1
|
Ding R, Yang R, Fu Z, Zhao W, Li M, Yu G, Ma Z, Bai Z. Response of antioxidation and immunity to combined influences of pH and ammonia nitrogen in the spotted babylon ( Babylonia areolata). Heliyon 2024; 10:e29205. [PMID: 38638986 PMCID: PMC11024560 DOI: 10.1016/j.heliyon.2024.e29205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Spotted babylon were exposed to three different pH levels (7.0, 8.0 and 9.0) and four different concentrations of ammonia nitrogen (0.02, 1.02, 5.10 and 10.20 mg/L) in seawater to determine their acute toxicity and physiological responses to environmental fluctuation. The study evaluated four antioxidant enzymes: catalase (CAT), alkaline, superoxide dismutase (SOD), peroxidase (POD) and glutathione peroxidase (GSH-PX), and two immunoenzymes: acid phosphatase (ACP) and phosphatase (AKP). Over time, the immunoenzyme activity was significantly affected by pH and ammonia nitrogen concentration. After being exposed to pH and ammonia nitrogen, the spotted babylon showed signs of unresponsiveness to external stimuli, reduced vitality, slow movement, and an inability to maintain an upright position. Over time, the spotted babylon exhibited a trend of increasing and then decreasing GSH-PX, CAT, and SOD activities to adapt to the changing environment and enhance its immunity. On the contrary, the POD and ACP activities exhibited a decreasing trend initially, followed by an increasing trend over time and the AKP activity showed a gradual increase with time. The combined effect of pH and ammonia was found to be stronger than the effect of either factor alone. The interaction between pH and ammonia increased the activity of the spotted babylon antioxidant enzymes, induced oxidative stress, and reduced the ability of the spotted babylon's non-specific immune system to reverse it. Thus, the reverse-back of the spotted babylon was higher when pH and ammonia stress were dual than when pH or ammonia were single-factor stresses. The study results will establish a theoretical basis for analyzing the risk of multiple factors to the spotted babylon, and also enrich the basic information about the shellfish immune system.
Collapse
Affiliation(s)
- Ruixia Ding
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wang Zhao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Zemin Bai
- Yazhou Bay Agriculture and Aquaculture Co., Ltd., Sanya 572025, China
| |
Collapse
|
2
|
Cong M, Li Z, Che Y, Li Y, Tian W, Lv J, Sun X. Metabolomics revealed more deleterious toxicity induced by the combined exposure of ammonia and nitrite on Ruditapes philippinarum compared to single exposure. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106398. [PMID: 38377938 DOI: 10.1016/j.marenvres.2024.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
NH3-N and NO2-N always co-exist in the aquatic environment, but there is not a clear opinion on their joint toxicities to the molluscs. Presently, clams Ruditapes philippinarum were challenged by environmental concentrations of NH3-N and NO2-N, singly or in combination, and analyzed by metabolomics approaches, enzyme assays and transmission electron microscope (TEM) observation. Results showed that some same KEGG pathways with different enriched-metabolites were detected in the three exposed groups within one day, and completely different profiles of metabolites were found in the rest of the exposure period. The combined exposure induced heavier and more lasting toxicities to the clams compared with their single exposure. ACP activity and the number of secondary lysosomes were significantly increased after the combined exposure. The present study shed light on the joint-toxicity mechanism of NH3-N and NO2-N, and provided fundamental data for the toxicity research on inorganic nitrogen.
Collapse
Affiliation(s)
- Ming Cong
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Zhaoshun Li
- Ocean School, Yantai University, Yantai, 264005, China
| | - Yu Che
- Ocean School, Yantai University, Yantai, 264005, China
| | - Yuanmei Li
- Ocean School, Yantai University, Yantai, 264005, China
| | - Wenwen Tian
- Ocean School, Yantai University, Yantai, 264005, China
| | - Jiasen Lv
- Biology School, Yantai University, Yantai, 264005, China.
