1
|
An G, Nam G, Jung J, Na J. Increased adsorption of diflubenzuron onto polylactic acid microplastics after ultraviolet weathering can increase acute toxicity in the water flea (Daphnia magna). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177600. [PMID: 39615170 DOI: 10.1016/j.scitotenv.2024.177600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The ultraviolet (UV) weathering of microplastics (MPs) can lead to higher adsorption of harmful contaminants, thus increasing the potential risks of their combined effects. Because biodegradable MPs are more susceptible to UV weathering than conventional MPs, concerns have arisen about their ecological toxicity and environmental impact. Therefore, this study investigated the mechanisms associated with the adsorption of the pesticide diflubenzuron (DFB) onto polylactic acid (PLA) MP particles after UV weathering and the acute effects (48 h) of their combination on the water flea Daphnia magna. These effects were also compared with those of the conventional MP polyethylene terephthalate (PET). UV weathering led to a greater number of cracks and pores in the PLA particles compared to PET, as well as a higher number of oxygen-based functional groups and a larger surface area. These surface changes in UV-weathered PLA particles promoted higher DFB adsorption, which in turn led to stronger acute toxicity for D. magna compared to UV-weathered PET particles. Combined exposure to 25 ng L-1 DFB and both UV-weathered and non-UV-weathered MPs significantly reduced the chitin content in D. magna, while combined exposure to 12.5 ng L-1 DFB and the MPs increased the chitin content. This effect was more pronounced for UV-weathered PLA exposure than UV-weathered PET exposure. The expression of the genes for chitinase and endocrine glycoprotein, both of which are closely associated with the toxic mechanisms of DFB, showed no significant changes with the combination of 25 ng L-1 DFB and non-UV-weathered MPs but were significantly downregulated after UV weathering. Overall, the UV weathering of PLA promoted the adsorption of DFB, thus increasing its toxic effects. Our findings demonstrate the importance of considering the effects of UV weathering and interactions with environmental pollutants when assessing the ecological risks associated with biodegradable MPs.
Collapse
Affiliation(s)
- Gersan An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gwiwoong Nam
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Pietropoli E, Pauletto M, Tolosi R, Iori S, Lopparelli RM, Montanucci L, Giantin M, Dacasto M, De Liguoro M. An In Vivo Whole-Transcriptomic Approach to Assess Developmental and Reproductive Impairments Caused by Flumequine in Daphnia magna. Int J Mol Sci 2023; 24:9396. [PMID: 37298348 PMCID: PMC10253896 DOI: 10.3390/ijms24119396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marianna Pauletto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Roberta Tolosi
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Silvia Iori
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Rosa Maria Lopparelli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Mery Giantin
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Mauro Dacasto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marco De Liguoro
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| |
Collapse
|
3
|
Yoon DS, Byeon E, Kim DH, Lee Y, Choi H, Park HG, Sayed AEDH, Shin KH, Lee MC, Lee JS. Genome-wide identification of fatty acid synthesis genes, fatty acid profiles, and life parameters in two freshwater water flea Daphnia magna strains. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110774. [PMID: 35760305 DOI: 10.1016/j.cbpb.2022.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
The freshwater water flea Daphnia magna is a planktonic animal belonging to the Cladocera. To evaluate differences between two D. magna strains (KIT and NIES) in terms of life parameters and fatty acid profiles, we examined several endpoints. In the D. magna KIT strain, the numbers of total and cumulative offspring were lower at 23 °C and higher at 14 °C than in the D. magna NIES strain. However, at 14 °C, the D. magna KIT strain showed an increased lifespan. Although the n-3/n-6 polyunsaturated fatty acids (PUFA) ratio was always decreased at a low temperature, the PUFA ratio in the KIT strain had a higher value on day 3 than the NIES strain, which gave it higher adaptability to low temperature. In addition, we identified the elongation of very long chain fatty acids (elovl) and fatty acid desaturase (fad) genes, which are involved in fatty acid biosynthesis pathways, in the genomes of both D. magna KIT and NIES. The Elovl and Fad genes in both D. magna strains were highly conserved, including tandem duplicated Elovl 1/7 genes. This study provides new information about the molecular basis for the difference in temperature sensitivity between two strains of D. magna.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyuntae Choi
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, South Korea
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, South Korea
| | - Min-Chul Lee
- Department of Food & Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|