1
|
Li H, Yang H, Zhou M, Wei T, Zhou Y. Synergistic Effects of IMX-104 Components in Membrane Absorption: A Computational Study. ACS OMEGA 2022; 7:40892-40899. [PMID: 36406561 PMCID: PMC9670098 DOI: 10.1021/acsomega.2c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
New insensitive munitions such as IMX-104 formulations are being developed to improve the safety suffering from accidental stimulations. Experimental data indicated the synergistic toxicity of 2,4-dinitroanisole (DNAN) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in IMX-104, which increased the concern about its environmental and health threats. Indeed, little is known about the synergistic mechanism. Here, we investigated the membrane absorption of DNAN and RDX as the first step toward uncovering synergistic toxicity. The permeability coefficient, transmembrane time, and liposome-water partition coefficient were calculated by the umbrella sampling technique. The results show that component RDX in the IMX-104 formulation promotes the membrane absorption of another more toxic component DNAN, suggesting that the synergistic toxicity effect of IMX-104 may emerge from their membrane adsorption stage. In detail, the integrating free-energy curves show that DNAN, RDX, or their mixture in membranes would promote subsequent molecules passing through membranes. For the mixture of DNAN and RDX, RDX was absorbed by the membrane before DNAN. Postabsorbed DNAN tends to stay around RDX, which is due to the strong van der Waals (VDW) interaction between them. RDX stabilized under phospholipid headgroups limits the overflow of DNAN from the membrane, which results in 11% more absorption of DNAN by the membrane than in the case of the pure DNAN system.
Collapse
|
2
|
Mittal AK, Prakash G, Pathak P, Maiti D. Synthesis of CTA and DNAN using flow chemistry. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ankit Kumar Mittal
- Indian Institute of Technology Bombay Department of Chemistry Mumbai INDIA
| | - Gaurav Prakash
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry Mumbai INDIA
| | - Pramod Pathak
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry Mumbai INDIA
| | - Debabrata Maiti
- Indian Institute of Technology-Bombay Department of Chemistry Powai 400076 Mumbai INDIA
| |
Collapse
|
3
|
Cavanaugh SJ, Smith P, Weidhaas J. Experimental diffusivity of energetic compounds determined by peak parking. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127681. [PMID: 34801315 DOI: 10.1016/j.jhazmat.2021.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Diffusivities of several explosive compounds, as well as other complex organic compounds were experimentally derived using a peak parking methodology. High performance liquid chromatography (HPLC) with stop flow 'parking' was used to experimentally determine diffusivity based on band broadening associated with chemical diffusion within the HPLC column. This research builds on prior methods by determining an obstruction factor through comparing benzene diffusion in methanol in a C18 column to the previously published capillary column. The method is useful for structures not easily described by computational chemistry methods or for solvents that do not have association coefficients in published diffusivity models. Using the peak parking method, diffusivities (cm2/s) ranged from 6.29 × 10-7 to 1.06 × 10-6 for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 4.82 × 10-5 to 1.26 × 10-4 for 3-nitro-1,2,4-triazol-5-one (NTO), 1.63 × 10-5 to 7.20 × 10-6 for nitroguanidine (NQ), 7.07 × 10-6 to 2.09 × 10-5 for pyrimidine-2-carboxylic acid, and 1.02 × 10-6 to 2.27 × 10-6 for streptomycin. Compared to diffusivities estimated computationally, the empirical diffusivities reported herein estimated by two different methods have percent differences averaging 142%, 174%, 27%, 85%, and 33% for RDX, NTO, NQ, pyrimidine-2-carboxylic acid, and streptomycin, respectively. NTO had experimental diffusivities greater than the computational values, while RDX and streptomycin had experimental diffusivities lower than computational values.
