1
|
Gull A, Hussain T, Islam A, Ara C. Copper functionalized, pro-angiogenic, and skin regenerative scaffolds based on novel chitosan/APDEMS modified sepiolite-based formulation. Int J Biol Macromol 2024; 283:137538. [PMID: 39542317 DOI: 10.1016/j.ijbiomac.2024.137538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Biomaterials-based scaffolds are extensively explored for their proangiogenic and tissue regenerative abilities. The present study aimed to develop wound healing scaffolds based on chitosan/aminopropyldiethoxymethylsilane (APDEMS) modified sepiolite, loaded with copper (0-0.25 g), characterized by FTIR, SEM, mechanical, TGA and analyzed biomedically. The FTIR and SEM confirmed the silane-induced cross-linking and incorporation of copper leading to better dispersion of individual components in the scaffolds. Based on other physicochemical observations, the best scaffold was CS/MS/Cu0.1 (99.5 % increased Young's modulus compared to chitosan, maximum swelling = 900 %, equilibrium time = 70 min); So, CS/MS/Cu0.1 and 0.25 were chosen for further analysis. The CAM assay showed significantly increased angiogenesis in CS/MS/Cu0.1 and 0.25 groups, lacking any developmental anomalies in chick embryos, at lower copper concentrations. The scaffolds' wound healing potential and in-vivo toxicity were assessed by wound excision and histopathology of various organs in mice, respectively. The rate of wound contraction in the CS/MS/Cu0.1 group was significantly (P < 0.05) greater than the control. The abovementioned results corroborated the histological and biochemical findings regarding more collagen deposition in regenerated skin sections and insignificant deviations in biochemical parameters of treated mice, respectively. The formulated biomaterials have proven promising materials for promoting angiogenesis in chick models and accelerating regeneration in mice skin.
Collapse
Affiliation(s)
- Aysha Gull
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Tajamal Hussain
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Atif Islam
- School of Chemistry, University of the Punjab, Lahore, Pakistan; Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan.
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Ulu A, Akkurt Ş, Birhanlı E, Alkan Uçkun A, Uçkun M, Yeşilada Ö, Ateş B. Fabrication, characterization, and application of laccase-immobilized membranes for acetamiprid and diuron degradation. Int J Biol Macromol 2024; 282:136787. [PMID: 39454896 DOI: 10.1016/j.ijbiomac.2024.136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Water and wastewater pollution by acetamiprid and diuron is considered a serious environmental problem. In this study, chitosan (CHS), a naturally occurring bioadsorbent considered ecologically harmless to remove these micropollutants, was developed as a possible carrier to immobilize laccase (Lac) from Trametes trogii. Polyethylene glycol methyl ether (PEGME) was chosen for blending CHS, so a hybrid biocatalyst-based Lac/CHS-PEGME membrane was prepared. The prepared CHS-PEGME and Lac/CHS-PEGME membranes were characterized by Fourier-transformed-infrared (FTIR) spectroscopy, scanning-electron-microscopy (SEM), and X-ray-diffraction (XRD). Pesticide degradation tests with Lac/CHS-PEGME were performed at different contact times and initial concentrations. Acetamiprid degradation was most effective (84 %) at the 12th hour, at an initial concentration of 0.1 mg/L, while diuron degradation was most effective (65 %) at an initial concentration of 6 mg/L and a contact time of 16th hour. Under optimum conditions, the reusability of Lac/CHS-PEGME was found to be 8 cycles for acetamiprid and 5 cycles for diuron. From these results, it is understood that acetamiprid is degraded more quickly and effectively than diuron. Adsorption process data were well fitted to the Langmuir isotherm model and the pseudo-first-order kinetic model. These findings showed that using Lac/CHS-PEGME was a practical and environmentally friendly method for acetamiprid and diuron degradation.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| | - Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Emre Birhanlı
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye.
