1
|
Castanet AS, Nafie MS, Said SA, Arafa RK. Discovery of PIM-1 kinase inhibitors based on the 2,5-disubstituted 1,3,4-oxadiazole scaffold against prostate cancer: Design, synthesis, in vitro and in vivo cytotoxicity investigation. Eur J Med Chem 2023; 250:115220. [PMID: 36848846 DOI: 10.1016/j.ejmech.2023.115220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
PIM-1 kinases play an established role in prostate cancer development and progression. This research work tackles the design and synthesis of new PIM-1 kinase targeting 2,5-disubstituted-1,3,4-oxadiazoles 10a-g&11a-f, and investigation thereof as potential anti-cancer agents through in vitro cytotoxicity assay followed by in vivo studies along with exploration of this chemotype's plausible mechanism of action. In vitro cytotoxicity experiments have disclosed 10f as the most potent derivative against PC-3 cells (IC50 = 16 nM) compared to the reference drug Staurosporine (IC50 = 0.36 μM), also eliciting good cytotoxicity against HepG2 and MCF-7 cells (IC50 = 0.13 and 5.37 μM, respectively). Investigating PIM-1 kinase inhibitory activity of compound 10f revealed an IC50 of 17 nM paralleled to that of Staurosporine (IC50 = 16.7 nM). Furthermore, compound 10f displayed an antioxidant activity eliciting a DPPH inhibition ratio of 94% as compared to Trolox (96%). Further investigation demonstrated that 10f induced apoptosis in treated PC-3 cells by 43.2-fold (19.44%) compared to 0.45% in control. 10f also disrupted the PC-3 cell cycle by increasing the cell population at the PreG1-phase by 19.29-fold while decreasing the G2/M-phase by 0.56-fold compared to control. Moreover, 10f affected a downregulation of JAK2, STAT3 and Bcl-2 and upregulation of caspases 3, 8 and 9 levels that activated the caspase-dependent apoptosis. Finally, in vivo 10f-treatment caused a significant increase in tumor inhibition by 64.2% compared to 44.5% in Staurosporine treatment of the PC-3 xenograft mouse model. Additionally, it improved the hematological, biochemical parameters, and histopathological examinations compared to control untreated animals. Finally, docking of 10f with the ATP-binding site of PIM-1 kinase demonstrated good recognition of and effective binding to the active site. In conclusion, compound 10f represents a promising lead compound that merits further future optimization for controlling prostate cancer.
Collapse
Affiliation(s)
- Anne-Sophie Castanet
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085, LE MANS CEDEX 9, France
| | - Mohamed S Nafie
- Chemistry Department (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Sara A Said
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
2
|
Kumar D, Aggarwal N, Deep A, Kumar H, Chopra H, Marwaha RK, Cavalu S. An Understanding of Mechanism-Based Approaches for 1,3,4-Oxadiazole Scaffolds as Cytotoxic Agents and Enzyme Inhibitors. Pharmaceuticals (Basel) 2023; 16:254. [PMID: 37259401 PMCID: PMC9963071 DOI: 10.3390/ph16020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 07/30/2023] Open
Abstract
The world's health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. The imperative 1,3,4-oxadiazole scaffold possesses a wide variety of biological activities, particularly for cancer treatment. In the development of novel 1,3,4-oxadiazole-based drugs, structural modifications are important to ensure high cytotoxicity towards malignant cells. These structural modification strategies have shown promising results when combined with outstanding oxadiazole scaffolds, which selectively interact with nucleic acids, enzymes, and globular proteins. A variety of mechanisms, such as the inhibition of growth factors, enzymes, and kinases, contribute to their antiproliferative effects. The activity of different 1,3,4-oxadiazole conjugates were tested on the different cell lines of different types of cancer. It is demonstrated that 1,3,4-oxadiazole hybridization with other anticancer pharmacophores have different mechanisms of action by targeting various enzymes (thymidylate synthase, HDAC, topoisomerase II, telomerase, thymidine phosphorylase) and many of the proteins that contribute to cancer cell proliferation. The focus of this review is to highlight the anticancer potential, molecular docking, and SAR studies of 1,3,4-oxadiazole derivatives by inhibiting specific cancer biological targets, such as inhibiting telomerase activity, HDAC, thymidylate synthase, and the thymidine phosphorylase enzyme. The purpose of this review is to summarize recent developments and discoveries in the field of anticancer drugs using 1,3,4-oxadiazoles.
