1
|
Ishak SA, Aris AZ, Law MC, Looi LJ, Abd Karim MM. Impact of plasticiser exposure on oyster Crassostrea (Magallana) saidii: assessing oxidative stress and biomarker responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:654-665. [PMID: 40074971 DOI: 10.1007/s10646-025-02866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Plasticisers are prevalent chemical contaminants that leach from plastics into aquatic ecosystems, posing potential risks to marine life. This study investigated the effects of alternative plasticisers [epoxidised methyl oleate (EMO), di-(2-ethylhexyl) adipate (DEHA), and diisononyl phthalate (DINP)] at 100 µg/L in oysters Crassostrea (Magallana) saidii over 21 days under controlled laboratory conditions. This study focused on changes in body weight, antioxidant enzyme activities such as superoxide dismutase (SOD) and catalase (CAT), non-enzymatic antioxidant reduced glutathione (GSH), lipid peroxidation (malondialdehyde (MDA) levels) after plasticisers exposure for 7, 14 and 21 days. The results indicated a decline in body weight in DINP-exposed oysters, indicating metabolic alterations. DEHA and DINP showed a pronounced increase in SOD activity at the end of the experiment, indicating elevated oxidative stress. CAT activity increased with EMO exposure, but decreased in oysters treated with DEHA and DINP. GSH levels were inversely proportional to CAT activity. Oysters exposed to DEHA and DINP exhibited higher MDA levels, indicating oxidative lipid damage associated with these plasticisers. Multi-biomarker data were integrated using the Integrated Biomarker Response (IBR) index, which ranked the plasticisers' oxidative stress potential as DEHA > DINP > EMO. The IBR analysis also suggested distinct modes of action among the plasticisers and provided insights into their toxicity mechanisms. Notably, EMO exhibited lower toxicity compared to DEHA and DINP, supporting its potential as a more friendly alternative to conventional plasticisers, albeit not exempt from toxic effects. These insights underscore the importance of environmental risk assessments in the future development of safer chemical alternatives.
Collapse
Affiliation(s)
- Siti Afida Ishak
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Ahmad Zaharin Aris
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mei Ching Law
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Murni Marlina Abd Karim
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
De Marco G, Cristaldi A, Eliso MC, Oliveri Conti G, Galati M, Billè B, Terranova M, Parrino V, Cappello T, Ferrante M, Maisano M. Cellular pathway disturbances elicited by realistic dexamethasone concentrations in gills of mussel Mytilus galloprovincialis as assessed by a multi-biomarker approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104598. [PMID: 39626850 DOI: 10.1016/j.etap.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4 ng/L; C2: 40 ng/L; C3: 400 ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation. A dose- and time-dependent uptake of DEX was recorded, besides haemocyte infiltration, increased neutral and acid mucopolysaccharides, and a general pro-oxidant effect witnessed by lipid peroxidation and altered antioxidant system. Metabolomics revealed rise in protein turnover and energy demand by fluctuations in free amino acids (alanine, glycine) and energy-related metabolites (succinate, ATP/ADP). It is necessary to reduce DEX dosage from the environment by recovery strategies and effective eco-pharmacovigilance programs.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Antonio Cristaldi
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Maria Concetta Eliso
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, Naples 80121, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Mery Terranova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy; Universal Scientific Education and Research Network (USERN).
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| |
Collapse
|
3
|
Abouda S, Galati M, Oliveri Conti G, Cappello T, Abelouah MR, Romdhani I, Ait Alla A, Ferrante M, Maisano M, Banni M. Metabolomic and biochemical disorders reveal the toxicity of environmental microplastics and benzo[a]pyrene in the marine polychaete Hediste diversicolor. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135404. [PMID: 39098204 DOI: 10.1016/j.jhazmat.2024.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Recently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.