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Özfer Yeşilada
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| |
Collapse
|
3
|
Fahmy S, Ramzy A, El Samaloty NM, Sedky NK, Azzazy HMES. PEGylated Chitosan Nanoparticles Loaded with Betaine and Nedaplatin Hamper Breast Cancer: In Vitro and In Vivo Studies. ACS OMEGA 2023; 8:41485-41494. [PMID: 37969975 PMCID: PMC10633871 DOI: 10.1021/acsomega.3c05359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The current study investigates the anticancer effects of PEGylated chitosan nanoparticles (CS NPs) coloaded with betaine (BT) and nedaplatin (ND) on breast adenocarcinoma (MCF-7) cells and breast cancer-bearing rats. Hereof, the ionotropic gelation approach was implemented for the synthesis of PEG-uncoated and PEG-coated CS NPs encompassing either BT, ND, or both (BT-ND). The sizes of the developed BT/CS NPs, ND/CS NPs, and BT-ND/CS NPs were 176.84 ± 7.45, 204.1 ± 13.6, and 201.1 ± 23.35 nm, respectively. Meanwhile, the sizes of the synthesized BT/PEG-CS NPs, ND/PEG-CS NPs, and BT-ND/PEG-CS NPs were 165.1 ± 32.40, 148.2 ± 20.98, and 143.7 ± 7.72 nm, respectively. The surface charges of the fabricated nanoparticles were considerably high. All of the synthesized nanoparticles displayed a spherical form and significant entrapment efficiency. Release experiments demonstrated that the PEGylated and non-PEGylated CS NPs could discharge their contents into the tumor cells' microenvironments (pH 5.5). In addition, the NPs demonstrated an outstanding ability to reduce the viability of the MCF-7 cell line. In addition, BT-ND/PEG-CS NPs were found to be the strongest among all NP preparations, where they caused around 90% decrease in the size of mammary gland tumors in rats compared to vehicle-treated animals.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, Cairo 11835, Egypt
| | - Asmaa Ramzy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Nourhan M. El Samaloty
- Biochemistry
Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
- Pharmacology
and Biochemistry Department, Faculty of Pharmaceutical Sciences and
Pharmaceutical Industries, Future University
in Egypt, Cairo 12311, Egypt
| | - Nada K. Sedky
- Department
of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
4
|
Ebrahimnejad P, Rezaeiroshan A, Babaei A, Khanali A, Aghajanshakeri S, Farmoudeh A, Nokhodchi A. Hyaluronic Acid-Coated Chitosan/Gelatin Nanoparticles as a New Strategy for Topical Delivery of Metformin in Melanoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3304105. [PMID: 37313551 PMCID: PMC10260318 DOI: 10.1155/2023/3304105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Metformin is a multipotential compound for treating diabetes II and controlling hormonal acne and skin cancer. This study was designed to enhance metformin skin penetration in melanoma using nanoparticles containing biocompatible polymers. Formulations with various concentrations of chitosan, hyaluronic acid, and sodium tripolyphosphate were fabricated using an ionic gelation technique tailored by the Box-Behnken design. The optimal formulation was selected based on the smallest particle size and the highest entrapment efficiency (EE%) and used in ex vivo skin penetration study. In vitro antiproliferation activity and apoptotic effects of formulations were evaluated using MTT and flow cytometric assays, respectively. The optimized formulation had an average size, zeta potential, EE%, and polydispersity index of 329 ± 6.30 nm, 21.94 ± 0.05 mV, 64.71 ± 6.12%, and 0.272 ± 0.010, respectively. The release profile of the optimized formulation displayed a biphasic trend, characterized by an early burst release, continued by a slow and sustained release compared to free metformin. The ex vivo skin absorption exhibited 1142.5 ± 156.3 μg/cm2 of metformin deposited in the skin layers for the optimized formulation compared to 603.2 ± 93.1 μg/cm2 for the free metformin. Differential scanning calorimetry confirmed the deformation of the drug from the crystal structure to an amorphous state. The attenuated total reflection Fourier transform infrared results approved no chemical interaction between the drug and other ingredients of the formulations. According to the MTT assay, metformin in nanoformulation exhibited a higher cytotoxic effect against melanoma cancer cells than free metformin (IC50: 3.94 ± 0.57 mM vs. 7.63 ± 0.26 mM, respectively, P < 0.001). The results proved that the optimized formulation of metformin could efficiently decrease cell proliferation by promoting apoptosis, thus providing a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azin Khanali