Collapse
Affiliation(s)
- Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
3
|
BTEAC Catalyzed Ultrasonic-Assisted Synthesis of Bromobenzofuran-Oxadiazoles: Unravelling Anti-HepG-2 Cancer Therapeutic Potential through In Vitro and In Silico Studies. Int J Mol Sci 2023; 24:ijms24033008. [PMID: 36769327 PMCID: PMC9917671 DOI: 10.3390/ijms24033008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, BTEAC (benzyl triethylammonium chloride) was employed as a phase transfer catalyst in an improved synthesis (up to 88% yield) of S-alkylated bromobenzofuran-oxadiazole scaffolds BF1-9. These bromobenzofuran-oxadiazole structural hybrids BF1-9 were evaluated in vitro against anti-hepatocellular cancer (HepG2) cell line as well as for their in silico therapeutic potential against six key cancer targets, such as EGFR, PI3K, mTOR, GSK-3β, AKT, and Tubulin polymerization enzymes. Bromobenzofuran structural motifs BF-2, BF-5, and BF-6 displayed the best anti-cancer potential and with the least cell viabilities (12.72 ± 2.23%, 10.41 ± 0.66%, and 13.08 ± 1.08%), respectively, against HepG2 liver cancer cell line, and they also showed excellent molecular docking scores against EGFR, PI3K, mTOR, and Tubulin polymerization enzymes, which are major cancer targets. Bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 displayed excellent binding affinities with the active sites of EGFR, PI3K, mTOR, and Tubulin polymerization enzymes in the molecular docking studies as well as in MMGBSA and MM-PBSA studies. The stable bindings of these structural hybrids BF-2, BF-5, and BF-6 with the enzyme targets EGFR and PI3K were further confirmed by molecular dynamic simulations. These investigations revealed that 2,5-dimethoxy-based bromobenzofuran-oxadiazole BF-5 (10.41 ± 0.66% cell viability) exhibited excellent cytotoxic therapeutic efficacy. Moreover, computational studies also suggested that the EGFR, PI3K, mTOR, and Tubulin polymerization enzymes were the probable targets of this BF-5 scaffold. In silico approaches, such as molecular docking, molecular dynamics simulations, and DFT studies, displayed excellent association with the experimental biological data of bromobenzofuran-oxadiazoles BF1-9. Thus, in silico and in vitro results anticipate that the synthesized bromobenzofuran-oxadiazole hybrid BF-5 possesses prominent anti-liver cancer inhibitory effects and can be used as lead for further investigation for anti-HepG2 liver cancer therapy.
Collapse
|
4
|
Rabeeb SIE, Deeb MAE, Sarg MT, Hassan AY. Imidazo[1,2,4]triazolone and Fused Imidazo[1,2,4]triazolone Derivatives: Synthesis,
In Vitro
Anticancer screening, CDK2 inhibitory activity, and Molecular modelling studies. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaimaa I. El Rabeeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Moshira A. El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Modern University for Technology & Information
| | - Marwa T. Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Aisha Y. Hassan
- Organic Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| |
Collapse
|
5
|
Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S. Synthesis and Characterization of Zinc Oxide Nanoparticles of Solanum nigrum and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Biol Trace Elem Res 2022; 200:2684-2697. [PMID: 34448982 DOI: 10.1007/s12011-021-02898-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Effective cancer therapy can be achieved by using nano-drug delivery systems which provide a targeted drug delivery strategy by overcoming the drawbacks of conventional treatments like chemotherapy and radiation. ZnO nanoparticles are a potent anticancer agent that causes tumor cell destruction with the targeted drug delivery. In this present study, green synthesis of ZnO nanoparticles has been done using the plant Solanum nigrum. The synthesized ZnO nanoparticles were studied by the characterization techniques like UV-visible spectroscopy, SEM, TEM, DLS, zeta potential, FTIR, and XRD. The synthesized ZnO nanoparticles of Solanum nigrum exhibited a significant anticancer activity against HeLa cell lines through the apoptotic pathway. The cytotoxicity of ZnO nanoparticles was assessed using MTT assay, wound healing assay, DAPI staining, and acridine orange and ethidium bromide double staining. The expression patterns of β-catenin, p53, caspase-3, and caspase-9 were analyzed using reverse transcriptase-PCR. The results obtained from the study indicate that the ZnO nanoparticles of Solanum nigrum possess a dose-dependent cytotoxic effect against HeLa cell lines through the inhibition of β-catenin and increasing the levels of p53, caspase-3, and caspase-9.
