1
|
Chen J, Yu K, Yu X, Zhang R, Chen B. Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO 2) on scleractinian coral Galaxea fascicularis. ENVIRONMENTAL RESEARCH 2024; 267:120663. [PMID: 39709120 DOI: 10.1016/j.envres.2024.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The effects of sunscreen on scleractinian corals have garnered widespread attention; however, the toxic effects and mechanisms remain unclear. This study investigated the toxicological effects of two common inorganic filters used in sunscreens, nano zinc oxide and titanium dioxide (nZnO and nTiO₂), on the reef-building coral Galaxea fascicularis, focusing on the phenotypic, physiological, and transcriptomic responses. The results showed that after exposure to 0.8 mg/L of nZnO and 30 mg/L of nTiO₂ for 48 h, all coral polyps exhibited retraction. Zn and Ti ions were detected in coral tissues at concentrations of 67.18 and 24.87 μg/g, respectively, indicating the accumulation of nZnO and nTiO2 in coral tissues. The zooxanthellae density, Fv/Fm, and chlorophyll-a content decreased significantly. The activity of antioxidant enzymes showed an increasing trend. Meanwhile, glutamine synthetase and glutamate dehydrogenase activities exhibited a decreasing trend. The health status of corals was impacted as a result of nZnO and nTiO2 stress. Transcriptomic analysis showed that the toxicity mechanisms of nZnO and nTiO2 differed in corals. Following exposure to nZnO, differentially expressed genes (DEGs) in corals were mainly enriched in signaling pathways related to immune response. The genes related to innate immunity, such as MASP1, MUC5AC, TLRs, and C2, were significantly upregulated, indicating that nZnO exposure induces an innate immune response in corals. Meanwhile, following nTiO2 exposure, the upregulated DEGs were mainly enriched in signaling pathways related to transporter activity. In contrast, the downregulated DEGs were mainly enriched in energy metabolism pathways, indicating that nTiO2 disrupted the energy supply of corals, thereby leading to an increased demand for nutrient transport. This study reveals the toxic effects of nZnO and nTiO2, and their mechanisms of action on scleractinian corals, providing a reference for further assessing the toxicity of sunscreen on corals.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Marcellini F, Varrella S, Ghilardi M, Barucca G, Giorgetti A, Danovaro R, Corinaldesi C. Inorganic UV filter-based sunscreens labelled as eco-friendly threaten sea urchin populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124093. [PMID: 38703981 DOI: 10.1016/j.envpol.2024.124093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Although the negative effects of inorganic UV filters have been documented on several marine organisms, sunscreen products containing such filters are available in the market and proposed as eco-friendly substitutes for harmful, and already banned, organic UV filters (e.g. octinoxate and oxybenzone). In the present study, we investigated the effects of four sunscreen products, labelled by cosmetic companies as "eco-friendly", on the early developmental stages of the sea urchin Paracentrotus lividus, a keystone species occurring in vulnerable coastal habitats. Among sunscreens tested, those containing ZnO and TiO2 or their mix caused severe impacts on sea urchin embryos. We show that inorganic UV filters were incorporated by larvae during their development and, despite the activation of defence strategies (e.g. phagocytosis by coelomocytes), generated anomalies such as skeletal malformations and tissue necrosis. Conversely, the sunscreen product containing only new-generation organic UV filters (e.g. methylene bis-benzotriazolyl tetramethyl, ethylhexyl triazone, butylphenol diethylamino hydroxybenzoyl hexyl benzoate) did not affect sea urchins, thus resulting actually eco-compatible. Our findings expand information on the impact of inorganic UV filters on marine life, corroborate the need to improve the eco-friendliness assessment of sunscreen products and warn of the risk of bioaccumulation and potential biomagnification of inorganic UV filters along the marine food chain.