Collapse
Affiliation(s)
- Siwar Abouda
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| |
Collapse
|
4
|
Hattab S, Cappello T, Boughattas I, Sassi K, Mkhinini M, Zitouni N, Missawi O, Eliso MC, Znaidi A, Banni M. Toxicity assessment of animal manure composts containing environmental microplastics by using earthworms Eisenia andrei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172975. [PMID: 38705298 DOI: 10.1016/j.scitotenv.2024.172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Nowadays, animal manure composting constitutes a sustainable alternative for farmers to enhance the level of nutrients within soils and achieve a good productivity. However, pollutants may be present in manures. This study focuses on the detection of environmental microplastics (EMPs) into composts, as well as on the assessment of their potential toxicity on the earthworm Eisenia andrei. To these aims, animals were exposed to two types of compost, namely bovine (cow) and ovine (sheep) manure, besides to their mixture, for 7 and 14 days. The presence and characterization of EMPs was evaluated in all the tested composts, as well as in tissues of the exposed earthworms. The impact of the tested composts was assessed by a multi-biomarker approach including cytotoxic (lysosomal membrane stability, LMS), genotoxic (micronuclei frequency, MNi), biochemical (activity of catalase, CAT, and glutathione-S-transferase, GST; content of malondialdehyde, MDA), and neurotoxic (activity of acetylcholinesterase, AChE) responses in earthworms. Results indicated the presence of high levels of EMPs in all the tested composts, especially in the sheep manure (2273.14 ± 200.89 items/kg) in comparison to the cow manure (1628.82 ± 175.23 items/kg), with the size <1.22 μm as the most abundant EMPs. A time-dependent decrease in LMS and AChE was noted in exposed earthworms, as well as a concomitant increase in DNA damages (MNi) after 7 and 14 days of exposure. Also, a severe oxidative stress was recorded in animals treated with the different types of compost through an increase in CAT and GST activities, and LPO levels, especially after 14 days of exposure. Therefore, it is necessary to carefully consider these findings for agricultural good practices in terms of plastic mitigation in compost usage, in order to prevent any risk for environment health.
Collapse
Affiliation(s)
- Sabrine Hattab
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture of Chott-Meriem, Sousse, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Tunis, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Akram Znaidi
- Department of Animal Production, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Sun J, Gao F, Hu J, Qi Z, Huang Y, Guo Y, Chen Y, Wei J, Zhang H, Pang Q, Wang H, Zhang X. Superhydrophilic and oleophobic sponges prepared based on Mussel-Inspired chemistry for efficient oil-water separation. Chem Asian J 2024:e202300962. [PMID: 38214502 DOI: 10.1002/asia.202300962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Superhydrophilic/oleophobic materials are considered to be the best materials for achieving oil-water separation, but their preparation is difficult and the existing methods are not universal. In this paper, a two-step modification strategy was used to prepare superhydrophilic/oleophobic sponges by adjusting the polar and nonpolar components of the materials using mussel-inspired chemistry. While remaining superhydrophilic, the modified sponge surface has a maximum contact angle of 135° with different oils in air. The modified sponge exhibited superoleophobicity in water, and the contact angle of oil could reach more than 150°. In addition, the modified sponges were also reusable, chemically stable, and mechanically durable. Its oil-water separation flux was up to 24900 Lm-2 h-1 bar-1 , and the separation efficiency was above 97 %. We believe that this method will provide an environmentally friendly and efficient way to prepare the superhydrophilic/oleophobic materials.
