1
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
2
|
Du J, Shao J, Li S, Zhu T, Song H, Lei C, Zhang M, Cen Y. Integrated transcriptomic and proteomic analyses reveal the mechanism of easy acceptance of artificial pelleted diets during food habit domestication in Largemouth bass (Micropterus salmoides). Sci Rep 2023; 13:18461. [PMID: 37891233 PMCID: PMC10611700 DOI: 10.1038/s41598-023-45645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Acceptance of artificial pelleted diets contributes to increasing the cultured areas and output of carnivorous fish. However, the mechanism of acceptance of artificial pelleted diets remains largely unknown. In this study, the easy acceptance of artificial pelleted diets (EAD) group and the not easy acceptance of artificial pelleted diets (NAD) group of Largemouth bass (Micropterus salmoides) were divided based on the ratios of stomach weight/body weight (SB) after 0.5 h feeding, which was bigger than 18% in the EAD group and ranged from 8 to 12% in the NAD group. Through transcriptome and proteome sequencing, a total of 2463 differentially expressed genes (DEGs) and 230 differentially expressed proteins (DEPs) were identified, respectively. Integrated analyses of transcriptome and proteome data revealed that 152 DEPs were matched with the corresponding DEGs (named co-DEGs-DEPs), and 54 co-DEGs-DEPs were enriched in 16 KEGG pathways, including the metabolic pathways, steroid biosynthesis, fatty acid biosynthesis, etc. Furthermore, 3 terpenoid backbone biosynthesis-related genes (Hmgcr, Hmgcs, and Fdps) in metabolic pathways, 10 steroid biosynthesis-related genes (Fdft1, Sqle, Lss, Cyp51a1, Tm7sf2, Nsdhl, Hsd17b7, Dhcr24, Sc5d, and Dhcr7), and 3 fatty acid biosynthesis-related genes (Acaca, Fasn, and Ascl) were all up-regulated in the EAD group, suggesting that the lipid metabolism pathway and steroid biosynthesis pathway play important roles in early food habit domestication in Largemouth bass. In addition, the detection results of randomly selected 15 DEGs and 15 DEPs indicated that both transcriptome and proteome results in the study were reliable. Our study provides useful information for further research on the mechanisms of food habit domestication in fish.
Collapse
Affiliation(s)
- Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Jiaqi Shao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.
| | - Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yingkun Cen
- Jiyurunda Fishery Technology Co., Ltd, Foshan, 528203, China
| |
Collapse
|
3
|
Liu XH, Pang X, Jin L, Pu DY, Wang ZJ, Zhang YG. Exposure to acute waterborne cadmium caused severe damage on lipid metabolism of freshwater fish, revealed by nuclear lipid droplet deposition in hepatocytes of rare minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106433. [PMID: 36841070 DOI: 10.1016/j.aquatox.2023.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is a widely distributed aquatic toxic heavy metal with the potential to disrupt fish metabolism; however, more research is needed to clarify the underlying mechanisms. In the present study, rare minnows (Gobiocypris rarus) were used to detect the effects of cadmium on freshwater fish lipid metabolism and its underlying mechanism by histopathological observation, measurement of serum and liver biochemical indexes, and analysis of gene expression in terms of lipid oxidation, synthesis and transport. Here, severe damage, such as cytoplasmic lipid droplet (LD) accumulation, ectopic deposition of LDs, and the appearance of nuclear LDs (nLDs), was detected after exposure to 2.0 mg/L or higher concentrations (2.5 and 2.8 mg/L CdCl2) for 96 h. Other damage included abnormal increases in rough endoplasmic reticulum (RER) lamellae in a fingerprint or concentric circle pattern and necrosis of hepatocytes, and which was observed in the livers of fish exposed to 2.0 mg/L CdCl2.. Both hepatic and serum lipids, such as triglycerides and total cholesterol, were significantly increased after exposure to 2.0 mg/L CdCl2, as was serum lipase (LPS). Hepatic lipase and lipoprotein lipase remained unchanged, in accordance with the unchanged hepatic mRNA transcripts of PPARɑ. Furthermore, the mRNA transcripts of both SCD and SQLE were significantly decreased. Moreover, hepatic and serum low-density and high-density lipoprotein cholesterol showed significant changes, which were accompanied by a significant increase and decrease in hepatic APOAI and APOB100 mRNA levels, respectively. All the results indicate the presence of severe damage to hepatic lipid metabolism and that disrupted lipid transport may play a key role in the accumulation of hepatic LDs. In addition, the hepatic nLDs of nonmammalian vertebrates and their location across the nuclear envelope are intriguing, suggesting that large-size nLDs are a common marker for severe liver damage.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Xu Pang
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
4
|
Liu J, Yang G, Gao Y, Li X, Long Y, Wei S, Zhao Y, Sun S, Gao S. Transcriptome analysis reveals the mechanisms of hepatic injury caused by long-term environmental exposure to atrazine in juvenile common carp (Cyprinus carpio L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36545-36556. [PMID: 36564684 DOI: 10.1007/s11356-022-24933-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is the second most commonly used herbicide worldwide, resulting in the pollution of water bodies and affecting the economic benefits of aquaculture. ATZ is known to cause liver damage in the common carp, Cyprinus carpio L., one of the most widely cultivated fish in China, but the underlying mechanisms are poorly understood. In this study, juvenile common carp Cyprinus carpio L. were exposed to three different environmental levels (0.4, 0.8, and 1.2 μg/L) of ATZ for 12 weeks and changes in the liver transcriptomes between the high-dose group and the control group were analyzed. The data showed that different levels of ATZ exposure caused hepatotoxicity in juvenile carp, shown by biochemical parameters and histopathological changes. Comparative transcriptomics showed that high-dose ATZ exposure led to alterations in the expression of various lipid metabolism-related gene changes, including genes associated with metabolic pathways, fatty acid metabolism, and fatty acid elongation. Furthermore, a connection network analysis of the top 100 differentially expressed genes (DEGs) showed a variety of associations between high-dose ATZ-induced liver damage and the principal DEGs, indicating the complexity of hepatotoxicity induced by ATZ. In conclusion, the molecular mechanisms underlying ATZ-triggered hepatotoxicity in juvenile carp are primarily related to impaired lipid metabolism.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, 271000, Shandong Province, China
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, 271000, Shandong Province, China
| | - Yanxia Gao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China.
