1
|
Zarate-Escobedo J, Zavaleta-Mancera HA, Soto-Hernández RM, Pérez-Rodríguez P, Vilchis-Nestor AR, Silva-Rojas HV, Trejo-Téllez LI. Long-Lasting Silver Nanoparticles Synthesized with Tagetes erecta and Their Antibacterial Activity against Erwinia amylovora, a Serious Rosaceous Pathogen. PLANTS (BASEL, SWITZERLAND) 2024; 13:981. [PMID: 38611509 PMCID: PMC11013423 DOI: 10.3390/plants13070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
A rapid, eco-friendly, and simple method for the synthesis of long-lasting (2 years) silver nanoparticles (AgNPs) is reported using aqueous leaf and petal extracts of Tagetes erecta L. The particles were characterized using UV-Visible spectrophotometry and the analytical and crystallographic techniques of transmission electron microscopy (TEM). The longevity of the AgNPs was studied using UV-Vis and high-resolution TEM. The antibacterial activity of the particles against Erwinia amylovora was evaluated using the Kirby-Bauer disk diffusion method. The results were analyzed using ANOVA and Tukey's test (p ≤ 0.05). Both the leaf and petal extracts produced AgNPs, but the leaf extract (1 mL) was long-lasting and quasi-spherical (17.64 ± 8.87 nm), with an absorbance of UV-Vis λmax 433 and a crystalline structure (fcc, 111). Phenols, flavonoids, tannins, and terpenoids which are associated with -OH, C=O, and C=C were identified in the extracts and could act as reducing and stabilizing agents. The best antibacterial activity was obtained with a nanoparticle concentration of 50 mg AgNPs L-1. The main contribution of the present research is to present a sustainable method for producing nanoparticles which are stable for 2 years and with antibacterial activity against E. amylovora, one of most threatening pathogens to pear and apple productions.
Collapse
Affiliation(s)
- Johana Zarate-Escobedo
- Programa de Fisiología Vegetal, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Hilda Araceli Zavaleta-Mancera
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Ramón Marcos Soto-Hernández
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Paulino Pérez-Rodríguez
- Programa de Estadística, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | | | - Hilda Victoria Silva-Rojas
- Programa de Semillas, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Libia Iris Trejo-Téllez
- Laboratorio de Nutrición Vegetal, Programa de Edafología, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| |
Collapse
|
2
|
Mohanta YK, Mishra AK, Panda J, Chakrabartty I, Sarma B, Panda SK, Chopra H, Zengin G, Moloney MG, Sharifi-Rad M. Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine. Biochem Biophys Res Commun 2023; 688:149126. [PMID: 37951153 DOI: 10.1016/j.bbrc.2023.149126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/13/2023]
Abstract
The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India.
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Nagarwara, Bangalore, 560045, Karnataka, India.
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, 787057, Assam, India.
| | - Sujogya Kumar Panda
- Centre of Environment Climate Change and Public Health, RUSA 2.0, Deapartment of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and TechnicalSciences, Chennai, 602105, Tamil Nadu, India.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
3
|
Paul TK, Jalil MA, Repon MR, Alim MA, Islam T, Rahman ST, Paul A, Rhaman M. Mapping the Progress in Surface Plasmon Resonance Analysis of Phytogenic Silver Nanoparticles with Colorimetric Sensing Applications. Chem Biodivers 2023; 20:e202300510. [PMID: 37471642 DOI: 10.1002/cbdv.202300510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.