| | - Xiyan Sun
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
3
|
Tian W, Li Y, Li Z, Lv J, Cong M. Comparative analysis of microRNA expression profiles in clam Ruditapes philippinarum after ammonia nitrogen exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023:106624. [PMID: 37407303 DOI: 10.1016/j.aquatox.2023.106624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Ammonia nitrogen is a long-lasting pollutant along the Chinese coast. In our previous studies, the clam Ruditapes philippinarum exhibited several toxic responses to environmental concentrations of ammonia nitrogen. To elucidate the underlying mechanism of ammonia nitrogen toxicity in clams at the post-transcriptional level, microRNA (miRNA) expression profiles were investigated by high-throughput sequencing after the clams were exposed to 0.1 mg/L ammonia nitrogen for 30 days. A total of 238 miRNAs were identified, including 49 conserved miRNAs and 189 novel miRNAs. After comparative analysis, six miRNAs were significantly expressed after 1 day of exposure, with three up-regulated and three down-regulated miRNAs. In addition, 35 miRNAs were significantly expressed after 30 days of exposure, of which 16 were up-regulated and 19 were down-regulated. Furthermore, the target genes of each differentially expressed miRNA were predicted, followed by Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The target genes were predicted to be involved in the immune response, protein processing and transport, DNA damage repair, cellular communication, neural signaling, redox homeostasis, lipid metabolism, and biotransformation. A biological phagocytosis assay proved the speculation that ammonia nitrogen regulated the immunity of clams with the aid of a novel miRNA (novel_29). These findings support further research on miRNA levels in R. philippinarum exposed to ammonia nitrogen.
Collapse
Affiliation(s)
- Wenwen Tian
- Ocean School of Yantai University, Yantai 264005, PR China
| | - Yuanmei Li
- Ocean School of Yantai University, Yantai 264005, PR China
| | - Zhaoshun Li
- Ocean School of Yantai University, Yantai 264005, PR China
| | - Jiasen Lv
- Biology School of Yantai University, Yantai 264005, PR China
| | - Ming Cong
- Ocean School of Yantai University, Yantai 264005, PR China.
| |
Collapse
|
4
|
Saba AI, Elbakary RH, Afifi OK, Sharaf Eldin HEM. Effects of Platelet-Rich Plasma on the Oxymetholone-Induced Testicular Toxicity. Diseases 2023; 11:84. [PMID: 37366872 DOI: 10.3390/diseases11020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Oxymetholone is one of the anabolic steroids that has widely been used among teenagers and athletes to increase their muscle bulk. It has undesirable effects on male health and fertility. In this study, the therapeutic effects of platelet-rich plasma (PRP) on oxymetholone-induced testicular toxicity were investigated in adult albino rats. During the experiments, 49 adult male albino rats were divided into 4 main groups: Group 0 (donor group) included 10 rats for the donation of PRP, Group I (control group) included 15 rats, Group II included 8 rats that received 10 mg/kg of oxymetholone orally, once daily, for 30 days, and Group III included 16 rats and was subdivided into 2 subgroups (IIIa and IIIb) that received oxymetholone the same as group II and then received PRP once and twice, respectively. Testicular tissues of all examined rats were obtained for processing and histological examination and sperm smears were stained and examined for sperm morphology. Oxymetholone-treated rats revealed wide spaces in between the tubules, vacuolated cytoplasm, and dark pyknotic nuclei of most cells, as well as deposition of homogenous acidophilic material between the tubules. Electron microscopic examination showed vacuolated cytoplasm of most cells, swollen mitochondria, and perinuclear dilatation. Concerning subgroup IIIa (PRP once), there was a partial improvement in the form of decreased vacuolations and regeneration of spermatogenic cells, as well as a reasonable improvement in sperm morphology. Regarding subgroup IIIb (PRP twice), histological sections revealed restoration of the normal testicular structure to a great extent, regeneration of the spermatogenic cells, and most sperms had normal morphology. Thus, it is recommended to use PRP to minimize structural changes in the testis of adult albino rats caused by oxymetholone.
Collapse
Affiliation(s)
- Amal I Saba
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reda H Elbakary
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Omayma K Afifi
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Heba E M Sharaf Eldin
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|