1
|
Chinchilla-Cárdenas DJ, Cruz-Méndez JS, Petano-Duque JM, García RO, Castro LR, Lobo-Castañón MJ, Cancino-Escalante GO. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J Genet Eng Biotechnol 2024; 22:100400. [PMID: 39179327 PMCID: PMC11338109 DOI: 10.1016/j.jgeb.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Aptamers are single-stranded oligonucleotide sequences capable of binding to specific ligands with high affinity. In this manner, they are like antibodies but have advantages such as lower manufacturing costs, lower immunogenicity, fewer batch-to-batch differences, a longer shelf life, high tolerance to different molecular milieus, and a greater number of potential targets. Due to their special features, they have been used in drug delivery, biosensor technology, therapy, and diagnostics. The methodology that allowed its production was the "Systematic Evolution of Ligands by Exponential enrichment" (SELEX). Unfortunately, the traditional protocol is time-consuming and laborious. Therefore, numerous variants with considerable optimization steps have been developed, nonetheless, there are still challenges to achieving real applications in the clinical field. Among them, are control of in vivo activities, fast renal filtration, degradation by nucleases and toxicity testing. This review focuses on current technologies based on SELEX, the critical factors for successful aptamer selection, and its upcoming biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Danny Jair Chinchilla-Cárdenas
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Juan Sebastian Cruz-Méndez
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Julieth Michel Petano-Duque
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia; Group of Biosocial Studies of the Body-EBSC, Faculty of Dentistry, Universidad de Antioquia, La Candelaria, Medellín 050010, Antioquia, Colombia.
| | | | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain.
| | | |
Collapse
|
2
|
Abedi N, Zeinoddini M, Shoushtari M. Optimized detection of Salmonella typhimurium using aptamer lateral flow assay. Biotechnol Lett 2024; 46:583-592. [PMID: 38806936 DOI: 10.1007/s10529-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/30/2024]
Abstract
Salmonella typhimurium, a pathogenic bacterium with significant implications in medicine and the food industry, poses a substantial threat by causing foodborne illnesses such as typhoid fever. Accurate diagnosis of S. typhimurium is challenging due to its overlap symptoms with various diseases. This underscores the need for a precise and efficient diagnostic approach. In this study, we developed a biosensor using the Taguchi optimization method based on aptamer lateral flow assay (LFA) for the detection of S. typhimurium. Therefore, signal probe and nanobioprobe were designed using anti-Salmonella aptamer, conjugated with gold nanoparticles (GNPs), and used in LFA. The strategy of this test is based on a competitive format between the bacteria immobilized on the membrane and the bacteria present in the tested sample. Moreovere, the optimization of various factors affecting the aptamer LFA, including the concentration of bacteria (immobilized and into the sample) and the concentration of nanobioprop, were performed using the Taguchi test designing method. The data showed that the optimal conditions for the LFA reaction was 108 CFU/mL of immobilized bacteria and 1.5 μg/μL of nanobioprop concentration. Then, the visual detection limit of S. typhimurium was estimated as 105 CFU/mL. The reaction results were obtained within 20 min, and there were no significant cross-reactions with other food pathogens. In conclusion, the aptamer-LFA diagnostic method, optimized using the Taguchi approach, emerges as a reliable, straightforward, and accurate tool for the detection of S. typhimurium. Overall, this method can be a portable diagnostic kit for the detection and identification of bacteria.
Collapse
Affiliation(s)
- Nafise Abedi
- Department of Bioscience and Biotechnology, Faculty of Passive Defense, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mehdi Zeinoddini
- Department of Bioscience and Biotechnology, Faculty of Passive Defense, Malek-Ashtar University of Technology, Tehran, Iran.