Collapse
Affiliation(s)
- Tamal Krishna Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Reazuddin Repon
- Laboratory of Plant Physiology, Nature Research Center, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, LT-51424, Kaunas, Lithuania
| | - Md Abdul Alim
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Sheikh Tamjidur Rahman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ayon Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Mukitur Rhaman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
4
|
Tesfaye M, Gonfa Y, Tadesse G, Temesgen T, Periyasamy S. Green synthesis of silver nanoparticles using Vernonia amygdalina plant extract and its antimicrobial activities. Heliyon 2023; 9:e17356. [PMID: 37383214 PMCID: PMC10293723 DOI: 10.1016/j.heliyon.2023.e17356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
The green nanoparticles synthesis method from leaves extract revealed full an economical, sustainable and eco-friendly method. In this study, the leaf extract of Vernonia amygdalina was as a reducing and capping agent for the synthesis of silver nanoparticles (AgNPs). M/DW binary solvent was selected for its relatively better extraction performance than methanol, ethanol, distilled water and ethanol/distilled water. Furthermore, the effect of solvent ratio of M/DW, precursor concentration, ratio of silver nitrate (AgNO3) to plant extract, temperature, time and pH on the synthesis of AgNPs was carried out. Greenly synthesized Agents was confirmed using UV-Vis spectroscopy and characterized by XRD and FT-IR. Besides, its antimicrobial activities were also evaluated using agar diffusion techniques. The UV-Vis spectra showed specific Surface Plasmon Resonance (SPR) absorption peaks between 411 nm and 430 nm which revealed the formation of AgNPs during the synthesis. The nanoparticle synthesis was further confirmed by XRD analysis. Phytochemical screening test and FT-IR analysis of V. amygdalina leaves extract revealed the existence of phenolic, Tannin, saponins and flavonoid groups, which capped the nanoparticles during the synthesis. The antibacterial activities of the synthesized AgNPs were evaluated against Gram-positive bacteria (S. pyogenes and S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa) and higher inhibition zones were observed.
Collapse
|
5
|
Barabadi H, Mobaraki K, Ashouri F, Noqani H, Jounaki K, Mostafavi E. Nanobiotechnological approaches in antinociceptive therapy: Animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 2023; 316:102917. [PMID: 37150042 DOI: 10.1016/j.cis.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Pain management is a major challenge in healthcare systems worldwide. Owing to undesirable side effects of current analgesic medications, there is an exceeding need to develop the effective alternative therapeutics. Nowadays, the application of nanomaterials is being highly considered, as their exceptional properties arising from the nanoscale dimensions are undeniable. With the increasing use of metal NPs, more biocompatible and costly methods of synthesis have been developed in which different biological rescores including microorganisms, plants and algae are employed. Nanobiotechnology-based synthesis of nanosized particles is an ecological approach offering safe production of nanoparticles (NPs) by biological resources eliminating the toxicity attributed to the conventional routes. This review provides an assessment of biosynthesized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as antinociceptive agents in recent studies. Living animal models (mice and rats) have been used for analyzing the effect of biogenic NPs on decreasing the nociceptive pain utilizing different methods such as acetic acid-induced writhing test, hot plate test, and formalin test. Potent analgesic activity exhibited by green fabricated AgNPs and AuNPs represents the bright future of nanotechnology in the management of pain and other social and medicinal issues followed by this unpleasant sensation. Moreover, there NPs showed a protective effects on liver, kidney, and body weight in animal models that make them attractive for clinical studies. However, further research is required to fully address the harmless antinociceptive effect of NPs for clinical usage.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
6
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
7
|