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farmoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Research Center, Coral Springs, FL, USA
| |
Collapse
|
5
|
Synthesis and Characterization of Conducting Polymer/Alginate Composite Hydrogels: Effect of Conducting Polymer Loading on the Release Behaviour of Metformin Drug. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Drug release and thermal properties of magnetic cobalt ferrite (CoFe2O4) nanocomposite hydrogels based on poly(acrylic acid-g-N-isopropyl acrylamide) grafted onto gum ghatti. Int J Biol Macromol 2022; 224:358-369. [DOI: 10.1016/j.ijbiomac.2022.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
7
|
Fahmy SA, Ramzy A, Mandour AA, Nasr S, Abdelnaser A, Bakowsky U, Azzazy HMES. PEGylated Chitosan Nanoparticles Encapsulating Ascorbic Acid and Oxaliplatin Exhibit Dramatic Apoptotic Effects against Breast Cancer Cells. Pharmaceutics 2022; 14:407. [PMID: 35214139 PMCID: PMC8874531 DOI: 10.3390/pharmaceutics14020407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
This study aims to design a pH-responsive dual-loaded nanosystem based on PEGylated chitosan nanoparticles loaded with ascorbic acid (AA) and oxaliplatin (OX) for the effective treatment of breast cancer. In this regard, non-PEGylated and PEGylated chitosan nanoparticles (CS NPs) loaded with either ascorbic acid (AA), oxaliplatin (OX), or dual-loaded with AA-OX were fabricated using the ionotropic gelation method. The hydrodynamic diameters of the fabricated AA/CS NPs, OX/CS NPs, and AA-OX/CS NPs were 157.20 ± 2.40, 188.10 ± 9.70, and 261.10 ± 9.19 nm, respectively. While the hydrodynamic diameters of the designed AA/PEG-CS NPs, OX/PEG-CS NPs, and AA-OX/PEG-CS NPs were 152.20 ± 2.40, 156.60 ± 4.82, and 176.00 ± 4.21 nm, respectively. The ζ-potential of the prepared nanoparticles demonstrated high positive surface charges of +22.02 ± 1.50, +22.58 ± 1.85 and +40.4 ± 2.71 mV for AA/CS NPs, OX/CS NPs, and AA-OX/CS NPs, respectively. The ζ-potential of the PEGylated CS NPs was reduced owing to the shielding of the positive charges by the PEG chains. Additionally, all the prepared nanoparticles exhibited high entrapment efficiencies (EE%) and spherical-shaped morphology. The chemical features of the prepared nanoparticles were investigated using Fourier transform infrared (FTIR) spectroscopy. Release studies showed the capability of the prepared non-PEGylated and PEGylated chitosan NPs to release their cargo in the acidic environment of cancer tissue (pH 5.5). Furthermore, the AA/CS NPs, AA/PEG-CS NPs, OX/CS NPs, OX/PEG-CS NPs, AA-OX/CS NPs and AA-OX/PEG-CS NPs exhibited remarkable cytotoxic activities against breast adenocarcinoma (MCF-7) cells with IC50 values of 44.87 ± 11.49, 23.3 ± 3.73, 23.88 ± 6.29, 17.98 ± 3.99, 18.69 ± 2.22, and 7.5 ± 0.69 µg/mL, respectively; as compared to free AA and OX (IC50 of 150.80 ± 26.50 and 147.70 ± 63.91 µg/mL, respectively). Additionally, treatment of MCF-7 cells with IC50 concentrations of AA, AA/CS NPs, AA/PEG-CS NPs, OX, OX/CS NPs, OX/PEG-CS NPs, AA-OX/CS NPs or AA-OX/PEG-CS NPs increased the percentages of early apoptotic cells to 5.28%, 9.53%, 11.20%, 5.27%, 13.80%, 8.43%, 2.32%, and 10.10%, respectively, and increased the percentages of late apoptotic cells to 0.98%, 0.37%, 2.41%, 2.06%, 0.97%, 9.66%, 56%, and 81.50%, respectively. These results clearly indicate that PEGylation enhances the apoptotic effect of AA and OX alone, in addition to potentiating the apoptotic effect of AA and OX when combined on MCF-7 cells. In conclusion, PEGylated chitosan nanoparticles encapsulating AA, OX, or AA and OX represent an effective formula for induction of apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (A.R.)
| | - Asmaa Ramzy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (A.R.)
| | - Asmaa A. Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Soad Nasr
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.N.); (A.A.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.N.); (A.A.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (A.R.)