Collapse
Affiliation(s)
| | - Philip Smith
- University of Utah, Department of Chemical Engineering, USA
| | - Jennifer Weidhaas
- University of Utah, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
4
|
Gust KA, Lotufo GR, Barker ND, Ji Q, May LK. Mode of action evaluation for reduced reproduction in Daphnia pulex exposed to the insensitive munition, 1-methyl-3-nitro-1-nitroguanidine (MeNQ). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1203-1215. [PMID: 34173910 PMCID: PMC8295077 DOI: 10.1007/s10646-021-02447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The US Department of Defense (DOD) is developing insensitive munitions (IMs) that are resistant to unintended detonation to protect warfighters. To enable material life-cycle analysis for the IM, 1-methyl-3-nitro-1-nitroguanidine (MeNQ), ecotoxicological impacts assessment was required. A previous investigation of MeNQ exposures in Daphnia pulex revealed concentration-responsive decreases in reproduction relative to controls (0 mg/L) across a 174, 346, 709, 1385, and 2286 mg/L exposure range. The present study used those exposures to conduct global transcriptomic expression analyses to establish hypothetical mode(s) of action underlying inhibited reproduction. The number of significantly affected transcripts and the magnitude of fold-change differences relative to controls tended to increase with increasing MeNQ concentration where hierarchical clustering analysis identified separation among the "low" (174 and 346 mg/L) and "high" (709, 1385, and 2286 mg/L) exposures. Vitellogenin is critical to Daphnia reproductive processes and MeNQ exposures significantly decreased transcriptional expression for vitellogenin-1 precursor at the lowest exposure level (174 mg/L) with benchmark dose (BMD) levels closely tracking concentrations that caused inhibited reproduction. Additionally, juvenile hormone-inducible protein, chorion peroxidase, and high choriolytic enzyme transcriptional expression were impacted by MeNQ exposure having potential implications for egg production / maturation and overall fecundity. In concert with these effects on specific genes involved in Daphnia reproductive physiology, MeNQ exposures caused significant enrichment of several canonical-pathways responsible for metabolism of cellular energy substrates where BMD levels for transcriptional expression were observed at ≤100 mg/L. These observations imply possible effects on whole-organism energy budgets that may also incur indirect costs on reproduction.
Collapse
Affiliation(s)
- Kurt A Gust
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA.
| | - Guilherme R Lotufo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
| | - Natalie D Barker
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
| | - Qing Ji
- Bennett Aerospace Inc, Cary, NC, 27511, USA
| | - Lauren K May
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
| |
Collapse
|
5
|
Lotufo GR, Ballentine ML, May LR, Moores LC, Gust KA, Chappell P. Multi-species Aquatic Toxicity Assessment of 1-Methyl-3-Nitroguanidine (MeNQ). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:426-436. [PMID: 33386940 DOI: 10.1007/s00244-020-00796-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The Army is replacing traditional munitions with insensitive munitions (IM) resistant to accidental detonation. The aquatic toxicity of 1-methyl-3-nitroguanidine (MeNQ), which is being assessed for potential use in IM formulations, remains largely untested. The present study fills a number of critical data gaps for MeNQ aquatic toxicity by evaluating effects across two vertebrate and five invertebrate species. Specifically, responses in larval Pimephales promelas, Rana pipiens tadpoles, Chironomus dilutus, Lumbriculus variegatus, Hydra littoralis, Hyalella azteca, and Daphnia pulex were assessed in MeNQ exposures across various acute, subchronic, and chronic bioassays. Overall, survival was unaffected in most of the MeNQ exposures where significant lethal effects were only observed in D. pulex, H. littoralis, and C. dilutus and only at concentrations ≥ 2186 mg/L. Significant sublethal effects on growth were observed for C. dilutus at 903 mg/L and H. azteca at 1098 mg/L in 10-d assays. Significantly decreased reproduction was observed at 2775 mg/L for H. azteca in a chronic 35-d assay and at 174 mg/L for D. pulex in the 11-d three-brood assay representing a sublethal effect one order of magnitude more sensitive than the effective lethal concentration for D. pulex (2987 mg/L). Degradation of MeNQ in ultraviolet light (UV) greatly increased toxicity to D. pulex. Specifically, exposure to a MeNQ solution that was completely UV-degraded prior to D. pulex exposures resulted in an 11-d LC50 of 6.1 mg/L and a 50% reduction in reproduction at 3.125 mg/L, based on the original MeNQ parent-compound concentrations.