Xu X, Liu Y, Yang Y, Wu J, Cao M, Sun L. One-pot synthesis of functional peptide-modified gold nanoparticles for gene delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Noureen S, Noreen S, Ghumman SA, Batool F, Hameed H, Hasan S, Noreen F, Elsherif MA, Bukhari SNA. Prunus armeniaca Gum-Alginate Polymeric Microspheres to Enhance the Bioavailability of Tramadol Hydrochloride: Formulation and Evaluation. Pharmaceutics 2022; 14:pharmaceutics14050916. [PMID: 35631501 PMCID: PMC9144292 DOI: 10.3390/pharmaceutics14050916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Combinations of polymers can improve the functional properties of microspheres to achieve desired therapeutic goals. Hence, the present study aimed to formulate Prunus armeniaca gum (PAG) and sodium alginate microsphere for sustained drug release. Blended and coated microspheres were prepared using the ionotropic gelation technique. The effect of polymer concentration variation was studied on the structural and functional properties of formulated microspheres. FTIR, XRD, and thermal analysis were performed to characterize the microspheres. All the formulations were well-formed spherical beads having an average diameter from 579.23 ± 07.09 to 657.67 ± 08.74 μm. Microspheres entrapped drugs within the range 65.86 ± 0.26–83.74 ± 0.79%. The pH-dependent swelling index of coated formulations was higher than blended. FTIR spectra confirmed the presence of characteristic peaks of entrapped Tramadol hydrochloride showing no drug-polymer interaction. In vitro drug release profile showed sustained release following the Korsmeyer-Peppas kinetic model with an R2 value of 0.9803–0.9966. An acute toxicology study employing the oral route in Swiss albino mice showed no signs of toxicity. It can be inferred from these results that blending PAG with sodium alginate can enhance the stability of alginate microspheres and improve its drug release profile by prolonging the release time.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Fozia Noreen
- Department of Chemistry, University of Sialkot, Sialkot 51010, Pakistan;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| |
Collapse
|
9
|
Aliaño-González MJ, Gabaston J, Ortiz-Somovilla V, Cantos-Villar E. Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry. Biomolecules 2022; 12:238. [PMID: 35204739 PMCID: PMC8961605 DOI: 10.3390/biom12020238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
In the European Union (EU), a total of 11,301,345 hectares are dedicated to the cultivation of fruit trees, mainly olive orchards, grapevines, nut trees (almond, walnut, chestnut, hazelnut, and pistachio), apple and pear trees, stone fruit trees (peach, nectarine, apricot, cherry, and plum), and citrus fruit trees (orange, clementine, satsuma, mandarin, lemon, grapefruit, and pomelo). Pruning these trees, together with plantation removal to a lesser extent, produces a huge amount of wood waste. A theoretical calculation of the wood waste in the European Union estimates approximately 2 and 25 million tons from wood plantation removal and pruning, respectively, per year. This wood waste is usually destroyed by in-field burning or crushing into the soil, which result in no direct economic benefits. However, wood from tree pruning, which is enriched in high added-value molecules, offers a wide spectrum of possibilities for its valorization. This review focuses on the contribution of wood waste to both sustainability and the circular economy, considering its use not only as biomass but also as a potential source of bioactive compounds. The main bioactive compounds found in wood are polyphenols, terpenes, polysaccharides, organic compounds, fatty acids, and alkaloids. Polyphenols are the most ubiquitous compounds in wood. Large amounts of hydroxytyrosol (up to 25 g/kg dw), resveratrol (up to 66 g/kg dw), protocatechuic acid (up to 16.4 g/kg), and proanthocyanins (8.5 g/kg dw) have been found in the wood from olive trees, grapevines, almond trees and plum trees, respectively. The bioactivity of these compounds has been demonstrated at lower concentrations, mainly in vitro studies. Bioactive compounds present antioxidant, antimicrobial, antifungal, biostimulant, anti-inflammatory, cardioprotective, and anticarcinogenic properties, among others. Therefore, wood extracts might have several applications in agriculture, medicine, and the food, pharmaceutical, nutraceutical, and cosmetics industries. For example, olive tree wood extract reduced thrombin-induced platelet aggregation in vitro; grapevine tree wood extract acts a preservative in wine, replacing SO2; chestnut tree wood extract has antifungal properties on postharvest pathogens in vitro; and stone tree wood extracts are used for aging both wines and brandies. Moreover, the use of wood waste contributes to the move towards both a more sustainable development and a circular economy.
