1
|
Yu Q, Chen X, Ai S, Wang X, He J, Gao Z, Meng C, Xi L, Ge B, Huang F. Comprehensive transcriptomic and metabolomic insights into simultaneous CO 2 sequestration and nitrate removal by the Chlorella vulgaris and Pseudomonas sp. consortium. ENVIRONMENTAL RESEARCH 2024; 259:119540. [PMID: 38960357 DOI: 10.1016/j.envres.2024.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Simultaneous CO2 sequestration and nitrate removal can be achieved by co-cultivation of Chlorella vulgaris with Pseudomonas sp. However, a comprehensive understanding of the synergistic mechanism between C. vulgaris and Pseudomonas sp. remains unknown. In this study, transcriptomics and metabolomics analysis were employed to elucidate the synergistic mechanism of C. vulgaris and Pseudomonas sp. Transcriptomic and metabolomic analyses identified 3664 differentially expressed genes and 314 metabolites. Transcriptome analysis revealed that co-culture with Pseudomonas sp. promoted the photosynthesis of C. vulgaris by promoting the synthesis of photosynthetic pigments and photosynthesis-antenna proteins. Furthermore, it stimulated pathways associated with energy metabolism from carbon sources, such as the Calvin cycle, glycolytic pathway, and TCA cycle. Additionally, Pseudomonas sp. reduced nitrate levels in the co-culture system by denitrification, and microalgae regulated nitrate uptake by down-regulating the transcript levels of nitrate transporter genes. Metabolomic analysis indicated that nutrient exchange was conducted between algae and bacteria, and amino acids, phytohormones, and organic heterocyclic compounds secreted by the bacteria promoted the growth metabolism of microalgae. After supplementation with differential metabolites, the carbon fixation rate and nitrate removal rate of the co-culture system reached 0.549 g L-1 d-1 and 135.4 mg L-1 d-1, which were increased by 20% and 8%, respectively. This study provides a theoretical insight into microalgae-bacteria interaction and its practical application, as well as a novel perspective on flue gas treatment management.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xue Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Sihan Ai
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiufeng Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiayi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lijun Xi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
2
|
Jia R, Yin M, Feng X, Chen C, Qu C, Liu L, Li P, Li ZH. Ocean acidification alters shellfish-algae nutritional value and delivery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170841. [PMID: 38340841 DOI: 10.1016/j.scitotenv.2024.170841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The ecological effects of climate change and ocean acidification (OA) have been extensively studied. Various microalgae are ecologically important in the overall pelagic food web as key contributors to oceanic primary productivity. Additionally, no organism exists in isolation in a complex environment, and shifts in food quality may lead to indirect OA effects on consumers. This study aims to investigate the potential effects of OA on algal trophic composition and subsequent bivalve growth. Here, the growth and nutrient fractions of Chlorella sp., Phaeodactylum tricornutum and Chaetocetos muelleri were used to synthesize and assess the impact of OA on primary productivity. Total protein content, total phenolic compounds, and amino acid (AA) and fatty acid (FA) content were evaluated as nutritional indicators. The results demonstrated that the three microalgae responded positively to OA in the future environment, significantly enhancing growth performance and nutritional value as a food source. Additionally, certain macromolecular fractions found in consumers are closely linked to their dietary sources, such as phenylalanine, C14:0, C16:0, C16:1, C20:1n9, C18:0, and C18:3n. Our findings illustrate that OA affects a wide range of crucial primary producers in the oceans, which can disrupt nutrient delivery and have profound impacts on the entire marine ecosystem and human food health.
Collapse
Affiliation(s)
- Ruolan Jia
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minghao Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xue Feng
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Chunfeng Qu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
3
|
Mazière C, Duran R, Dupuy C, Cravo-Laureau C. Microbial mats as model to decipher climate change effect on microbial communities through a mesocosm study. Front Microbiol 2023; 14:1039658. [PMID: 37396368 PMCID: PMC10308941 DOI: 10.3389/fmicb.2023.1039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Marine environments are expected to be one of the most affected ecosystems by climate change, notably with increasing ocean temperature and ocean acidification. In marine environments, microbial communities provide important ecosystem services ensuring biogeochemical cycles. They are threatened by the modification of environmental parameters induced by climate change that, in turn, affect their activities. Microbial mats, ensuring important ecosystem services in coastal areas, are well-organized communities of diverse microorganisms representing accurate microbial models. It is hypothesized that their microbial diversity and metabolic versatility will reveal various adaptation strategies in response to climate change. Thus, understanding how climate change affects microbial mats will provide valuable information on microbial behaviour and functioning in changed environment. Experimental ecology, based on mesocosm approaches, provides the opportunity to control physical-chemical parameters, as close as possible to those observed in the environment. The exposure of microbial mats to physical-chemical conditions mimicking the climate change predictions will help to decipher the modification of the microbial community structure and function in response to it. Here, we present how to expose microbial mats, following a mesocosm approach, to study the impact of climate change on microbial community.
Collapse
Affiliation(s)
- C. Mazière
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - R. Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| | - C. Dupuy
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - C. Cravo-Laureau
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| |
Collapse
|
4
|
Tan YH, Poong SW, Yang CH, Lim PE, John B, Pai TW, Phang SM. Transcriptomic analysis reveals distinct mechanisms of adaptation of a polar picophytoplankter under ocean acidification conditions. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105782. [PMID: 36308800 DOI: 10.1016/j.marenvres.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Beardall John
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan; Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Department of Biotechnology, Faculty of Applied Science, UCSI University, Kuala Lumpur, Malaysia; The Chancellery, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Sanchez-Arcos C, Paris D, Mazzella V, Mutalipassi M, Costantini M, Buia MC, von Elert E, Cutignano A, Zupo V. Responses of the Macroalga Ulva prolifera Müller to Ocean Acidification Revealed by Complementary NMR- and MS-Based Omics Approaches. Mar Drugs 2022; 20:md20120743. [PMID: 36547890 PMCID: PMC9783899 DOI: 10.3390/md20120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.