Collapse
Affiliation(s)
- Guilherme R Lotufo
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA.
| | - Mark L Ballentine
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | - Lauren R May
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | - Lee C Moores
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | - Kurt A Gust
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | | |
Collapse
|
6
|
Gust KA, Indest KJ, Lotufo G, Everman SJ, Jung CM, Ballentine ML, Hoke AV, Sowe B, Gautam A, Hammamieh R, Ji Q, Barker ND. Genomic investigations of acute munitions exposures on the health and skin microbiome composition of leopard frog (Rana pipiens) tadpoles. ENVIRONMENTAL RESEARCH 2021; 192:110245. [PMID: 32987006 DOI: 10.1016/j.envres.2020.110245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Natural communities of microbes inhabiting amphibian skin, the skin microbiome, are critical to supporting amphibian health and disease resistance. To enable the pro-active health assessment and management of amphibians on Army installations and beyond, we investigated the effects of acute (96h) munitions exposures to Rana pipiens (leopard frog) tadpoles and the associated skin microbiome, integrated with RNAseq-based transcriptomic responses in the tadpole host. Tadpoles were exposed to the legacy munition 2,4,6-trinitrotoluene (TNT), the new insensitive munition (IM) formulation, IMX-101, and the IM constituents nitroguinidine (NQ) and 1-methyl-3-nitroguanidine (MeNQ). The 96h LC50 values and 95% confidence intervals were 2.6 (2.4, 2.8) for ΣTNT and 68.2 (62.9, 73.9) for IMX-101, respectively. The NQ and MeNQ exposures caused no significant impacts on survival in 96h exposures even at maximum exposure levels of 3560 and 5285 mg/L, respectively. However, NQ and MeNQ, as well as TNT and IMX-101 exposures, all elicited changes in the tadpole skin microbiome profile, as evidenced by significantly increased relative proportions of the Proteobacteria with increasing exposure concentrations, and significantly decreased alpha-diversity in the NQ exposure. The potential for direct effects of munitions exposure on the skin microbiome were observed including increased abundance of munitions-tolerant phylogenetic groups, in addition to possible indirect effects on microbial flora where transcriptional responses suggestive of changes in skin mucus-layer properties, antimicrobial peptide production, and innate immune factors were observed in the tadpole host. Additional insights into the tadpole host's transcriptional response to munitions exposures indicated that TNT and IMX-101 exposures significantly enriched transcriptional expression within type-I and type-II xenobiotic metabolism pathways, where dose-responsive increases in expression were observed. Significant enrichment and increased transcriptional expression of heme and iron binding functions in the TNT exposures served as likely indicators of known mechanisms of TNT toxicity including hemolytic anemia and methemoglobinemia. The significant enrichment and dose-responsive decrease in transcriptional expression of cell cycle pathways in the IMX-101 exposures was consistent with previous observations in fish, while significant enrichment of immune-related function in response to NQ exposure were consistent with potential immune suppression at the highest NQ exposure concentration. Finally, the MeNQ exposures elicited significantly decreased transcriptional expression of keratin 16, type I, a gene likely involved in keratinization processes in amphibian skin. Overall, munitions showed the potential to alter tadpole skin microbiome composition and affect transcriptional profiles in the amphibian host, some suggestive of potential impacts on host health and immune status relevant to disease susceptibility.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Karl J Indest
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Guilherme Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | | | - Carina M Jung
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Mark L Ballentine
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Allison V Hoke
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA; ORISE fellow, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Bintu Sowe
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA; ORISE fellow, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Qing Ji
- Bennett Aerospace, Cary, NC, USA.