Collapse
Affiliation(s)
- F Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - S Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - M Ghilardi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Barucca
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - C Corinaldesi
- National Biodiversity Future Centre, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Jimenez-Guri E, Paganos P, La Vecchia C, Annona G, Caccavale F, Molina MD, Ferrández-Roldán A, Donnellan RD, Salatiello F, Johnstone A, Eliso MC, Spagnuolo A, Cañestro C, Albalat R, Martín-Durán JM, Williams EA, D'Aniello E, Arnone MI. Developmental toxicity of pre-production plastic pellets affects a large swathe of invertebrate taxa. CHEMOSPHERE 2024; 356:141887. [PMID: 38583530 DOI: 10.1016/j.chemosphere.2024.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.
Collapse
Affiliation(s)
- Eva Jimenez-Guri
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy; Center for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK.
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Claudia La Vecchia
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Giovanni Annona
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Filomena Caccavale
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Dolores Molina
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Alfonso Ferrández-Roldán
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - Rory Daniel Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Federica Salatiello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Adam Johnstone
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maria Concetta Eliso
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Antonietta Spagnuolo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Cristian Cañestro
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - Ricard Albalat
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - José María Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Elizabeth A Williams
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Enrico D'Aniello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
4
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
5
|
Jimenez-Guri E, Murano C, Paganos P, Arnone MI. PVC pellet leachates affect adult immune system and embryonic development but not reproductive capacity in the sea urchin Paracentrotus lividus. MARINE POLLUTION BULLETIN 2023; 196:115604. [PMID: 37820449 DOI: 10.1016/j.marpolbul.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Microplastic pollution is a major concern of our age, eliciting a range of effects on organisms including during embryonic development. Plastic preproduction pellets stunt the development of sea urchins through the leaching of teratogenic compounds. However, the effect of these leachates on adult sea urchins and their fertility is unknown. Here we investigate the effect of PVC leachates on the capacity to produce normal embryos, and demonstrate that adults kept in contaminated water still produce viable offspring. However, we observe a cumulative negative effect by continued exposure to highly polluted water: adult animals had lower counts and disturbed morphological profiles of immune cells, were under increased oxidative stress, and produced embryos less tolerant of contaminated environments. Our findings suggest that even in highly polluted areas, sea urchins are fertile, but that sublethal effects seen in the adults may lead to transgenerational effects that reduce developmental robustness of the embryos.
Collapse
Affiliation(s)
- Eva Jimenez-Guri
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
6
|
Yuan S, Huang J, Qian W, Zhu X, Wang S, Jiang X. Are Physical Sunscreens Safe for Marine Life? A Study on a Coral-Zooxanthellae Symbiotic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15846-15857. [PMID: 37818715 DOI: 10.1021/acs.est.3c04603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Limited toxic and ecological studies were focused on physical sunscreen that is considered to have "safer performance", in which nanosize zinc oxide (nZnO) and nanosize titanium dioxide (nTiO2) generally are added as ultraviolet filters. Herein, the common button coral Zoanthus sp. was newly used to assess the toxic effects and underlying mechanisms of physical sunscreen. Results showed that physical sunscreen induced severe growth inhibition effects and largely compelled the symbiotic zooxanthellae, indicating that their symbiotic systems were threatened and, also, that neural and photosynthesis functions were influenced. Zn2+ toxicity and bioaccumulation were identified as the main toxic mechanisms, and nTiO2 particles released from physical sunscreen also displayed limited bioattachment and toxicity. Oxidative stress, determined by increased reactive oxygen species, superoxide dismutase, and malondialdehyde content, was indicated as another important toxic mechanism. Furthermore, when Zoanthus sp. was restored, the inhibited individual coral could be largely recovered after a short (3 d) exposure time; however, a longer exposure time damaged the coral irretrievably, which revealed the latent environmental risks of physical sunscreen. This study investigated the toxic effect of physical sunscreen on Zoanthus sp. in a relatively comprehensive manner, thus providing new insights into the toxic response of sunscreen on marine organisms.