Collapse
Affiliation(s)
- Carlos Sanchez-Arcos
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Debora Paris
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
| | - Valerio Mazzella
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, 87071 Amendolara, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Eric von Elert
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| |
Collapse
|
6
|
Barati B, Zafar FF, Qian L, Wang S, El-Fatah Abomohra A. Bioenergy characteristics of microalgae under elevated carbon dioxide. FUEL 2022; 321:123958. [DOI: 10.1016/j.fuel.2022.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Mazière C, Bodo M, Perdrau MA, Cravo-Laureau C, Duran R, Dupuy C, Hubas C. Climate change influences chlorophylls and bacteriochlorophylls metabolism in hypersaline microbial mat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149787. [PMID: 34464796 DOI: 10.1016/j.scitotenv.2021.149787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to determine the effect of the climatic change on the phototrophic communities of hypersaline microbial mats. Ocean acidification and warming were simulated alone and together on microbial mats placed into mesocosms. As expected, the temperature in the warming treatments increased by 4 °C from the initial temperature. Surprisingly, no significance difference was observed between the water pH of the different treatments despite of a decrease of 0.4 unit pH in the water reserves of acidification treatments. The salinity increased on the warming treatments and the dissolved oxygen concentration increased and was higher on the acidification treatments. A total of 37 pigments were identified belonging to chlorophylls, carotenes and xanthophylls families. The higher abundance of unknown chlorophyll molecules called chlorophyll derivatives was observed in the acidification alone treatment with a decrease in chlorophyll a abundance. This change in pigmentary composition was accompanied by a higher production of bound extracellular carbohydrates but didn't affect the photosynthetic efficiency of the microbial mats. A careful analysis of the absorption properties of these molecules indicated that these chlorophyll derivatives were likely bacteriochlorophyll c contained in the chlorosomes of green anoxygenic phototroph bacteria. Two hypotheses can be drawn from these results: 1/ the phototrophic communities of the microbial mats were modified under acidification treatment leading to a higher relative abundance of green anoxygenic bacteria, or 2/ the highest availability of CO2 in the environment has led to a shift in the metabolism of green anoxygenic bacteria being more competitive than other phototrophs.
Collapse
Affiliation(s)
- C Mazière
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 525, Bât. IBEAS, BP1155, 64013 Pau cedex, France; La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés), 2, rue Olympe de Gouges, Bât. ILE, 17000 La Rochelle, France.
| | - M Bodo
- Muséum National d'Histoire Naturelle, UMR BOREA 8067, MNHN-IRD-CNRS-SU-UCN-UA, Station Marine de Concarneau, 29900 Concarneau, France
| | - M A Perdrau
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés), 2, rue Olympe de Gouges, Bât. ILE, 17000 La Rochelle, France
| | - C Cravo-Laureau
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 525, Bât. IBEAS, BP1155, 64013 Pau cedex, France
| | - R Duran
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 525, Bât. IBEAS, BP1155, 64013 Pau cedex, France
| | - C Dupuy
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés), 2, rue Olympe de Gouges, Bât. ILE, 17000 La Rochelle, France
| | - C Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA 8067, MNHN-IRD-CNRS-SU-UCN-UA, Station Marine de Concarneau, 29900 Concarneau, France
| |
Collapse
|
8
|
Biochemical and Genetic Analysis of 4-Hydroxypyridine Catabolism in Arthrobacter sp. Strain IN13. Microorganisms 2020; 8:microorganisms8060888. [PMID: 32545463 PMCID: PMC7356986 DOI: 10.3390/microorganisms8060888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
N-Heterocyclic compounds are widely spread in the biosphere, being constituents of alkaloids, cofactors, allelochemicals, and artificial substances. However, the fate of such compounds including a catabolism of hydroxylated pyridines is not yet fully understood. Arthrobacter sp. IN13 is capable of using 4-hydroxypyridine as a sole source of carbon and energy. Three substrate-inducible proteins were detected by comparing protein expression profiles, and peptide mass fingerprinting was performed using MS/MS. After partial sequencing of the genome, we were able to locate genes encoding 4-hydroxypyridine-inducible proteins and identify the kpi gene cluster consisting of 16 open reading frames. The recombinant expression of genes from this locus in Escherichia coli and Rhodococcus erytropolis SQ1 allowed an elucidation of the biochemical functions of the proteins. We report that in Arthrobacter sp. IN13, the initial hydroxylation of 4-hydroxypyridine is catalyzed by a flavin-dependent monooxygenase (KpiA). A product of the monooxygenase reaction is identified as 3,4-dihydroxypyridine, and a subsequent oxidative opening of the ring is performed by a hypothetical amidohydrolase (KpiC). The 3-(N-formyl)-formiminopyruvate formed in this reaction is further converted by KpiB hydrolase to 3-formylpyruvate. Thus, the degradation of 4-hydroxypyridine in Arthrobacter sp. IN13 was analyzed at genetic and biochemical levels, elucidating this catabolic pathway.
Collapse
|