| | - Natalie D Barker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| |
Collapse
|
7
|
Gust KA, Ji Q, Luo X. Example of Adverse Outcome Pathway Concept Enabling Genome-to-Phenome Discovery in Toxicology. Integr Comp Biol 2020; 60:375-384. [PMID: 32516358 DOI: 10.1093/icb/icaa064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The following article represents a mini-review of an intensive 10-year progression of genome-to-phenome (G2P) discovery guided by the adverse outcome pathway (AOP) concept. This example is presented as a means to stimulate crossover of this toxicological concept to enhance G2P discovery within the broader biological sciences community. The case study demonstrates the benefits of the AOP approach for establishing causal linkages across multiple levels of biological organization ultimately linking molecular initiation (often at the genomic scale) to organism-level phenotypes of interest. The case study summarizes a US military effort to identify the mechanism(s) underlying toxicological phenotypes of lethargy and weight loss in response to nitroaromatic munitions exposures, such as 2,4,6-trinitrotoluene. Initial key discoveries are described including the toxicogenomic results that nitrotoluene exposures inhibited expression within the peroxisome proliferator activated receptor α (PPARα) pathway. We channeled the AOP concept to test the hypothesis that inhibition of PPARα signaling in nitrotoluene exposures impacted lipid metabolic processes, thus affecting systemic energy budgets, ultimately resulting in body weight loss. Results from a series of transcriptomic, proteomic, lipidomic, in vitro PPARα nuclear signaling, and PPARα knock-out investigations ultimately supported various facets of this hypothesis. Given these results, we next proceeded to develop a formalized AOP description of PPARα antagonism leading to body weight loss. This AOP was refined through intensive literature review and polished through multiple rounds of peer-review leading to final international acceptance as an Organisation for Economic Cooperation and Development-approved AOP. Briefly, that AOP identifies PPARα antagonist binding as the molecular initiating event (MIE) leading to a series of key events including inhibition of nuclear transactivation for genes controlling lipid metabolism and ketogenesis, inhibition of fatty acid beta-oxidation and ketogenesis dynamics, negative energy budget, and ultimately the adverse outcome (AO) of body-weight loss. Given that the PPARα antagonism MIE represented a reliable indicator of AO progression within the pathway, a phylogenetic analysis was conducted which indicated that PPARα amino acid relatedness generally tracked species relatedness. Additionally, PPARα amino acid relatedness analysis using the Sequence Alignment to Predict Across Species Susceptibility predicted susceptibility to the MIE across vertebrates providing context for AOP extrapolation across species. Overall, we hope this illustrative example of how the AOP concept has benefited toxicology sows a seed within the broader biological sciences community to repurpose the concept to facilitate enhanced G2P discovery in biology.
Collapse
Affiliation(s)
- Kurt A Gust
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
| | - Qing Ji
- Bennett Aerospace Inc, 1100 Crescent Green #250, Cary, NC 27518, USA
| | - Xiao Luo
- Bennett Aerospace Inc, 1100 Crescent Green #250, Cary, NC 27518, USA
| |
Collapse
|
8
|
Lotufo GR, Gust KA, Ballentine ML, Moores LC, Kennedy AJ, Barker ND, Ji Q, Chappell P. Comparative Toxicological Evaluation of UV-Degraded versus Parent-Insensitive Munition Compound 1-Methyl-3-Nitroguanidine in Fathead Minnow. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:612-622. [PMID: 31845397 DOI: 10.1002/etc.4647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The US Army is replacing traditional munitions with insensitive munitions resistant to accidental detonation. Although the parent insensitive munition compound nitroguanidine (NQ) is generally not acutely toxic at concentrations >1000 mg/L in aquatic exposures, products formed by intensive ultraviolet (UV) degradation resulted in multiple-order of magnitude increases in toxicity. A methylated congener of NQ, 1-methyl-3-nitroguanidine (MeNQ), is also being assessed for potential use in insensitive munition explosive formulations; therefore, the present study investigated the hazard of parent versus UV-degraded MeNQ using fathead minnows (Pimephales promelas). Although up to 716 mg/L parent MeNQ caused no significant mortality or effects on growth in larval P. promelas fish in 7-d exposures, a similar concentration of MeNQ subjected to UV treatment resulted in 85% mortality. The UV treatment degraded only 3.3% of the MeNQ (5800 mg/L stock, UV-treated for 6 h), indicating that MeNQ degradation products have potentially high toxicity. The parent MeNQ exposure caused significantly decreased transcriptional expression of genes within the significantly enriched insulin metabolic pathway, suggesting antagonism of bioenergetics pathways, which complements observed, although nonsignificant, decreases in body weight. Significant differential transcriptional expression in the UV-degraded MeNQ treatments resulted in significant enrichment of pathways and functions related to the cell cycle, as well as erythrocyte function involved in O2 /CO2 exchange. These functions represent potential mechanistic sources of increased toxicity observed in the UV-degraded MeNQ exposures, which are distinct from previously observed mechanisms underlying increased toxicity of UV-degraded NQ in fish. Environ Toxicol Chem 2020;39:612-622. © 2019 SETAC.