Collapse
Affiliation(s)
- Maria Jose Aliaño-González
- IFAPA Rancho de la Merced, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, 11471 Jerez de la Frontera, Spain;
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cadiz, Spain
| | - Julien Gabaston
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain;
| | - Victor Ortiz-Somovilla
- IFAPA Alameda del Obispo, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Avenida Menéndez Pidal, 14004 Córdoba, Spain;
| | - Emma Cantos-Villar
- IFAPA Rancho de la Merced, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, 11471 Jerez de la Frontera, Spain;
| |
Collapse
|
10
|
Dube S, Matsinha LC, Makhubela BCE, Ambushe AA. Investigating cyanogen rich Manihot esculenta efficacy for Ru phytomining and application in catalytic reactions. RSC Adv 2022; 12:1165-1176. [PMID: 35425133 PMCID: PMC8978976 DOI: 10.1039/d1ra06647a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022] Open
Abstract
Phytomining is a newly developing alternative green technology. This technology has been applied for recovering precious metals from mine tailings that are low-grade ores. In this study, effective catalytic transfer hydrogenation of furfural to furfural alcohol was investigated using a ruthenium (Ru) bio-based catalyst, Ru@CassCat. The catalyst was prepared from Ru rich bio-ore recovered during laboratory scale phytomining as a model of mining tailing using the cassava plant (Manihot esculenta). Pre-rooted cassava cuttings were propagated and watered with Ru rich solutions for ten weeks before harvest. Harvested cassava roots were calcined to produce the bio-ore used as an in situ bio-based catalyst. The properties of the catalyst were characterized by various techniques, which include transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM-EDS), powder X-ray diffraction (pXRD), ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) theory. Characterization by FTIR, SEM and TEM revealed that RuCassCat has spherical component particles, loosely arranged around a cellulose/lignin-like matrix of the biocatalyst. It was also found that calcination strengthened the structure and texture of the support carbon matrix to distribute the Ru particles evenly. An ICP-MS analysis showed that up to 295 μg g−1 of Ru was detected in cassava roots. The variation of test conditions, namely, temperature, time, base, catalyst load, and a hydrogen source, was investigated. Optimally, a 0.00295 wt% ruthenium loading on the Ru@CassCat catalyst resulted in 100% furfural conversion with a turnover frequency of 0.0114 million per hour at 160 °C for 24 h using triethylamine as a base and formic acid as a hydrogen source. The catalyst remained active for up to three recycles, consecutively and produced furfural alcohol in high turnover numbers. Effective catalytic transfer hydrogenation of furfural into furfural alcohol was accomplished using a bio-based Ru catalyst, Ru@CassCat. The catalyst was successfully produced from cassava biomass grown in Ru-rich laboratory soils.![]()
Collapse
Affiliation(s)
- Sifelani Dube
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa
| | - Leah C. Matsinha
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa
| | - Banothile C. E. Makhubela
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa
| | - Abayneh A. Ambushe
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
11
|
López-Miranda JL, Molina GA, Esparza R, González-Reyna MA, Silva R, Estévez M. Green Synthesis of Homogeneous Gold Nanoparticles Using Sargassum spp. Extracts and Their Enhanced Catalytic Activity for Organic Dyes. TOXICS 2021; 9:280. [PMID: 34822671 PMCID: PMC8623730 DOI: 10.3390/toxics9110280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Sargassum species-based extracts were used to carry out the synthesis of homogeneous gold nanoparticles. Various techniques were used to determine the characteristics and composition of the nanoparticles. The UV-Vis results showed that the 50% water/ethanol extract had the most reducing agents and stabilizers. Therefore, this type of extract was used to synthesize nanoparticles and for their subsequent characterization. Crystallinity and crystal size were evaluated using X-ray diffraction. Size and morphology were analyzed using scanning electron microscopy, showing that the gold nanoparticles were mostly spherical, with a size range of 15-30 nm. The catalytic activity of the gold nanoparticles was evaluated through the degradation of organic dyes: methylene blue, methyl orange, and methyl red. The degradation rates were different, depending on the nature of each dye, the simplest to degrade was methylene blue and methyl red was the most difficult to degrade. The results indicated that the use of Sargassum spp. for the synthesis of gold nanoparticles has potential in the remediation of water that is contaminated with organic dyes. Moreover, given the recent serious environmental and economic problems caused by the overpopulation of Sargassum spp. in the Mexican Caribbean, the findings hold promise for their practical and sustainable use in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- J. Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Gustavo A. Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Marlen Alexis González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico;