Collapse
Affiliation(s)
- Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingying Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
7
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
8
|
Paganos P, Ullmann CV, Gaglio D, Bonanomi M, Salmistraro N, Arnone MI, Jimenez-Guri E. Plastic leachate-induced toxicity during sea urchin embryonic development: Insights into the molecular pathways affected by PVC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160901. [PMID: 36526210 DOI: 10.1016/j.scitotenv.2022.160901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are now polluting all seas and, while studies have found numerous negative interactions between plastic pollution and marine animals, the effects on embryonic development are poorly understood. A potentially important source of developmental ecotoxicity comes from chemicals leached from plastic particles to the marine environment. Here we investigate the effects of leachates from new and beach-collected pellets on the embryonic and larval development of the sea urchin Strongylocentrotus purpuratus and demonstrate that exposure of developing embryos to these leachates elicits severe, consistent and treatment-specific developmental abnormalities including radialisation of the embryo and malformation of the skeleton, neural and immune cells. Using a multi-omics approach we define the developmental pathways disturbed upon exposure to PVC leachates and provide a mechanistic view that pinpoints cellular redox stress and energy production as drivers of phenotypic abnormalities following exposure to PVC leachates. Analysis of leachates identified high concentrations of zinc that are the likely cause of these observed defects. Our findings point to clear and specific detrimental effects of marine plastic pollution on the development of echinoderms, demonstrating that chemicals leached from plastic particles into sea water can produce strong developmental abnormalities via specific pathways, and therefore have the potential to impact on a wide range of organisms.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| | - Clemens Vinzenz Ullmann
- Department for Earth and Environmental Sciences, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn, UK.
| | - Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy; ISBE, IT/Centre of Systems Biology-Elixir Infrastructure and NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Marcella Bonanomi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; ISBE, IT/Centre of Systems Biology-Elixir Infrastructure and NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Noemi Salmistraro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy; ISBE, IT/Centre of Systems Biology-Elixir Infrastructure and NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| | - Eva Jimenez-Guri
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy; Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK.
| |
Collapse
|
9
|
Bordalo D, Cuccaro A, De Marchi L, Soares AMVM, Meucci V, Battaglia F, Pretti C, Freitas R. In vitro spermiotoxicity and in vivo adults' biochemical pattern after exposure of the Mediterranean mussel to the sunscreen avobenzone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119987. [PMID: 35995291 DOI: 10.1016/j.envpol.2022.119987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Avobenzone (AVO) is one of the most frequent ultraviolet (UV) filters in personal care products (PCPs). The Mediterranean mussel Mytilus galloprovincialis is a bioindicator often used for ecotoxicological research. Since UV filters reach higher peaks during summer in aquatic bodies, coincident with mussels' spawning period, and bivalves are sessile, both male gametes and adults of this species were used in this experiment. Therefore, the present study aimed to assess how AVO affects M. galloprovincialis at different biological levels. In vitro experiments on sperms (30 min-exposure) and in vivo experiments on adults (28 days-exposure) were carried out at 0.1, 1.0 and 10.0 μg/L of AVO concentrations. The oxidative and physiological status together with genotoxicity in exposed sperms were assessed. Several biochemical parameters related to enzymatic antioxidant defences, biotransformation enzymes, cell membrane damage, energy reserves, and neurotoxicity were evaluated in adult mussels. Results of in vitro sperm exposure to AVO showed significant overproduction of superoxide anions and DNA damages in all treatments and decrease in sperm viability at 1.0 and 10.0 μg/L. AVO exposure also led to complete inhibition of motility of sperms at the highest concentration, while a significant increase of curvilinear velocity and decrease of wobble occurred at 1.0 μg/L. In vivo exposed adults exhibited a significant decrease in metabolic capacity at 0.1 μg/L, a significant increase in the total protein content and enzymatic turnover as superoxide dismutase (antioxidant defence) at 10 μg/L. This study revealed an ecological concern related to the high sensitivity of sperms respectively to adults under environmentally relevant concentrations of AVO, underpinning an hypothesis of male reproductive function impairments.