| | - Xinran Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Yuting Long
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Shuling Wei
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Yuxin Zhao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Shanshan Sun
- Tai'an City Central Hospital, 29 Longtan Road, Tai'an City, 271000, Shandong Province, China
| | - Shujuan Gao
- Daiyue District Service Center of Animal Husbandry and Veterinary Business Development, 379 Leigu Street, Tai'an City, 271000, Shandong Province, China
| |
Collapse
|
5
|
He S, Li P, Liu L, Li ZH. NMR technique revealed the metabolic interference mechanism of the combined exposure to cadmium and tributyltin in grass carp larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17828-17838. [PMID: 36201083 DOI: 10.1007/s11356-022-23368-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Widespread human activity has resulted in the presence of different pollutants in the aquatic environment that does not exist in isolation. The study of the effects of contamination of aquatic organisms is of great significance. To assess the individual and combined toxicity of cadmium (Cd) and tributyltin (TBT) to aquatic organisms, juvenile grass carp (Ctenopharyngodon idella) were exposed to Cd (2.97 mg/L), TBT (7.5 μg/L), and their mixture MIX. The biological response was evaluated by nuclear magnetic resonance (NMR) analysis of plasma metabolites. Plasma samples at 1, 2, 4, 8, 16, 32, and 48 days post-exposure were analyzed using detection by NMR technique. The typical correlation analysis (CCA) analysis revealed that TBT had the greatest effect on plasma metabolism, followed by MIX and Cd. The interference pathway to grass carp was similar to that of TBT and MIX. Both Cd and TBT exposure alone or in combination can lead to metabolic abnormalities in TCA cycle-related pathways and interfere with energy metabolism. These results provide more detailed information for the metabolic study of pollutants and data for assessing the health risks of Cd, TBT, and MIX at the metabolic level.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
6
|
Jiang L, Zhu X, Luo C, Song D, Song M. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere. ENVIRONMENT INTERNATIONAL 2022; 170:107629. [PMID: 36395556 DOI: 10.1016/j.envint.2022.107629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dandan Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, China.
| |
Collapse
|
7
|
Li ZZ, Zhou XW, Chen LJ. Transcriptomic analysis of cadmium toxicity and molecular response in the spiderling of Pirata subpiraticus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109441. [PMID: 35981662 DOI: 10.1016/j.cbpc.2022.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a kind of toxic heavy metal widely distributed in the environment, posing life-threatening challenges to organisms. The paddy field spider is a natural enemy of pests and an essential component of rice biodiversity. Nonetheless, the effects of Cd stress on the postembryonic development of spiders and its detailed mechanism remain to be investigated. In the present study, we found that Cd stress posed adverse impacts on the growth indicators (e.g., carapace length, development duration, and survival rate) and increased the levels of three antioxidants (i.e., superoxide dismutase, glutathione S-transferase, and glutathione peroxidase) in the spiderlings of Pirata subpiraticus. An in-depth transcriptome analysis was employed in the study, and the results displayed that differentially expressed genes (DEGs) involved in postembryonic morphogenesis, development involved in symbiotic interaction, postembryonic development, and growth were distinctively altered under Cd stress. Further enrichment analysis showed that Cd exposure could activate the apoptosis pathway in the spider via the up-regulation of several key factors, including caspase-10, α-tubulin, actin, etc. In addition, we demonstrated that the increased level of glutathione-related enzymes in spiderlings was caused by the activation of glutathione metabolic pathway. The altered hedgehog signaling pathway might affect cell proliferation, tissue patterning, and development of spiderlings. Further protein interaction network displayed that Cd stress could affect multiple biological processes in spiderlings, particularly cellular response to stimulus and system development. To sum up, this study can provide multi-level perspectives to understand the toxicity of Cd on the growth and development of spiders.
Collapse
Affiliation(s)
- Zhe-Zhi Li
- College of Urban and Rural Construction, Shaoyang University, 422099 Shaoyang, China
| | - Xuan-Wei Zhou
- School of Life Sciences, Southwest University, 400715, Beibei, Chongqing, China
| | - Li-Jun Chen
- College of Urban and Rural Construction, Shaoyang University, 422099 Shaoyang, China.
| |
Collapse
|