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| |
Collapse
|
12
|
Effect of CTABr (surfactant) on the kinetics of formation of silver nanoparticles by Amla extract. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Shahid M, Subhan F, Islam NU, Ahmad N, Farooq U, Abbas S, Akbar S, Ullah I, Raziq N, Din ZU. The antioxidant N-(2-mercaptopropionyl)-glycine (tiopronin) attenuates expression of neuropathic allodynia and hyperalgesia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:603-617. [PMID: 33079239 DOI: 10.1007/s00210-020-01995-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The current pharmacotherapy of neuropathic pain is inadequate as neuropathic pain involves varied clinical manifestations with multifactorial etiology, modulated by a cascade of physical and molecular events leading to different clinical presentations of pain. There is an accumulating evidence of the involvement of oxidative stress in neuropathy, and antioxidants have shown promise in mitigating neuropathic pain syndromes. To explore the evidence supporting this beneficial proclivity of antioxidants, this study investigated the antinociceptive effectiveness of N-(2-mercaptopropionyl)glycine or tiopronin, a well-recognized aminothiol antioxidant, in a refined chronic constriction injury (CCI) rat model of neuropathic pain. Tiopronin (10, 30, and 90 mg/kg, i.p.) and pregabalin (30 mg/kg, i.p.) were administered daily after CCI surgery. The neuropathic paradigms of mechanical/cold allodynia and mechanical/heat hyperalgesia were assessed on days 3, 7, 14, and 21 post-nerve ligation. At the end of study, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were estimated in the sciatic nerve, dorsal root ganglion, and spinal cord for assessing the extent of oxidative stress. The expression of neuropathic nociception was attenuated by tiopronin which was observed as a significant attenuation of CCI-induced allodynia and hyperalgesia. Tiopronin reversed the neuronal oxidative stress by significantly reducing MDA, and increasing SOD, CAT, and GSH levels. Pregabalin also showed similar beneficial propensity on CCI-induced neuropathic aberrations. These findings suggest prospective neuropathic pain attenuating efficacy of tiopronin and further corroborated the notion that antioxidants are effective in mitigating the development and expression of neuropathic pain and underlying neuronal oxidative stress.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Nisar Ahmad
- Faculty of Pharmacy, National University of Pakistan, Sialkot, Punjab, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Sudhair Abbas
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Shehla Akbar
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Naila Raziq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Pakistan
| |
Collapse
|
14
|
Salarbashi D, Jahanbin K, Tafaghodi M, Fahmideh‐Rad E. Prunus armeniaca gum exudates: An overview on purification, structure, physicochemical properties, and applications. Food Sci Nutr 2021; 9:1240-1255. [PMID: 33598208 PMCID: PMC7866599 DOI: 10.1002/fsn3.2107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Prunus armeniaca gum exudate (PAGE) is obtained from the trunk branches of apricot trees. PAGE is a high-molecular-weight polysaccharide with arabinogalactan structure. The physicochemical and rheological characteristics of this gum have been investigated in various researches. PAGE offers a good potential for use as an emulsifying, binding, and stabilizing agent in food and pharmaceutical industries. It also can be used as an organic additive in tissue culture media, synthesizing of metallic nanoparticles, binding potential in tablets, antioxidant agent, and corrosion inhibitor. For desirable emulsifying, stabilizing, shelf life-enhancing properties, and antioxidant activity of PAGE, it can be used as additive in many foods. We present here a comprehensive review on the existing literatures on characterization of this source of polysaccharide to explore its potential applications in various systems.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterGonabad University of Medical SciencesGonabadIran
- Department of Food science and NutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Kambiz Jahanbin
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Elham Fahmideh‐Rad