Collapse
Affiliation(s)
- Guilherme R Lotufo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Kurt A Gust
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Mark L Ballentine
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Lee C Moores
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Alan J Kennedy
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | | | - Qing Ji
- Bennett Aerospace, Cary, North Carolina, USA
| | | |
Collapse
|
9
|
Moores LC, Kennedy AJ, May L, Jordan SM, Bednar AJ, Jones SJ, Henderson DL, Gurtowski L, Gust KA. Identifying degradation products responsible for increased toxicity of UV-Degraded insensitive munitions. CHEMOSPHERE 2020; 240:124958. [PMID: 31726587 DOI: 10.1016/j.chemosphere.2019.124958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Degradation of insensitive munitions (IMs) by ultraviolet (UV) light has become a topic of concern following observations that some UV-degradation products have increased toxicity relative to parent compounds in aquatic organisms. The present investigation focused on the Army's IM formulation, IMX-101, which is composed of three IM constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). The IM constituents and IMX-101 were irradiated in a UV photo-reactor and then administered to Daphnia pulex in acute (48 h) exposures comparing toxicities relative to the parent materials. UV-degradation of DNAN had little effect on mortality whereas mortality for UV-degraded NTO and NQ (and associated degradation products) increased by factors of 40.3 and 1240, respectively, making UV-degraded NQ the principle driver of toxicity when IMX-101 is UV-degraded. Toxicity investigations for specific products formed during UV-degradation of NQ, confirmed greater toxicity than the parent NQ for degradation products including guanidine, nitrite, ammonia, nitrosoguanidine, and cyanide. Summation of the individual toxic units for the complete set of individually measured UV-degradation products identified for NQ only accounted for 25% of the overall toxicity measured in the exposures to the UV-degraded NQ product mixture. From these toxic unit calculations, nitrite followed by CN- were the principal degradation products contributing to toxicity. Given the underestimation of toxicity using the sum toxic units for the individually measured UV-degradation products of NQ, we conclude that: (1) other unidentified NQ degradation products contributed principally to toxicity and/or (2) synergistic toxicological interactions occurred among the NQ degradation product mixture that exacerbated toxicity.
Collapse
Affiliation(s)
- Lee C Moores
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Lauren May
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Shinita M Jordan
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Anthony J Bednar
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Stacy J Jones
- HX5, 212 Eglin Parkway SE, Ft, Walton Beach, FL, 32548, USA
| | - David L Henderson
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Luke Gurtowski
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| |
Collapse
|
10
|
Guyot L, Simon F, Garcia J, Vanhalle F, Vilchez G, Bardel C, Manship B, Puisieux A, Machon C, Jacob G, Guitton J, Payen L. Structure-activity relationship study: Mechanism of cyto-genotoxicity of Nitropyrazole-derived high energy density materials family. Toxicol Appl Pharmacol 2019; 381:114712. [PMID: 31437493 DOI: 10.1016/j.taap.2019.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/10/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
Stringent toxicological tests have to be performed prior to the industrial development of alternative chemicals particularly high energy dense materials (HEDMs) such as explosives. The properties (e.g., power, stability) of these compounds are constantly being improved, the current axis of research being the nitration of nitrogen heterocycles leading to HEDMs such as nitropyrazole-derived molecules. However, except for 3,4,5-trinitropyrazole (3,4,5-TNP), which was shown to be highly toxic in mice, the toxicological impact of these HEDMs has so far not been investigated. Furthermore, as industrials are strongly advised to develop alternative safety testing assays to in vivo experiments, we herein focused on determining the cytotoxic and genotoxic effects of seven Nitropyrazole-derived HEDMs on three rodent cell lines (mouse embryonic BALB/3T3 clone A31 cells, Chinese hamster ovary cells CHO-K1 and mouse lymphoma L5178Y TK +/- clone (3.7.2C) cells), two human fibroblast lines (CRC05, PFS04062) and on the human hepatic HepaRG model (both in proliferative and differentiated cells). A stronger cytotoxic effect was observed for 1,3-dinitropyrazole (1, 3-DNP) and 3,4,5-TNP in all cell lines, though differentiated HepaRG cells clearly displayed fewer likely due to the metabolism and elimination of these molecules by their functional biotransformation pathways. At the mechanistic level, the sub-chronic cytotoxic and genotoxic effects were linked to ROS/RNS production (experimental assays), HA2.X and to transcriptomic data highlighting the increase in DNA repair mechanisms.