Collapse
Affiliation(s)
- Steffy Thomas
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Genetics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
6
|
Fray M, ELBini-Dhouib I, Hamzi I, Doghri R, Srairi-Abid N, Lesur D, Benazza M, Abidi R, Barhoumi-Slimi T. Synthesis, characterization and in vivo antitumor effect of new α,β-unsaturated-2,5-disubstituted-1,3,4-oxadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2053993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Fray
- Laboratory of Structural (bio)Organic Chemistry Department of Chemistry LR99ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - I. ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis, Tunisia
| | - I. Hamzi
- Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Tlemcen, Algeria
| | - R. Doghri
- Laboratory of Anatomo-Pathology, Institut Salah Azaiez, Tunis, Tunisia
| | - N. Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis, Tunisia
| | - D. Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, Amiens Cédex, France
| | - M. Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, Amiens Cédex, France
| | - R. Abidi
- Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) LR05ES09, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - T. Barhoumi-Slimi
- Laboratory of Structural (bio)Organic Chemistry Department of Chemistry LR99ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- University of Carthage, High Institute of Environmental Sciences and Technologies, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
7
|
Rahman AAHA, Shaban AKF, Nassar IF, Yousif MNM, El-Kady DS, Awad HM, El-Sayed WA. Synthesis and Anticancer Activity of New Pyrimidine and Oxadiazole Acyclic Nucleoside Analogs and Thiazolopyrimidine Derivatives. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
El Mansouri AE, Oubella A, Dânoun K, Ahmad M, Neyts J, Jochmans D, Snoeck R, Andrei G, Morjani H, Zahouily M, Lazrek HB. Discovery of novel furo[2,3-d]pyrimidin-2-one-1,3,4-oxadiazole hybrid derivatives as dual antiviral and anticancer agents that induce apoptosis. Arch Pharm (Weinheim) 2021; 354:e2100146. [PMID: 34128255 DOI: 10.1002/ardp.202100146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
A new series of furo[2,3-d]pyrimidine-1,3,4-oxadiazole hybrid derivatives were synthesized via an environmentally friendly, multistep synthetic tool and a one-pot Songoashira-heterocyclization protocol using, for the first time, nanostructured palladium pyrophosphate (Na2 PdP2 O7 ) as a heterogeneous catalyst. Compounds 9a-c exhibited broad-spectrum activity with low micromolar EC50 values toward wild and mutant varicella-zoster virus (VZV) strains. Compound 9b was up to threefold more potent than the reference drug acyclovir against thymidine kinase-deficient VZV strains. Importantly, derivative 9b was not cytostatic at the maximum tested concentration (CC50 > 100 µM) and had an acceptable selectivity index value of up to 7.8. Moreover, all synthesized 1,3,4-oxadiazole hybrids were evaluated for their cytotoxic activity in four human cancer cell lines: fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A549). Data showed that compound 8f exhibits moderate cytotoxicity, with IC50 values ranging from 13.89 to 19.43 µM. Besides, compound 8f induced apoptosis through caspase 3/7 activation, cell death independently of the mitochondrial pathway, and cell cycle arrest in the S phase for HT1080 cells and the G1/M phase for A549 cells. Finally, the molecular docking study confirmed that the anticancer activity of the synthesized compounds is mediated by the activation of caspase 3.
Collapse
Affiliation(s)
- Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal Chemistry, Chemistry Department, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco.,Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Department de chimie, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Ali Oubella
- Laboratoire de Synthese Organique et de Physico-Chimie Moleculaire, Departement de Chimie, Faculté des Sciences Semlalia, Marrakech, Morocco
| | - Karim Dânoun
- MASCIR Foundation, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco, Rabat, Morocco
| | - Mehdi Ahmad
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | | | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Department de chimie, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Chemistry Department, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
9
|
Stecoza CE, Nitulescu GM, Draghici C, Caproiu MT, Olaru OT, Bostan M, Mihaila M. Synthesis and Anticancer Evaluation of New 1,3,4-Oxadiazole Derivatives. Pharmaceuticals (Basel) 2021; 14:438. [PMID: 34066442 PMCID: PMC8148175 DOI: 10.3390/ph14050438] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were designed and synthesized. The structures of the new compounds were established using elemental analyses, IR and NMR spectral data. The compounds were evaluated for their anticancer potential on two standardized human cell lines, HT-29 (colon adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma). Cytotoxicity was measured by MTS assay, while cell cycle arrest and apoptosis assays were conducted using a flow cytometer, the results showing that the cell line MDA-MB-231 is more sensitive to the compounds' action. The results of the predictive studies using the PASS application and the structural similarity analysis indicated STAT3 and miR-21 as the most probable pharmacological targets for the new compounds. The promising effect of compound 3e, 2-[2-(phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole, especially on the MDA-MB-231 cell line motivates future studies to improve the anticancer profile and to reduce the toxicological risks. It is worth noting that 3e produced a low toxic effect in the D. magna 24 h assay and the predictive studies on rat acute toxicity suggest a low degree of toxic risks.