| | - Mohammad Shoushtari
- Department of Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
5
|
Ji C, Sun X, Fang Y, Li P. Determination of Aflatoxin B 1 in Grains by Aptamer Affinity Column Enrichment and Purification Coupled with High Performance Liquid Chromatography Detection. Foods 2024; 13:640. [PMID: 38472753 DOI: 10.3390/foods13050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a highly teratogenic and carcinogenic secondary metabolite produced by Aspergillus. It is commonly detected in agricultural products such as cereals, peanuts, corn, and feed. Grains have a complex composition. These complex components severely interfere with the effective extraction and separation of AFB1, and also cause problems such as matrix interference and instrument damage, thus posing a great challenge in the accurate analysis of AFB1. In this study, an aptamer affinity column for AFB1 analysis (AFB1-AAC) was prepared for the enrichment and purification of AFB1 from grain samples. AFB1-AAC with an AFB1-specific aptamer as the recognition element exhibited high affinity and specificity for AFB1. Grain samples were enriched and purified by AFB1-AAC, and subsequently analyzed by high performance liquid chromatography with post-column photochemical derivatization-fluorescence detection (HPLC-PCD-FLD). The average recoveries of AFB1 ranged from 88.7% to 99.1%, with relative standard deviations (RSDs) of 1.4-5.6% (n = 3) at the spiked levels of 5.0-20.0 μg kg-1. The limit of detection (LOD) for AFB1 (0.02 μg kg-1) was much below the maximum residue limits (MRLs) for AFB1. This novel method can be applied to the determination of AFB1 residues in peanut, corn, and rice.
Collapse
Affiliation(s)
- Cong Ji
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
6
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
7
|
Nguyen TT, Nguyen Thi YV, Chu DT. RNA therapeutics: Molecular mechanisms, and potential clinical translations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:65-82. [PMID: 38360006 DOI: 10.1016/bs.pmbts.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapies involve the utilization of natural and artificial RNA molecules to control the expression and function of cellular genes and proteins. Initializing from 1990s, RNA therapies now show the rapid growth in the development and application of RNA therapeutics for treating various conditions, especially for undruggable diseases. The outstanding success of recent mRNA vaccines against COVID-19 infection again highlighted the important role of RNA therapies in future medicine. In this review, we will first briefly provide the crucial investigations on RNA therapy, from the first pieces of discovery on RNA molecules to clinical applications of RNA therapeutics. We will then classify the mechanisms of RNA therapeutics from various classes in the treatment of diseases. To emphasize the huge potential of RNA therapies, we also provide the key RNA products that have been on clinical trials or already FDA-approved. With comprehensive knowledge on RNA biology, and the advances in analysis, technology and computer-aid science, RNA therapies can bring a promise to be more expanding to the market in the future.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Epibiotech Co. Ltd., Incheon, Republic of Korea
| | - Yen Vi Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
8
|
Chavda VP, Balar PC, Nalla LV, Bezbaruah R, Gogoi NR, Gajula SNR, Peng B, Meena AS, Conde J, Prasad R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS OMEGA 2023; 8:37654-37684. [PMID: 37867666 PMCID: PMC10586263 DOI: 10.1021/acsomega.3c05069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Pankti C. Balar
- Pharmacy
Section, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Lakshmi Vineela Nalla
- Department
of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Rajashri Bezbaruah
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Niva Rani Gogoi
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Siva Nageswara Rao Gajula
- Department
of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Berney Peng
- Department
of Pathology and Laboratory Medicine, University
of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Avtar S. Meena
- Department
of Biotechnology, All India Institute of
Medical Sciences (AIIMS), Ansari
Nagar, New Delhi 110029, India
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
9
|
