1
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Yao D, Shao J, Jia D, Sun W. Immunotoxicity of legacy and alternative per- and polyfluoroalkyl substances on zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124511. [PMID: 38977121 DOI: 10.1016/j.envpol.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.
Collapse
Affiliation(s)
- Dengdiao Yao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Dantong Jia
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| |
Collapse
|
3
|
Wei Z, Ni X, Cui H, Shu C, Peng Y, Li Y, Liu J. Neurotoxic effects of triclosan in adolescent mice: Pyruvate kinase M2 dimer regulated Signal transducer and activator of transcription 3 phosphorylation mediated microglia activation and neuroinflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173739. [PMID: 38839007 DOI: 10.1016/j.scitotenv.2024.173739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS), a commonly used antibacterial agent, is associated with various harmful effects on mammalian neurodevelopment, particularly when exposed prenatally. This study investigated the impact of long-term exposure to TCS on the prefrontal cortex development in adolescent mice. We evaluated the motor ability, motor coordination, and anxiety behavior of mice using open field tests (OFT) and elevated cross maze tests (EPM). An increase in movement distance, number of passes through the central area, and open arm retention time was observed in mice treated with TCS. Hematoxylin eosin staining and Nissl staining also showed significant adverse reactions in the brain tissue of TCS-exposed group. TCS induced microglia activation and increased inflammatory factors expression in the prefrontal cortex. TCS also increased the expression of pyruvate kinase M2 (PKM2), thereby elevating the levels of PKM2 dimer, which entered the nucleus. Treatment with TEPP46 (PKM2 dimer nuclear translocation inhibitor) blocked the expression of inflammatory factors induced by TCS. TCS induced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro, upregulating the levels of inflammatory cytokines. The results also demonstrated the binding of PKM2 to STAT3, which promoted STAT3 phosphorylation at the Tyr705 site, thereby regulating the expression of inflammatory factors. These findings highlight the role of PKM2-regulated STAT3 phosphorylation in TCS-induced behavioral disorders in adolescents and propose a reliable treatment target for TCS.
Collapse
Affiliation(s)
- Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yunwei Li
- Department of General Surgery, Colorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Li Z, Li M, Li D, Chen Y, Feng W, Zhao T, Yang L, Mao G, Wu X. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system: Characterization methods, toxic effects and mechanisms. ENVIRONMENTAL RESEARCH 2024; 246:118010. [PMID: 38157964 DOI: 10.1016/j.envres.2023.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Environmental endocrine disrupting chemicals (EDCs), are a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Currently, in addition to neurological, endocrine, developmental and reproductive toxicity, ecotoxicology studies on immunotoxicity are receiving increasing attention. In this review, the composition of immune system of zebrafish, the common indicators of immunotoxicity, the immunotoxicity of EDCs and their molecular mechanism were summarized. We reviewed the immunotoxicity of EDCs on zebrafish mainly in terms of immune organs, immunocytes, immune molecules and immune functions, meanwhile, the possible molecular mechanisms driving these effects were elucidated in terms of endocrine disruption, dysregulation of signaling pathways, and oxidative damage. Hopefully, this review will provide a reference for further investigation of the immunotoxicity of EDCs.
Collapse
Affiliation(s)
- Zixu Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Muge Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Dan Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Li J, Fang L, Xi M, Ni A, Qian Q, Wang Z, Wang H, Yan J. Toxic effects of triclosan on hepatic and intestinal lipid accumulation in zebrafish via regulation of m6A-RNA methylation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106884. [PMID: 38458066 DOI: 10.1016/j.aquatox.2024.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Triclosan (TCS), recognized as an endocrine disruptor, has raised significant concerns due to its widespread use and potential health risks. To explore the impact of TCS on lipid metabolism, both larval and adult zebrafish were subjected to acute and chronic exposure to TCS. Through analyzes of biochemical and physiological markers, as well as Oil Red O (ORO) and hematoxylin and eosin (H&E) staining, our investigation revealed that TCS exposure induced hepatic and intestinal lipid accumulation in larval and adult zebrafish, leading to structural damage and inflammatory responses in these tissues. The strong affinity of TCS with PPARγ and subsequent pathway activation indicate that PPARγ pathway plays a crucial role in TCS-induced lipid buildup. Furthermore, we observed a decrease in m6A-RNA methylation levels in the TCS-treated group, which attributed to the increased activity of the demethylase FTO and concurrent suppression of the methyltransferase METTL3 gene expression by TCS. The alteration in methylation dynamics is identified as a potential underlying mechanism behind TCS-induced lipid accumulation. To address this concern, we explored the impact of folic acid-a methyl donor for m6A-RNA methylation-on lipid accumulation in zebrafish. Remarkably, folic acid administration partially alleviated lipid accumulation by restoring m6A-RNA methylation. This restoration, in turn, contributed to a reduction in inflammatory damage observed in both the liver and intestines. Additionally, folic acid partially mitigates the up-regulation of PPARγ and related genes induced by TCS. These findings carry substantial implications for understanding the adverse effects of environmental pollutants such as TCS. They also emphasize the promising potential of folic acid as a therapeutic intervention to alleviate disturbances in lipid metabolism induced by environmental pollutants.
Collapse
Affiliation(s)
- Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Qian Q, Pu Q, Li X, Liu X, Ni A, Han X, Wang Z, Wang X, Yan J, Wang H. Acute/chronic triclosan exposure induces downregulation of m 6A-RNA methylation modification via mettl3 suppression and elicits developmental and immune toxicity to zebrafish. CHEMOSPHERE 2024; 352:141395. [PMID: 38342143 DOI: 10.1016/j.chemosphere.2024.141395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Pu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - XingCheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaowen Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
8
|
Yan J, Li J, Wang Y, Song J, Ni A, Fang L, Xi M, Qian Q, Wang Z, Wang H. Deciphering the molecular mediators of triclosan-induced lipid accumulation: Intervention via short-chain fatty acids and miR-101a. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123153. [PMID: 38103713 DOI: 10.1016/j.envpol.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
As a potential environmental obesogen, triclosan (TCS) carries inherent risks of inducing obesity and metabolic disorders. However, the underlying molecular mechanisms behind the lipid metabolism disorder induced by TCS have remained elusive. Through a fusion of transcriptomics and microRNA target prediction, we hypothesize that miR-101a as a responsive miRNA to TCS exposure in zebrafish, playing a central role in disturbing lipid homeostasis. As an evidence, TCS exposure triggers a reduction in miR-10a expression that accompanied by elevation of genes linked to regulation of lipid homeostasis. Through precision-controlled interventions involving miRNA expression modulation, we discovered that inhibition of miR-101a enhanced expression of its target genes implicated in lipid homeostasis, subsequently triggering excessive fat accumulation. Meanwhile, the overexpression of miR-101a acts as a protective mechanism, counteracting the lipid metabolism disorder induced by TCS in the larvae. Notably, the combination of short-chain fatty acids (SCFAs) emerged as a potential remedy to alleviate TCS-induced lipid accumulation partially by counteracting the decline in miR-101a expression induced by TCS. These revelations provide insight into a prospective molecular framework underlying TCS-triggered lipid metabolism disorders, thereby paving the way for pre-emptive strategies in combating the ramifications of TCS pollution.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|