Collapse
Affiliation(s)
- Jianteng Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Feng Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jingwen Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Zhixian Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yue Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Yonggui Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Ying Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Huan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Qianchan Pang
- Research Center of Modern Analysis Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Xiaoqing Zhang
- Research Center of Modern Analysis Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
6
|
Turja R, Benito D, Ahvo A, Izagirre U, Lekube X, Stankevičiūtė M, Butrimavičienė L, Soto M, Lehtonen KK. Biomarker responses in mussels (Mytilus trossulus) from the Baltic Sea exposed to water-accommodated fraction of crude oil and a dispersant at different salinities. MARINE POLLUTION BULLETIN 2023; 192:115100. [PMID: 37276711 DOI: 10.1016/j.marpolbul.2023.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Oil spills pose significant environmental risks, particularly in cold seas. In the Baltic Sea, the low salinity (from 0 to 2 up to 18) affects the behaviour of the spilled oil as well as the efficiency and ecological impacts of oil spill response methods such as mechanical collection and the use of dispersants. In the present study, mussels (Mytilus trossulus) were exposed under winter conditions (5 °C) to the water-accommodated fraction (WAF) of Naphthenic North Atlantic crude oil prepared by mechanical dispersion or to the chemically enhanced fraction (CEWAF) obtained using the dispersant Finasol OSR 51 at salinities of 5.6 and 15.0. Especially at the lower salinity, high bioaccumulation of polycyclic aromatic hydrocarbons was recorded in mussels in the CEWAF treatments, accompanied by increased biomarker responses. In the WAF treatments these impacts were less evident. Thus, the use of dispersants in the Baltic Sea still needs to be carefully considered.
Collapse
Affiliation(s)
- Raisa Turja
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, FI-00790 Helsinki, Finland.
| | - Denis Benito
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Aino Ahvo
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Xabier Lekube
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Milda Stankevičiūtė
- Nature Research Centre, Institute of Ecology, Akademijos str. 2, LT-08412 Vilnius, Lithuania
| | - Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos str. 2, LT-08412 Vilnius, Lithuania
| | - Manu Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Kari K Lehtonen
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| |
Collapse
|
7
|
De Marco G, Billè B, Brandão F, Galati M, Pereira P, Cappello T, Pacheco M. Differential Cell Metabolic Pathways in Gills and Liver of Fish (White Seabream Diplodus sargus) Coping with Dietary Methylmercury Exposure. TOXICS 2023; 11:181. [PMID: 36851056 PMCID: PMC9961322 DOI: 10.3390/toxics11020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is a dangerous and persistent trace element. Its organic and highly toxic form, methylmercury (MeHg), easily crosses biological membranes and accumulates in biota. Nevertheless, understanding the mechanisms of dietary MeHg toxicity in fish remains a challenge. A time-course experiment was conducted with juvenile white seabreams, Diplodus sargus (Linnaeus, 1758), exposed to realistic levels of MeHg in feed (8.7 μg g-1, dry weight), comprising exposure (E; 7 and 14 days) and post-exposure (PE; 28 days) periods. Total Hg levels increased with time in gills and liver during E and decreased significantly in PE (though levels of control fish were reached only for gills), with liver exhibiting higher levels (2.7 times) than gills. Nuclear magnetic resonance (NMR)-based metabolomics revealed multiple and often differential metabolic changes between fish organs. Gills exhibited protein catabolism, disturbances in cholinergic neurotransmission, and changes in osmoregulation and lipid and energy metabolism. However, dietary MeHg exposure provoked altered protein metabolism in the liver with decreased amino acids, likely for activation of defensive strategies. PE allowed for the partial recovery of both organs, even if with occurrence of oxidative stress and changes of energy metabolism. Overall, these findings support organ-specific responses according to their sensitivity to Hg exposure, pointing out that indications obtained in biomonitoring studies may depend also on the selected organ.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Fátima Brandão
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Patrícia Pereira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