- Applied Sciences Department, Applied Chemistry SectionHigher College of Technology (HCT)MuscatSultanate of Oman
| |
Collapse
|
15
|
Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS, Bastos JK, Marcato PD. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep 2021; 11:1974. [PMID: 33479338 PMCID: PMC7820602 DOI: 10.1038/s41598-021-81281-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are highlighted due to their low toxicity, compatibility with the human body, high surface area to volume ratio, and surfaces that can be easily modified with ligands. Biosynthesis of AuNPs using plant extract is considered a simple, low-cost, and eco-friendly approach. Brazilian Red Propolis (BRP), a product of bees, exhibits anti-inflammatory, anti-tumor, antioxidant, and antimicrobial activities. Here, we described the biosynthesis of AuNPs using BRP extract (AuNPextract) and its fractions (AuNPhexane, AuNPdichloromethane, AuNPethyl acetate) and evaluated their structural properties and their potential against microorganisms and cancer cells. AuNPs showed a surface plasmon resonance (SPR) band at 535 nm. The sizes and morphologies were influenced by the BRP sample used in the reaction. FTIR and TGA revealed the involvement of bioactive compounds from BRP extract or its fractions in the synthesis and stabilization of AuNPs. AuNPdichloromethane and AuNPhexane exhibited antimicrobial activities against all strains tested, showing their efficacy as antimicrobial agents to treat infectious diseases. AuNPs showed dose-dependent cytotoxic activity both in T24 and PC-3 cells. AuNPdichloromethane and AuNPextract exhibited the highest in vitro cytotoxic effect. Also, the cytotoxicity of biogenic nanoparticles was induced by mechanisms associated with apoptosis. The results highlight a potential low-cost green method using Brazilian red propolis to synthesize AuNPs, which demonstrated significant biological properties.
Collapse
Affiliation(s)
- C E A Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - L B Silva
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - G V Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - T S Silva
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - S R Ambrosio
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - R C S Veneziani
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - P D Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
16
|
Efficacy assessment of salicylidene salicylhydrazide in chemotherapy associated peripheral neuropathy. Eur J Pharmacol 2020; 888:173481. [DOI: 10.1016/j.ejphar.2020.173481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
|
17
|
Kowsalya E, MosaChristas K, Jaquline CRI, Balashanmugam P, Devasena T. Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF‐7 breast cancer cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elumalai Kowsalya
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | - Kithiyon MosaChristas
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | - Chinna Rani Inbaraj Jaquline
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | | | | |
Collapse
|
18
|
Alghamdi S. Antinociceptive Effect of the Citrus Flavonoid Eriocitrinon Postoperative Pain Conditions. J Pain Res 2020; 13:805-815. [PMID: 32368133 PMCID: PMC7183786 DOI: 10.2147/jpr.s250391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Postoperative pain remains a major clinical problem as there are limited analgesic strategies that have been proven to be effective in preventing and relieving this type of pain. Natural products, including flavonoids, have distinct pharmacological properties and play an important role in the discovery of analgesic drugs. MATERIALS AND METHODS In this study, the flavonoid eriocitrin (eriodictyol 7-O-rutinoside), which is the main flavonoid in lemon fruit (Citrus limon), was mechanistically investigated for its prospective antinociceptive effect in a mouse model of postoperative pain. The antinociceptive property was evaluated by utilizing both tonic (acetic acid-induced writhing behavior) and phasic (hot-plate) nociception modalities. The hindpaw incisional surgery was performed and hyperalgesia was assessed using von Frey filaments. RESULTS The tested doses of eriocitrin significantly attenuated (P<0.01, P<0.001) the chemically-induced tonic visceral nociception (5, 10, 15, and 30 mg/kg) and acute phasic thermal nociception (10, 15, and 30 mg/kg). A significant dose-dependent reduction in the incisional nociceptive hyperalgesia was exhibited by eriocitrin, with a marked antinociception observed at doses of 15 mg/kg (P<0.05 during 30-60 minutes) and 30 mg/kg (P<0.05, P<0.01 during 30-120 minutes). CONCLUSION The antinociceptive effect of eriocitrin (30 mg/kg) was strongly blocked by the antagonists of the opioid receptor, naltrexone, and GABAA receptor, bicuculline, thereby suggesting the involvement of opioidergic and GABAergic mechanisms in the nociception, reducing proclivity of eriocitrin during transmission of incisional nociception. These results concluded that eriocitrin has a potent antinociceptive effect in postoperative pain conditions, probably mediated through opioid and GABAA receptors.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah21955, Saudi Arabia
