncertainties in impact and risk assessments. Information on the source term and the release scenario is an essential starting point in impact and risk models; the source determines activity concentrations and atom ratios of radionuclides released, while the release scenario determine the physico-chemical forms of released radionuclides such as particle size distribution, structure and density. Releases will most often contain other contaminants such as metals, and due to interactions, contaminated sites should be assessed as a multiple stressor scenario. Following deposition, a series of stressors, interactions and processes will influence the ecosystem transfer of radionuclide species and thereby influence biological uptake (toxicokinetics) and responses (toxicodynamics) in exposed organisms. Due to the variety of biological species, extrapolation is frequently needed to fill gaps in knowledge e.g., from effects to no effects, from effects in one organism to others, from one stressor to mixtures. Most toxtests are, however, performed as short term exposure of adult organisms, ignoring sensitive history life stages of organisms and transgenerational effects. To link sources, ecosystem transfer and biological effects to future impact and risks, a series of models are usually interfaced, while uncertainty estimates are seldom given. The model predictions are, however, only valid within the boundaries of the overall uncertainties. Furthermore, the model predictions are only useful and relevant when uncertainties are estimated, communicated and understood. Among key factors contributing most to uncertainties, the present paper focuses especially on structure uncertainties (model bias or discrepancies) as aspects such as particle releases, ecosystem dynamics, mixed exposure, sensitive life history stages and transgenerational effects, are usually ignored in assessment models. Research focus on these aspects should significantly reduce the overall uncertainties in the impact and risk assessment of radioactive contaminated ecosystems.
Collapse
Affiliation(s)
- Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Department of Environmental Sciences, Norwegian University of Life Sciences (NMBU), 1432 Aas, Norway
| |
Collapse
|