Collapse
Affiliation(s)
- Diana Bordalo
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Alessia Cuccaro
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S. Environmental impacts due to the use of sunscreen products: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1331-1345. [PMID: 36173495 PMCID: PMC9652235 DOI: 10.1007/s10646-022-02592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sunscreen use has increased in recent years, as sunscreen products minimize the damaging effects of solar radiation. Active ingredients called ultraviolet (UV) filters or UV agents, either organic or inorganic, responsible for defending skin tissue against harmful UV rays, are incorporated in sunscreen formulations. UV agents have a serious impact on many members of bio communities, and they are transferred to the environment either directly or indirectly. Many organic UV filters are found to be accumulated in marine environments because of high values of the octanol/water partition coefficient. However, due to the fact that UV agents are not stable in water, unwanted by-products may be formed. Experimental studies or field observations have shown that organic UV filters tend to bioaccumulate in various aquatic animals, such as corals, algae, arthropods, mollusks, echinoderms, marine vertebrates. This review was conducted in order to understand the effects of UV agents on both the environment and marine biota. In vivo and in vitro studies of UV filters show a wide range of adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention, but the scientific data identify potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. However, more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and approved alternatives.
Collapse
Affiliation(s)
- Myrto Chatzigianni
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Athanasia Varvaresou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Spyridon Papageorgiou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| |
Collapse
|
11
|
Rodríguez-Romero A, Ruiz-Gutiérrez G, Gaudron A, Corta BG, Tovar-Sánchez A, Viguri Fuente JR. Modelling the bioconcentration of Zn from commercial sunscreens in the marine bivalve Ruditapes philippinarum. CHEMOSPHERE 2022; 307:136043. [PMID: 35985387 DOI: 10.1016/j.chemosphere.2022.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sunscreens contain ZnO particles used as a UV filter cause adverse effects in the marine environment through the release of this metal into seawater and its bioaccumulation in organisms. A mathematical model using sunscreen colloidal residues, seawater and R. philippinarum clams as differentiated compartments, is proposed in order to interpret both the kinetic pattern and the bioaccumulation of Zn in clams. Two kinetic laboratory experiments were conducted, both with and without clams exposed to sunscreen concentrations from 0 to 200 mg L-1. Both the lowest value of uptake rate coefficient obtained when 5 mg L-1 of sunscreen is added (0.00688 L g-1 d-1) and the highest obtained at sunscreen addition of 100 mg L-1 (0.0670 L g-1 d-1), predict a lower bioavailability of Zn in a complex medium such as the seawater-sunscreen mixtures, in comparison to those studied in the literature. The efflux rate coefficient from clams to seawater increased from 0 to 0.162 d-1 with the sunscreen concentrations. The estimated value of the inlet rate coefficient at all studied concentrations indicates that there is a negligible colloidal Zn uptake rate by clams, probably due to the great stability of the organic colloidal residue. An equilibrium shift to higher values of Zn in water is predicted due to the bioconcentration of Zn in clams. The kinetic model proposed with no constant Zn (aq) concentrations may contribute to a more realistic prediction of the bioaccumulation of Zn from sunscreens in clams.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias Del Mar y Ambientales, Instituto de Investigaciones Marinas (INMAR), Universidad de Cádiz, Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Gema Ruiz-Gutiérrez
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| | - Amandine Gaudron
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Berta Galan Corta
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| | - Antonio Tovar-Sánchez
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Javier R Viguri Fuente
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
12
|
Wahab R, Khan F, Kaushik N, Kaushik NK, Nguyen LN, Choi EH, Siddiqui MA, Farshori NN, Saquib Q, Ahmad J, Al-Khedhairy AA. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells. Toxicol In Vitro 2022; 85:105460. [PMID: 35998759 DOI: 10.1016/j.tiv.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Nano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 μg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized. The MTT assay revealed that the cytotoxic effects were dose-dependent (2.5 μg/mL-100 μg/mL) on ZnOMS-NCs. The diminished activity in cell viability induces the cytotoxicity response to the ZnOMS-NCs treatment of human cultured cells. The qPCR data showed that the cells (HepG2 and MCF-7) were exposed to ZnOMS-NCs and exhibited up-and downregulated mRNA expression of apoptotic and anti-apoptotic genes, respectively. In conclusion, flow cytometric data exhibited significant apoptosis induction in both cancer cell lines at low concentrations. The possible mechanism also describes the role of ZnOMS-NCs against cancer cells and their responses.