Collapse
Affiliation(s)
- Camelia Elena Stecoza
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.)
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.)
| | - Constantin Draghici
- “Costin D. Neniţescu” Centre of Organic Chemistry Romanian Academy, 202 B Splaiul Independenţei, 060023 Bucharest, Romania; (C.D.); (M.T.C.)
| | - Miron Teodor Caproiu
- “Costin D. Neniţescu” Centre of Organic Chemistry Romanian Academy, 202 B Splaiul Independenţei, 060023 Bucharest, Romania; (C.D.); (M.T.C.)
| | - Octavian Tudorel Olaru
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.)
| | - Marinela Bostan
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania; (M.B.); (M.M.)
| | - Mirela Mihaila
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania; (M.B.); (M.M.)
| |
Collapse
|
10
|
He Z, Liu X, Wu F, Wu S, Rankin GO, Martinez I, Rojanasakul Y, Chen YC. Gallic Acid Induces S and G2 Phase Arrest and Apoptosis in Human Ovarian Cancer Cells In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:3807. [PMID: 34386269 PMCID: PMC8356902 DOI: 10.3390/app11093807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OC) is among the top gynecologic cancers in the US with a death tally of 13,940 in the past year alone. Gallic acid (GA) is a natural compound with pharmacological benefits. In this research, the role of GA on cell proliferation, cell apoptosis, cell cycle-related protein expression was explored in OC cell lines OVCAR-3 and A2780/CP70. After 24,48 and 72 h of GA treatment, the IC50 values in OVCAR-3 cells were 22.14 ± 0.45, 20.36 ± 0.18, 15.13 ± 0.53 μM, respectively and in A2780/CP70 cells IC50 values were 33.53 ± 2.64, 27.18 ± 0.22, 22.81 ± 0.56, respectively. Hoechst 33,342 DNA staining and flow cytometry results showed 20 μM GA exposure could significantly accelerate apoptosis in both OC cell lines and the total apoptotic rate increased from 5.34%(control) to 21.42% in OVCAR-3 cells and from 8.01%(control) to 17.69% in A2780/CP70 cells. Western blot analysis revealed that GA stimulated programmed OC cell death via a p53-dependent intrinsic signaling. In addition, GA arrested cell cycle at the S or G2 phase via p53-p21-Cdc2-cyclin B pathway in the same cells. In conclusion, we provide some evidence of the efficacy of GA in ovarian cancer prevention and therapy.
Collapse
Affiliation(s)
- Zhiping He
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin’ an, Hangzhou 311300, China
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Xingquan Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin’ an, Hangzhou 311300, China
| | - Fenghua Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin’ an, Hangzhou 311300, China
| | - Shaozhen Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin’ an, Hangzhou 311300, China
| | - Gary O’Neal Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Yi Charlie Chen
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
11
|
Kapoor G, Bhutani R, Pathak DP, Chauhan G, Kant R, Grover P, Nagarajan K, Siddiqui SA. Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1886123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Garima Kapoor
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Rubina Bhutani
- School of Medical and Allied Sciences, GD Goenka University, Gurgaon, Haryana, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Garima Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Ravi Kant
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | | |
Collapse
|
12
|
El Mansouri AE, Oubella A, Mehdi A, AitItto MY, Zahouily M, Morjani H, Lazrek HB. Design, synthesis, biological evaluation and molecular docking of new 1,3,4-oxadiazole homonucleosides and their double-headed analogs as antitumor agents. Bioorg Chem 2020; 108:104558. [PMID: 33358270 DOI: 10.1016/j.bioorg.2020.104558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
A novel series of homonucleosides and their double-headed analogs containing theophylline, 1,3,4-oxadiazole, and variant nucleobases was designed and synthesized. The new derivatives were fully characterized by HRMS, FT-IR, 1H NMR, and 13C NMR. The cytotoxic activities of all prepared compounds were screened in vitro against four cell lines, including fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A-549). The double-headed analogue 18 showed marked growth inhibition against all the cell lines tested, specifically in HT-1080, with an IC50 values of 17.08 ± 0.97 µM. The possible mechanism of apoptosis was investigated using Annexin V staining, caspase-3/7 activity, and analysis cell cycle progression. The compound 18 induced apoptosis through caspase-3/7 activation and cell-cycle arrest in HT-1080 and A-549 cells. The molecular docking confirms that the compound 18 activated caspase-3 via the formation of hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Az-Eddine El Mansouri
- Laboratoire de Materiaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculte des Sciences et Techniques, Universite Hassan II, Casablanca, Morocco; Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, BP 2390, Marrakech 40001, Morocco.