| |
Collapse
|
8
|
Rehman N, Dilshad MR, Islam A, Gull N, Riaz T, Khan SM, Khan RU. Novel graphene oxide loaded sodium alginate hydrogels cross-linked with tetraethyl orthosilicate for cephradine release analysis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int J Biol Macromol 2021; 184:325-338. [PMID: 34119547 DOI: 10.1016/j.ijbiomac.2021.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer has been one of the top chronic and life-threatening diseases worldwide. Nano-drug therapeutic systems have proved their efficacy as a selective treatment compared to the traditional ones that are associated with serious adverse effects. Here, biodegradable chitosan nanoparticles (CSNPs) were synthesized to provide selective and sustained release of doxorubicin (DOX) within the breast tumor microenvironment. CSNPs surface was modified using Polyethylene glycol (PEG) to enhance their blood circulation timing. To provide high drug selectivity, CSNPs functionalized with two different types of breast cancer-specific monoclonal antibodies (mAb); anti-human mammaglobin (Anti-hMAM) and anti-human epidermal growth factor (Anti-HER2). Anti-hMAM PEGylated DOX loaded CSNPs and Anti-HER2 PEGylated DOX loaded CSNPs nano-formulations were the most cytotoxic against MCF-7 cancer cells than L-929 normal cells compared to free DOX. Finally, we believe that dose-dependent system toxicity of freely ingested DOX can be managed with such targeted nano-formulated drug delivery platforms.
Collapse
|
10
|
Kausar R, Khan AU, Jamil B, Shahzad Y, ul-Haq I. Development and pharmacological evaluation of vancomycin loaded chitosan films. Carbohydr Polym 2021; 256:117565. [DOI: 10.1016/j.carbpol.2020.117565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
|
11
|
Sarwar MS, Ghaffar A, Huang Q, Zafar MS, Usman M, Latif M. Controlled-release behavior of ciprofloxacin from a biocompatible polymeric system based on sodium alginate/poly(ethylene glycol) mono methyl ether. Int J Biol Macromol 2020; 165:1047-1054. [DOI: 10.1016/j.ijbiomac.2020.09.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
|
12
|
Facile preparation of self-assembled chitosan-based composite hydrogels with enhanced adsorption performances. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Biodegradable zein active film containing chitosan nanoparticle encapsulated with pomegranate peel extract for food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100511] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Chen Y, Shan X, Luo C, He Z. Emerging nanoparticulate drug delivery systems
of metformin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00480-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
A Smart Drug Delivery System Based on Biodegradable Chitosan/Poly(allylamine hydrochloride) Blend Films. Pharmaceutics 2020; 12:pharmaceutics12020131. [PMID: 32033138 PMCID: PMC7076397 DOI: 10.3390/pharmaceutics12020131] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 11/16/2022] Open
Abstract
The amalgamation of natural polysaccharides with synthetic polymers often produces fruitful results in the area of drug delivery due to their biodegradable and biocompatible nature. In this study, a series of blend films composed of chitosan (CS)/poly(allylamine hydrochloride) (PAH) in different compositions were prepared as smart drug delivery matrices. The properties of these polymeric films were then explored. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis confirmed an intermolecular hydrogen bonding between CS and PAH. Atomic force microscopy (AFM) revealed improvements in surface morphology as the percentage of PAH in the blend films increased up to 60% (w/w). Water contact angle (WCA) ranged between 97° to 115°, exhibiting the hydrophobic nature of the films. Two films were selected, CTH-1 (90% CS and 10% PAH) and CTH-2 (80% CS and 20% PAH), to test for in vitro cumulative drug release (%) at 37 ± 0.5 °C as a function of time. It was revealed that for simulated gastric fluid (SGF) with pH 1.2, the cumulative drug release (CDR) for CTH-1 and CTH-2 was around 88% and 85% in 50 min, respectively. Both films converted into gel-like material after 30 min. On the other hand, in pH 7.4 phosphate buffer saline (PBS) solution, the maximum CDR for CTH-1 and CTH-2 was 93% in 90 min and 98% in 120 min, respectively. After 120 min, these films became fragments. Sustained drug release was observed in PBS, as compared to SGF, because of the poor stability of the films in the latter. These results demonstrate the excellent potential of blend films in sustained-release drug delivery systems for hydrophilic or unstable drugs.
Collapse
|