De Marco G, Afsa S, Galati M, Guerriero G, Mauceri A, Ben Mansour H, Cappello T. Time- and dose-dependent biological effects of a sub-chronic exposure to realistic doses of salicylic acid in the gills of mussel Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88161-88171. [PMID: 35829880 DOI: 10.1007/s11356-022-21866-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Among nonsteroidal anti-inflammatory drugs (NSAIDs) commonly found in seawater and wastewater, salicylic acid (SA) represents one of the most persistent and hazardous compounds for aquatic organisms. This study was therefore designed to elucidate the biological effects of SA in mussel Mytilus galloprovincialis. During a sub-chronic exposure (12 days), mussels were exposed to five realistic concentrations of SA (C1: 0.05 μg/L; C2: 0.5 μg/L; C3: 5 μg/L; C4: 50 μg/L; C5: 100 μg/L) and gills, selected as the target organ, were collected at different time points (T3: 3 days; T5: 5 days; T12: 12 days). Exposure to SA induced no histological alterations in mussel gills, despite a relevant hemocyte infiltration was observed throughout the exposure as a defensive response to SA. Temporal modulation of glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities suggested the occurrence of antioxidant and detoxifying responses against SA exposure, while lipid peroxidation (LPO), except for a partial increase at T3, was prevented. Inhibition of the cholinergic system was also reported by reduced acetylcholinesterase (AChE) activity, mainly at T12. Overall, findings from this study contribute to enlarge the current knowledge on the cytotoxicity of SA, on non-target aquatic organisms, and might for the enhancement of new ecopharmacovigilance programs and optimization of the efficacy of wastewater treatment plants for mitigation of pharmaceutical pollution in coastal areas.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Giulia Guerriero
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| |
Collapse
|
9
|
Romdhani I, De Marco G, Cappello T, Ibala S, Zitouni N, Boughattas I, Banni M. Impact of environmental microplastics alone and mixed with benzo[a]pyrene on cellular and molecular responses of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128952. [PMID: 35472537 DOI: 10.1016/j.jhazmat.2022.128952] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The hazard of microplastic (MP) pollution in marine environments is a current concern. However, the effects of environmental microplastics combined with other pollutants are still poorly investigated. Herein, impact of ecologically relevant concentrations of environmental MP alone (50 µg/L) or combined with B[a]P (1 µg/L) was assessed in mussel Mytilus galloprovincialis after a short-term exposure (1 and 3 days) to environmental MP collected from a north-Mediterranean beach. Raman Microspectroscopy (RMS) revealed bioaccumulation in mussel hemolymph of MP, characterized by polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyethylene vinyl acetate (PEVA) and high-density polyethylene (HDPE), with abundance of MP sized 1.22-0.45 µm. An increase of B[a]P was detected in mussels after 3-day exposure, particularly when mixed with MP. Both contaminants induced cytotoxic and genotoxic effects on hemocytes as determined by lysosomal membrane stability (LMS), micronuclei frequency (FMN), and DNA fragmentation rate by terminal dUTP nick-end labeling (TUNEL). About apoptosis/DNA repair processes, P53 and DNA-ligase increased at 1-day exposure in all conditions, whereas after 3 days increase of bax, Cas-3 and P53 and decrease of Bcl-2 and DNA-ligase were revealed, suggesting a shift towards a cell apoptotic event in exposed mussels. Overall, this study provides new insights on the risk of MP for the marine ecosystem, their ability to accumulate xenobiotics and transfer them to marine biota, with potential adverse repercussion on their health status.
Collapse
Affiliation(s)
- Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Samira Ibala
- Faculty of Medicine of Sousse, University of Sousse, Tunisia
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| |
Collapse
|
10
|
De Marco G, Afsa S, Galati M, Billè B, Parrino V, Ben Mansour H, Cappello T. Comparison of cellular mechanisms induced by pharmaceutical exposure to caffeine and its combination with salicylic acid in mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103888. [PMID: 35598756 DOI: 10.1016/j.etap.2022.103888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Urban and hospital-sourced pharmaceuticals are continuously discharged into aquatic environments, threatening biota. To date, their impact as single compounds has been widely investigated, whereas few information exists on their effects as mixtures. We assessed the time-dependent biological impact induced by environmental concentrations of caffeine alone (CAF; 5 ng/L to 10 µg/L) and its combination with salicylic acid (CAF+SA; 5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on gills of mussel Mytilus galloprovincialis during a 12-day exposure. Although no histological alteration was observed in mussel gills, haemocyte infiltration was noticed at T12 following CAF+SA exposure, as confirmed by flow cytometry with increased hyalinocytes. Both the treatments induced lipid peroxidation and cholinergic neurotoxicity, which the antioxidant system was unable to counteract. We have highlighted the biological risks posed by pharmaceuticals on biota under environmental scenarios, contributing to the enhancement of ecopharmacovigilance programmes and amelioration of the efficacy of wastewater treatment plants.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|