Collapse
Affiliation(s)
- Laetitia Guyot
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France; UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France
| | - Florian Simon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Jessica Garcia
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Floriane Vanhalle
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Gaelle Vilchez
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Claire Bardel
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Brigitte Manship
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France
| | - Alain Puisieux
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, France
| | - Christelle Machon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Guy Jacob
- Université Lyon 1, Faculté des sciences et technologies, UMR CNRS 5278 Hydrazines et Composés Energetiques Polyazotés, France; ArianeGroup Centre de Recherche du Bouchet, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, France.
| | - Léa Payen
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France; UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, France
| |
Collapse
|
11
|
Talikka M, Belcastro V, Gubian S, Martin F, Peitsch MC, Hoeng J. Systems toxicology meta-analysis—From aerosol exposure to nanotoxicology. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Gust KA, Lotufo GR, Thiyagarajah A, Barker ND, Ji Q, Marshall K, Wilbanks MS, Chappell P. Molecular Evaluation of Impacted Reproductive Physiology in Fathead Minnow Testes Provides Mechanistic Insights into Insensitive Munitions Toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105204. [PMID: 31185427 DOI: 10.1016/j.aquatox.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Previous toxicological investigations of the insensitive munition (IM), 3-nitro-1,2,4-triazol-5-one (NTO), demonstrated histopathological and physiological impacts in mammalian testes. The implications of these findings for fish was unknown, therefore we investigated the effects of chronic (21 day) exposures to NTO and an NTO-containing IM formulation called IMX-101 (composed of 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and NTO) in adult male fathead minnows to assess if impacts on testes were conserved. The NTO exposure caused no significant mortality through the maximum exposure concentration (720 mg/L, measured), however NTO elicited testicular impacts causing significant asynchrony in spermatogenesis and necrosis in secondary spermatocytes at the two highest exposure concentrations (383 mg/L and 720 mg/L) and testicular degeneration at the highest exposure. Microarray-based transcriptomics analysis identified significant enrichment of steroid metabolism pathways and mTORC-signal control of spermatogonia differentiation in NTO exposures each having logical connections to observed asynchronous spermatogenesis. Additionally, NTO impaired transcriptional expression for genes supporting sperm structural and flagellar development including sperm-associated antigen 6 (Spag6). These functional transcriptomic responses are hypothesized contributors to impacted reproductive physiology in NTO exposures that ultimately lead to reductions in spermatozoa. In contrast to NTO, the IMX-101 formulation elicited significant mortality at the two highest exposure concentrations of 25.2 and 50.9 mg/L (DNAN nominal + NTO measured + NQ measured). Unlike NTO and NQ, the DNAN component of the IMX-101 formulation underwent significant transformation in the 21d exposure. From previous investigations, neither NTO nor NQ caused mortality in fish at >1000 mg/L suggesting that mortality in the present study arose from DNAN / DNAN-attributable transformation products. The 12.6 mg/L IMX-101 exposure caused significant sublethal impacts on testes including sperm necrosis, interstitial fibrosis, and Sertoli-like cell hyperplasia. Transcriptional profiles for IMX-101 indicated significant enrichment on multiple signaling pathways supporting spermatogenesis, mitosis / meiosis, and flagellar structure, all logically connected to observed sperm necrosis. Additionally, pronounced transcriptional increases within the PPARα-RXRα pathway, a known DNAN target, has been hypothesized to correspond to Sertoli cell hyperplasia, presumably as a compensatory response to fulfill the nurse-function of Sertoli cells during spermatogenesis. Overall, the transcriptional results indicated unique molecular responses for NTO and IMX-101. Regarding chemical hazard, NTO impacted testes and impaired spermatogenesis, but at high exposure concentrations (≥ 192 mg/L), whereas the IMX-101 formulation, elicited mortality and impacts on reproductive physiology likely caused by DNAN and its transformation products present at concentrations well below the NTO-component concentration within the IMX-101 mixture formulation.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | - Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | | | | - Qing Ji
- Bennett Aerospace, Cary, NC, 27511, USA.
| | | | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | |
Collapse
|
13
|
Gong P, Donohue KB, Mayo AM, Wang Y, Hong H, Wilbanks MS, Barker ND, Guan X, Gust KA. Comparative toxicogenomics of three insensitive munitions constituents 2,4-dinitroanisole, nitroguanidine and nitrotriazolone in the soil nematode Caenorhabditis elegans. BMC SYSTEMS BIOLOGY 2018; 12:92. [PMID: 30547801 PMCID: PMC6293504 DOI: 10.1186/s12918-018-0636-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ecotoxicological studies on the insensitive munitions formulation IMX-101 and its components 2,4-dinitroanisole (DNAN), nitroguanidine (NQ) and nitrotriazolone (NTO) in various organisms showed that DNAN was the main contributor to the overall toxicity of IMX-101 and suggested that the three compounds acted independently. These results motivated this toxicogenomics study to discern toxicological mechanisms for these compounds at the molecular level. METHODS Here we used the soil nematode Caenorhabditis elegans, a well-characterized genomics model, as the test organism and a species-specific, transcriptome-wide 44 K-oligo probe microarray for gene expression analysis. In addition to the control treatment, C. elegans were exposed for 24 h to 6 concentrations of DNAN (1.95-62.5 ppm) or NQ (83-2667 ppm) or 5 concentrations of NTO (187-3000 ppm) with ten replicates per treatment. The nematodes were transferred to a clean environment after exposure. Reproduction endpoints (egg and larvae counts) were measured at three time points (i.e., 24-, 48- and 72-h). Gene expression profiling was performed immediately after 24-h exposure to each chemical at the lowest, medium and highest concentrations plus the control with four replicates per treatment. RESULTS Statistical analyses indicated that chemical treatment did not significantly affect nematode reproduction but did induce 2175, 378, and 118 differentially expressed genes (DEGs) in NQ-, DNAN-, and NTO-treated nematodes, respectively. Bioinformatic analysis indicated that the three compounds shared both DEGs and DEG-mapped Reactome pathways. Gene set enrichment analysis further demonstrated that DNAN and NTO significantly altered 12 and 6 KEGG pathways, separately, with three pathways in common. NTO mainly affected carbohydrate, amino acid and xenobiotics metabolism while DNAN disrupted protein processing, ABC transporters and several signal transduction pathways. NQ-induced DEGs were mapped to a wide variety of metabolism, cell cycle, immune system and extracellular matrix organization pathways. CONCLUSION Despite the absence of significant effects on apical reproduction endpoints, DNAN, NTO and NQ caused significant alterations in gene expression and pathways at 1.95 ppm, 187 ppm and 83 ppm, respectively. This study provided supporting evidence that the three chemicals may exert independent toxicity by acting on distinct molecular targets and pathways.
Collapse
Affiliation(s)
- Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Keri B Donohue
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Anne M Mayo
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Yuping Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Mitchell S Wilbanks
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Natalie D Barker
- Bennett Aerospace Inc., 1249 Kildaire Farm Road, Cary, NC, 27511, USA
| | - Xin Guan
- Bennett Aerospace Inc., 1249 Kildaire Farm Road, Cary, NC, 27511, USA
| | - Kurt A Gust
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| |
Collapse
|
14
|
Gust KA, Chaitankar V, Ghosh P, Wilbanks MS, Chen X, Barker ND, Pham D, Scanlan LD, Rawat A, Talent LG, Quinn MJ, Vulpe CD, Elasri MO, Johnson MS, Perkins EJ, McFarland CA. Multiple environmental stressors induce complex transcriptomic responses indicative of phenotypic outcomes in Western fence lizard. BMC Genomics 2018; 19:877. [PMID: 30518325 PMCID: PMC6282355 DOI: 10.1186/s12864-018-5270-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The health and resilience of species in natural environments is increasingly challenged by complex anthropogenic stressor combinations including climate change, habitat encroachment, and chemical contamination. To better understand impacts of these stressors we examined the individual- and combined-stressor impacts of malaria infection, food limitation, and 2,4,6-trinitrotoluene (TNT) exposures on gene expression in livers of Western fence lizards (WFL, Sceloporus occidentalis) using custom WFL transcriptome-based microarrays. RESULTS Computational analysis including annotation enrichment and correlation analysis identified putative functional mechanisms linking transcript expression and toxicological phenotypes. TNT exposure increased transcript expression for genes involved in erythropoiesis, potentially in response to TNT-induced anemia and/or methemoglobinemia and caused dose-specific effects on genes involved in lipid and overall energy metabolism consistent with a hormesis response of growth stimulation at low doses and adverse decreases in lizard growth at high doses. Functional enrichment results were indicative of inhibited potential for lipid mobilization and catabolism in TNT exposures which corresponded with increased inguinal fat weights and was suggestive of a decreased overall energy budget. Malaria infection elicited enriched expression of multiple immune-related functions likely corresponding to increased white blood cell (WBC) counts. Food limitation alone enriched functions related to cellular energy production and decreased expression of immune responses consistent with a decrease in WBC levels. CONCLUSIONS Despite these findings, the lizards demonstrated immune resilience to malaria infection under food limitation with transcriptional results indicating a fully competent immune response to malaria, even under bio-energetic constraints. Interestingly, both TNT and malaria individually increased transcriptional expression of immune-related genes and increased overall WBC concentrations in blood; responses that were retained in the TNT x malaria combined exposure. The results demonstrate complex and sometimes unexpected responses to multiple stressors where the lizards displayed remarkable resiliency to the stressor combinations investigated.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA.