| |
Collapse
|
19
|
Green Synthesis of Silver Nanoparticles from Caesalpinia pulcherrima Leaf Extract and Evaluation of Their Antimicrobial, Cytotoxic and Genotoxic Potential (3-in-1 System). J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01532-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Iravani S. Plant gums for sustainable and eco-friendly synthesis of nanoparticles: recent advances. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1719155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Irfan M, Ahmad T, Moniruzzaman M, Bhattacharjee S, Abdullah B. Size and stability modulation of ionic liquid functionalized gold nanoparticles synthesized using Elaeis guineensis (oil palm) kernel extract. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Super Stability of Ag Nanoparticle in Crystalline Lamellar (Lc) Liquid Crystal Matrix at Different pH Environment. Symmetry (Basel) 2019. [DOI: 10.3390/sym12010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The symmetry concept in this paper is related to the natural self-assembly of noble metal nanoparticles in the long range periodic structure of liquid crystal (LC). The current study deliberates the effect of pH on the stability of nanoparticles (NPs) in the lamellar phase of a lyotropic LC environment. The LC was prepared by the mass ratio 0.33:0.22:0.45 for (HDTABr):1-pentanol:water. The LC containing silver nanoparticles (AgNPs) was prepared by replacing the water with Ag solution. The AgNPs were produced by the in situ preparation method in LC. The solution of AgNPs-LC was varied at different pH. The absorption intensities were determined by using ultra-violet spectroscopy (UV-vis). The surface potential and hydrodynamic particle size were determined by using Zeta-potential (measurements). The surface enhanced Raman spectroscopy (SERS) was carried out to enhance the Raman signals of 4-aminobenzenethiol (4-ABT) deposited onto AgNPs as substrate. It is found that all characterizations exhibited super stability for AgNPs dispersed in LC at pH = 3 to 12 with the optimum stability at pH = 5–6. The remarkable stability of NPs is an important indicator of the various applications in nanotechnology and nanoscience fields.
Collapse
|
23
|
Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol 2018; 102:4393-4408. [DOI: 10.1007/s00253-018-8928-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/10/2023]
|
24
|
Markus J, Wang D, Kim YJ, Ahn S, Mathiyalagan R, Wang C, Yang DC. Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica pubescens Maxim. NANOSCALE RESEARCH LETTERS 2017; 12:46. [PMID: 28097599 PMCID: PMC5241258 DOI: 10.1186/s11671-017-1833-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
A facile synthesis and biological applications of silver (DH-AgNps) and gold nanoparticles (DH-AuNps) mediated by the aqueous extract of Angelicae Pubescentis Radix (Du Huo) are explored. Du Huo is a medicinal root belonging to Angelica pubescens Maxim which possesses anti-inflammatory, analgesic, and antioxidant properties. The absorption spectra of nanoparticles in varying root extract and metal ion concentration, pH, reaction temperatures, and time were recorded by ultraviolet-visible (UV-Vis) spectroscopy. The presence of DH-AgNps and DH-AuNps was confirmed from the surface plasmon resonance intensified at ~414 and ~540 nm, respectively. Field emission transmission electron micrograph (FE-TEM) analysis revealed the formation of quasi-spherical DH-AgNps and spherical icosahedral DH-AuNps. These novel DH-AgNps and DH-AuNps maintained an average crystallite size of 12.48 and 7.44 nm, respectively. The biosynthesized DH-AgNps and DH-AuNps exhibited antioxidant activity against 2,2-diphenyl-1-picrylhydrzyl (DPPH) radicals and the former exhibited antimicrobial activity against clinical pathogens including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica. The expected presence of flavonoids, sesquiterpenes, and phenols on the nanoparticle surface were conjectured to grant protection against aggregation and free radical scavenging activity. DH-AgNps and DH-AuNps were further investigated for their cytotoxic properties in RAW264.7 macrophages for their potential application as drug carriers to sites of inflammation. In conclusion, this green synthesis is favorable for the advancement of plant mediated nano-carriers in drug delivery systems, cancer diagnostic, and medical imaging. Schematic diagram of biosynthesis of DH-AgNps and DH-AuNps and evaluation of their bioactivities.
