1
|
Sørhus E, Sørensen L, Grøsvik BE, Le Goff J, Incardona JP, Linbo TL, Baldwin DH, Karlsen Ø, Nordtug T, Hansen BH, Thorsen A, Donald CE, van der Meeren T, Robson W, Rowland SJ, Rasinger JD, Vikebø FB, Meier S. Crude oil exposure of early life stages of Atlantic haddock suggests threshold levels for developmental toxicity as low as 0.1 μg total polyaromatic hydrocarbon (TPAH)/L. MARINE POLLUTION BULLETIN 2023; 190:114843. [PMID: 36965263 DOI: 10.1016/j.marpolbul.2023.114843] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Atlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 μg oil/L, equivalent to 0.1, 0.8 and 3.0 μg TPAH/L). Acute and delayed mortality were observed at embryonic, larval, and juvenile stages with IC50 = 2.2, 0.39, and 0.27 μg TPAH/L, respectively. Exposure to 0.1 μg TPAH/L had no negative effect on growth or survival. However, yolk sac larvae showed significant reduction in the outgrowth (ballooning) of the cardiac ventricle in the absence of other extracardiac morphological defects. Due to this propensity for latent sublethal developmental toxicity, we recommend an effect threshold of 0.1 μg TPAH/L for risk assessment models.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway.
| | - Lisbet Sørensen
- Institute of Marine Research, Bergen, Norway; SINTEF Ocean AS, Postbox 4762, Torgarden, 7465 Trondheim, Norway
| | | | - Jérémie Le Goff
- ADn'tox, Bâtiment Recherche, Centre François Baclesse 3, Avenue du Général Harris, 14076 Caen Cedex 5, France
| | - John P Incardona
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - David H Baldwin
- Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | - Trond Nordtug
- SINTEF Ocean AS, Postbox 4762, Torgarden, 7465 Trondheim, Norway
| | | | | | | | | | - William Robson
- Petroleum & Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth PL4 8AA, Devon, UK
| | - Steven J Rowland
- Petroleum & Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth PL4 8AA, Devon, UK
| | | | | | | |
Collapse
|
2
|
Heuer RM, Wang Y, Pasparakis C, Zhang W, Scholey V, Margulies D, Grosell M. Effects of elevated CO 2 on metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111398. [PMID: 36775093 DOI: 10.1016/j.cbpa.2023.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Ocean acidification is predicted to have a wide range of impacts on fish, but there has been little focus on broad-ranging pelagic fish species. Early life stages of fish are thought to be particularly susceptible to CO2 exposure, since acid-base regulatory faculties may not be fully developed. We obtained yellowfin tuna (Thunnus albacares) from a captive spawning broodstock population and exposed them to control or 1900 μatm CO2 through the first three days of development as embryos transitioned into yolk sac larvae. Metabolic rate, yolk sac depletion, and oil globule depletion were measured to assess overall energy usage. To determine if CO2 altered protein catabolism, tissue nitrogen content and nitrogenous waste excretion were quantified. CO2 exposure did not significantly impact embryonic metabolic rate, yolk sac depletion, or oil globule depletion, however, there was a significant decrease in metabolic rate at the latest measured yolk sac larval stage (36 h post fertilization). CO2-exposure led to a significant increase in nitrogenous waste excretion in larvae, but there were no differences in nitrogen tissue accumulation. Nitrogenous waste accumulated in embryos as they developed but decreased after hatch, coinciding with a large increase in nitrogenous waste excretion and increased metabolic rate in newly hatched larvae. Our results provide insight into how yellowfin tuna are impacted by increases in CO2 in early development, but more research with higher levels of replication is needed to better understand long-term impacts and acid-base regulatory mechanisms in this important pelagic fish.
Collapse
Affiliation(s)
- Rachael M Heuer
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | - Yadong Wang
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Christina Pasparakis
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA. https://twitter.com/ChristinaP47
| | - Wenlong Zhang
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Vernon Scholey
- Inter-American Tropical Tuna Commission, Achotines Laboratory, Las Tablas, Los Santos Province, Panama
| | - Daniel Margulies
- Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, California, USA
| | - Martin Grosell
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA. https://twitter.com/MartinGrosell
| |
Collapse
|
3
|
Bonatesta F, Khursigara AJ, Ackerly KL, Esbaugh AJ, Mager EM. Early life-stage Deepwater Horizon crude oil exposure induces latent osmoregulatory defects in larval red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109405. [PMID: 35811062 DOI: 10.1016/j.cbpc.2022.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Abstract
Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill. To address this knowledge gap, an acute 72 h exposure to red drum (Sciaenops ocellatus) larvae was performed using high-energy water-accommodated fractions (HEWAFs) of DWH weathered oil to analyze transcriptional changes in genes involved in pronephros development and function by quantitative PCR. To test the latent effects of oil exposure on osmoregulation ability, red drum larvae were first exposed to HEWAF for 24 h. Larvae were then reared in clean seawater for two weeks and a 96 h acute osmotic challenge test was performed by exposing the fish to waters with varying salinities. Latent effects of ELS crude oil exposure on osmoregulation were assessed by quantifying survival during the acute osmotic challenge test and analyzing transcriptional changes at 14 dpf. Results demonstrated that ELS crude oil exposure reduced survival of red drum larvae when challenged in hypoosmotic waters and that latent transcriptional changes in some target pronephric genes were evident, indicating that an affected kidney likely contributed to the increased mortality.
Collapse
Affiliation(s)
- Fabrizio Bonatesta
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA.
| | - Alexis J Khursigara
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Kerri L Ackerly
- Department of Marine Sciences, University of Texas at Austin Marine Science Institute, Port Aransas, TX, USA
| | - Andrew J Esbaugh
- Department of Marine Sciences, University of Texas at Austin Marine Science Institute, Port Aransas, TX, USA
| | - Edward M Mager
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
4
|
Wang Y, Pasparakis C, Grosell M. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2021; 321:R377-R384. [PMID: 34318705 DOI: 10.1152/ajpregu.00284.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate if the cardiovascular system is important for ammonia excretion in the early life stages of zebrafish. Morpholino knockdowns of cardiac troponin T (TNNT2) or vascular endothelial growth factor A (VEGFA) provided morphants with nonfunctional circulation. At the embryonic stage [30-36 h postfertilization (hpf)], ammonia excretion was not constrained by a lack of cardiovascular function. At 2 days postfertilization (dpf) and 4 dpf, morpholino knockdowns of TNNT2 or VEGFA significantly reduced ammonia excretion in all morphants. Expression of rhag, rhbg, and rhcgb showed no significant changes but the mRNA levels of the urea transporter (ut) were upregulated in the 4 dpf morphants. Taken together, rhag, rhbg, rhcgb, and ut gene expression and an unchanged tissue ammonia concentration but an increased tissue urea concentration, suggest that impaired ammonia excretion led to increased urea synthesis. However, in larvae anesthetized with tricaine or clove oil, ammonia excretion was not reduced in the 4 dpf morphants compared with controls. Furthermore, oxygen consumption was reduced in morphants regardless of anesthesia. These results suggest that cardiovascular function is not directly involved in ammonia excretion, but rather reduced activity and external convection may explain reduced ammonia excretion and compensatory urea accumulation in morphants with reduced cardiovascular function.
Collapse
Affiliation(s)
- Y Wang
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - C Pasparakis
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - M Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|