| | - Vijender Chaitankar
- National Institute of Health - National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, USA
| | - Preetam Ghosh
- Virginia Commonwealth University, School of Engineering, Richmond, VA, 23284, USA
| | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
| | - Xianfeng Chen
- IFXworks LLC, 2915 Columbia Pike, Arlington, VA, 22204, USA
| | | | - Don Pham
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA.,Carlsbad Unified School District, Carlsbad, CA, 92009, USA
| | - Leona D Scanlan
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA, 95812, USA
| | - Arun Rawat
- Sidra Medicine, Education City (North Campus), Doha, 26999, Qatar
| | - Larry G Talent
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael J Quinn
- U.S. Army Public Health Center, Aberdeen Proving Ground, Aberdeen, MD, 21010, USA
| | - Christopher D Vulpe
- College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mohamed O Elasri
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406-5018, USA
| | - Mark S Johnson
- U.S. Army Public Health Center, Aberdeen Proving Ground, Aberdeen, MD, 21010, USA
| | - Edward J Perkins
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
| | - Craig A McFarland
- U.S. Army Public Health Center, Aberdeen Proving Ground, Aberdeen, MD, 21010, USA
| |
Collapse
|
15
|
Lotufo GR, Stanley JK, Chappell P, Melby NL, Wilbanks MS, Gust KA. Subchronic, chronic, lethal and sublethal toxicity of insensitive munitions mixture formulations relative to individual constituents in Hyalella azteca. CHEMOSPHERE 2018; 210:795-804. [PMID: 30041157 DOI: 10.1016/j.chemosphere.2018.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Insensitive munitions (IMs) are replacing conventional munitions, improving safety from unintended detonation. IMs are deployed in mixture formulations but little is known about their mixture toxicology. We characterized mixture effects of the IM formulations IMX-101 (mixture of 2,4-dinitroanisole [DNAN], 3-nitro-1,2,4-triazol-5-one [NTO], and nitroguanidine [NQ]) and IMX-104 (DNAN, NTO, and hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX]) in subchronic (10 d) and chronic (35 d) water-only tests in Hyalella azteca assessing impacts on survival, growth and reproduction. In 10-d single chemical exposures, DNAN was the most potent constituent, eliciting an LC50 of 16.0 mg/L; the LC50s for NTO and NQ were 891 and 565 mg/L, respectively. RDX did not elicit significant mortality up to 29.5 mg/L, a concentration near its solubility limit. Based on toxic-units (TUs), the toxicity of IMX-101 was driven by the effective concentration of DNAN; however, the presence of NTO, RDX, or both elicited interactive effects causing an approximately 2-fold decrease in lethality for IMX-104. Growth reduction was observed in 10-d exposures to DNAN, IMX-101 and IMX-104, but not for NQ, NTO, or RDX. Longer exposure duration (35 d) to IMX-101, IMX-104, and DNAN resulted in 3-6 times higher sensitivity for lethality and resulted in the most sensitive endpoint for DNAN, RDX, and IMX-101 exposures, decreased reproduction. Slight, but statistically significant, antagonistic responses among IMX-101 constituents were observed for survival and reproduction at 35d. Overall, the results support response-additive summation as a sufficient method to provide conservative hazard assessments of subchronic, chronic, and sublethal IMX-101 and IMX-104 mixture impacts in H. azteca.
Collapse
Affiliation(s)
- Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Jacob K Stanley
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA; Stanley Environmental Consulting, Waynesboro, MS 39367, USA
| | | | - Nicolas L Melby
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| |
Collapse
|