Collapse
Affiliation(s)
- Josua Markus
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Dandan Wang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Chao Wang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| |
Collapse
|
25
|
Chahardoli A, Karimi N, Sadeghi F, Fattahi A. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:579-588. [PMID: 28541741 DOI: 10.1080/21691401.2017.1332634] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present work, we studied the reduction of gold ions into gold nanoparticles using Nigella arvensis leaf extract in the one-step green synthesis method. The formation of N. arvensis gold nanoparticles (NA-GNPs) was confirmed by UV-Vis spectroscopy, XRD, FT-IR and TEM analyses. The XRD pattern confirmed the crystal structure of NA-GNPs, and TEM image showed the small size (3-37 nm) and almost spherical shape of NA-GNPs. NA-GNPs have not shown enhanced antioxidant properties compared to the plant extract while they were active against the clinical isolated bacterial strains. These nanoparticles showed the cytotoxicity effects against H1299 and MCF-7 cancer cell lines with an IC50 value of 10 and 25 μg/ml, respectively. The extract of N. arvensis contained 212 μg/ml flavonoids and 145 μg/ml phenolic compounds. The contents of total phenolics and flavonoids of biosynthesized NA-GNPs were 68 and 189 μg/ml, respectively. Plant extract and NA-GNPs exhibited a maximum DPPH scavenging activity of 32% and 12%, respectively. The catalytic activity of NA-GNPs against methylene blue was 44%. In conclusion, these results suggest that NA-GNPs can act as a promising candidate for different medical applications produced by cost-effective, eco-friendly and straightforward green method.
Collapse
Affiliation(s)
- Azam Chahardoli
- a Department of Biology, Faculty of Science , Razi University , Kermanshah , Iran.,b Pharmaceutical Sciences Research Center, School of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Naser Karimi
- a Department of Biology, Faculty of Science , Razi University , Kermanshah , Iran
| | - Fatemeh Sadeghi
- c Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ali Fattahi
- b Pharmaceutical Sciences Research Center, School of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran.,c Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Nano Drug Delivery Research Center, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
26
|
Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol 2017; 101:3551-3565. [DOI: 10.1007/s00253-017-8250-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
|
27
|
Moteriya P, Chanda S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1556-1567. [PMID: 27900878 DOI: 10.1080/21691401.2016.1261871] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Caesalpinia pulcherrima flower extract mediated synthesis of silver nanoparticles was attempted in the present work including optimization of some procedure parameters. Characterization of synthesized silver nanoparticles was done by various spectral analyses. The size of synthesized silver nanoparticles was 12 nm and they were spherical in shape. The green synthesized silver nanoparticles were further evaluated for antimicrobial, antioxidant, cytotoxic, and genotoxic activities; they showed good antimicrobial, antioxidant, and cytotoxic effects. Genotoxic study revealed non-toxic nature at lower concentration. Overall results suggest that the synthesized silver nanoparticles have pronounced applicability in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Pooja Moteriya
- a Department of Biosciences (UGC-CAS) , Saurashtra University , Rajkot , Gujarat , India
| | - Sumitra Chanda
- a Department of Biosciences (UGC-CAS) , Saurashtra University , Rajkot , Gujarat , India
| |
Collapse
|