| | - Ali Oubella
- Laboratoire de Synthèse Organique et de Physico-Chimie Moléculaire, Département de Chimie, Faculte ́ des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco
| | - Ahmad Mehdi
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Montpellier cedex 5, France
| | - Moulay Youssef AitItto
- Laboratoire de Synthèse Organique et de Physico-Chimie Moléculaire, Département de Chimie, Faculte ́ des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco
| | - Mohamed Zahouily
- Laboratoire de Materiaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculte des Sciences et Techniques, Universite Hassan II, Casablanca, Morocco; Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), VARENA Center, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100 Rabat, Morocco.
| | - Hamid Morjani
- BioSpecT - EA7506 UFR de Pharmacie, Univ-Reims 51, rue Cognacq Jay, 51096 Reims cedex, France.
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, BP 2390, Marrakech 40001, Morocco.
| |
Collapse
|
13
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
14
|
Tiwari A, Gopalan Kutty N, Kumar N, Chaudhary A, Vasanth Raj P, Shenoy R, Mallikarjuna Rao C. Synthesis and evaluation of selected 1,3,4-oxadiazole derivatives for in vitro cytotoxicity and in vivo anti-tumor activity. Cytotechnology 2016; 68:2553-2565. [PMID: 27282155 PMCID: PMC5101327 DOI: 10.1007/s10616-016-9979-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 04/27/2016] [Indexed: 10/21/2022] Open
Abstract
The oxadiazole moiety is known for its anticancer activity through its antiangiogenic and mitostatic potential. Taking this as a cue, the present study was designed to investigate the anti-cancer potential of selected oxadiazole derivatives. Twelve 1,3,4-oxadiazole derivatives (AMK OX-1 to AMK OX-12) were synthesized and were tested for IC50 values through brine shrimp lethality assay and MTT assay on HeLa and A549 cell lines. Four compounds, AMK OX-8, 9, 11 and 12 showed potential cytotoxicity activity with low IC50 value. These compounds produced considerable cytotoxic effect on Hep-2 and A549 cancer cell lines. However, they were found to be comparatively safer to normal cell lines, viz., V-79 cell lines than to the tested cancer cell lines, such as HeLa, A 549, and Hep2 cell lines. The mechanism of cytotoxicity was evaluated through nuclear staining and DNA ladder assay. Although DNA ladder assay showed DNA fragmentation (apoptotic phenomenon) in Hep-2 cells treated with only AMK OX-12, the staining procedures using acridine orange, ethidium bromide and propidium iodide showed apoptotic bodies in cells treated with AMK OX-8, 9 and 12 also. In JCI staining on isolated mitochondria of Hep2 cells, AMK OX-8, 9-11 and 12 displayed increasing fluorescence intensity with time which confirmed involvement of mitochondrial pathway and intrinsic pathway of apoptosis. All four compounds were found to be safe in acute oral toxicity study in Swiss albino mice. These derivatives were effective in reducing tumor size and weight in the in vivo DLA-induced solid tumor model. They were found to be significantly effective in reducing tumor volume and tumor weight.
Collapse
Affiliation(s)
- Amit Tiwari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - N Gopalan Kutty
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Anil Chaudhary
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - P Vasanth Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
- Faculty of Pharmacy, AIMST University, Jalan Bedong Semeling, 08100, Bedong, Kedah Darul Aman, Malaysia
| | - Rekha Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|