Collapse
Affiliation(s)
- Rizwan Wahab
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Farheen Khan
- Chemistry Department, Faculty of Science, Taibah University, Medina (Yanbu), Saudi Arabia
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Maqsood A Siddiqui
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nida Nayyar Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. NANOMATERIALS 2022; 12:nano12040699. [PMID: 35215026 PMCID: PMC8876643 DOI: 10.3390/nano12040699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/09/2023]
Abstract
An increasing number of inorganic ultraviolet filters (UVFs), such as nanosized zinc oxide (nZnO) and titanium dioxide (nTiO2), are formulated in sunscreens because of their broad UV spectrum sunlight protection and because they limit skin damage. However, sunscreen-derived inorganic UVFs are considered to be emerging contaminants; in particular, nZnO and nTiO2 UVFs have been shown to undergo absorption and bioaccumulation, release metal ions, and generate reactive oxygen species, which cause negative effects on aquatic organisms. We comprehensively reviewed the current study status of the environmental sources, occurrences, behaviors, and impacts of sunscreen-derived inorganic UVFs in aquatic environments. We find that the associated primary nanoparticle characteristics and coating materials significantly affect the environmental behavior and fate of inorganic UVFs. The consequential ecotoxicological risks and underlying mechanisms are discussed at the individual and trophic transfer levels. Due to their persistence and bioaccumulation, more attention and efforts should be redirected to investigating the sources, fate, and trophic transfer of inorganic UVFs in ecosystems.
Collapse
|
14
|
Angrish A, Kumar R, Chauhan R, Sharma V. On the IR spectroscopy and chemometric based rapid and non-destructive method for the investigation of sunscreen stains: Application in forensic science. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118708. [PMID: 32731143 DOI: 10.1016/j.saa.2020.118708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Cosmetic products such as sunscreens may often be encountered in forensic investigations as traces left on tissue paper, apparels, drinkware, painted exterior, or various alternative surfaces. The pilot study aimed at efficiently using Infrared spectroscopy coupled with chemometrics to cater to unbiased, rapid, and non-destructive identification of sunscreens which will aid various forensic investigations soon. In the present research, a total of 109 sunscreen samples were analyzed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The physicochemical data from the FTIR instrument was then subjected to principal component analysis (PCA), which successfully distinguished most of the samples based on their spectral information. The trained model resulted in clear segregation of unknown sunscreen samples. This could provide an outstanding level of confidence during the conduction of 'questioned versus known' comparisons of similar sunscreens and will give the details of the manufacturer, thereby, helping in rounding off the suspects.
Collapse
Affiliation(s)
- Arpita Angrish
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Raj Kumar
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rohini Chauhan
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
15
|
Araújo CVM, Rodríguez-Romero A, Fernández M, Sparaventi E, Medina MM, Tovar-Sánchez A. Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: Toxicity dependent on exposure method. CHEMOSPHERE 2020; 257:127190. [PMID: 32480091 DOI: 10.1016/j.chemosphere.2020.127190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 05/20/2023]
Abstract
Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario. Additionally, mortality and immobility (72 h) were checked in a traditional forced exposure scenario. Considering that the toxicity of sunscreens is a little controversial regarding their chemical availability in the medium, two different methods of sunscreen solubilisation were tested: complete homogenization and direct immersion. Very low mortality was observed in the highest concentration of sunscreens A and C applied by direct immersion; however, for sunscreen B, the main effect was the loss of motility when homogenization was applied. Repellency was evidenced for two sunscreens (A and B) applied by direct immersion. The homogenization in the medium seemed to lower the degree of repellency of the sunscreens, probably linked to the higher viscosity in the medium, preventing the motility of shrimps. By integrating both short-term responses (avoidance and mortality/immobility), the PID (population immediate decline) calculated showed that avoidance might be the main factor responsible for the reduction of the population at the local scale.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain; Faculty of Marine and Environmental Sciences, University of Cádiz, Av. República Saharaui, Puerto Real, 11510 Cádiz, Spain
| | - Marco Fernández
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Erica Sparaventi
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Marina Márquez Medina
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|