Zhang T, Xu S, Lin X, Liu J, Wang K. Label-Free Electrochemical Aptasensor Based on the Vertically-Aligned Mesoporous Silica Films for Determination of Aflatoxin B1. BIOSENSORS 2023; 13:661. [PMID: 37367026 DOI: 10.3390/bios13060661] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Herein we report a highly specific electrochemical aptasenseor for AFB1 determination based on AFB1-controlled diffusion of redox probe (Ru(NH3)63+) through nanochannels of AFB1-specific aptamer functionalized VMSF. A high density of silanol groups on the inner surface confers VMSF with cationic permselectivity, enabling electrostatic preconcentration of Ru(NH3)63+ and producing amplified electrochemical signals. Upon the addition of AFB1, the specific interaction between the aptamer and AFB1 occurs and generates steric hindrance effect on the access of Ru(NH3)63+, finally resulting in the reduced electrochemical responses and allowing the quantitative determination of AFB1. The proposed electrochemical aptasensor shows excellent detection performance in the range of 3 pg/mL to 3 μg/mL with a low detection limit of 2.3 pg/mL for AFB1 detection. Practical analysis of AFB1 in peanut and corn samples is also accomplished with satisfactory results by our fabricated electrochemical aptasensor.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
10
|
Li P, Wang C, Wang W, Duan X, Li J. Preliminary evaluation of a 64Cu-labeled DNA aptamer for PET imaging of glioblastoma. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AbstractTo develop a DNA aptamer-based PET tracer for imaging of glioblastoma. 5 mM of NOTA-AS1411, 60-min, and 37 °C were selected as the optimal condition for 64Cu radiolabeling of AS1411. 64Cu-NOTA-AS1411 remained stable in PBS and 100% mouse serum for at least six hours. From the PET images, 64Cu-NOTA-AS1411 tended to be excreted out through the kidneys and there was high tracer accumulation in the bladder. There was a higher tumor uptake in the AS1411 group than that in the control group. 64Cu-NOTA-AS1411 is a suitable potential PET tracer for imaging murine glioblastoma.
Collapse
|
11
|
Wang H, Su Y, Chen D, Li Q, Shi S, Huang X, Fang M, Yang M. Advances in the mechanisms and applications of inhibitory oligodeoxynucleotides against immune-mediated inflammatory diseases. Front Pharmacol 2023; 14:1119431. [PMID: 36825156 PMCID: PMC9941346 DOI: 10.3389/fphar.2023.1119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs). Inhibitory oligodeoxynucleotides could be divided into three categories according to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with immunomodulatory activity, it can target RNAs or proteins in a specific way, resulting in the reduction, increase or recovery of protein expression, and then regulate the state of immune activation. More importantly, inhibitory oligodeoxynucleotides have been used to treat immune-mediated inflammatory diseases, including inflammatory disorders and autoimmune diseases. Several inhibitory oligodeoxynucleotide drugs have been developed and approved on the market already. These drugs vary in their chemical structures, action mechanisms and cellular targets, but all of them could be capable of inhibiting excessive inflammatory responses. This review summarized their chemical modifications, action mechanisms and applications of the three kinds of inhibitory oligodeoxynucleotidesin the precise treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Duoduo Chen
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| |
Collapse
|
12
|
Aptamers Enhance Oncolytic Viruses' Antitumor Efficacy. Pharmaceutics 2022; 15:pharmaceutics15010151. [PMID: 36678780 PMCID: PMC9864469 DOI: 10.3390/pharmaceutics15010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Oncolytic viruses are highly promising for cancer treatment because they target and lyse tumor cells. These genetically engineered vectors introduce therapeutic or immunostimulatory genes into the tumor. However, viral therapy is not always safe and effective. Several problems are related to oncolytic viruses' targeted delivery to the tumor and immune system neutralization in the bloodstream. Cryoprotection and preventing viral particles from aggregating during storage are other critical issues. Aptamers, short RNA, or DNA oligonucleotides may help to crawl through this bottleneck. They are not immunogenic, are easily synthesized, can be chemically modified, and are not very demanding in storage conditions. It is possible to select an aptamer that specifically binds to any target cell, oncolytic virus, or molecule using the SELEX technology. This review comprehensively highlights the most important research and methodological approaches related to oncolytic viruses and nucleic acid aptamers. Here, we also analyze possible future research directions for combining these two methodologies to improve the effectiveness of cancer virotherapy.
Collapse
|
13
|
Metal-organic frameworks (MOFs) as biomolecules drug delivery systems for anticancer purposes. Eur J Med Chem 2022; 244:114801. [DOI: 10.1016/j.ejmech.2022.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/07/2022]
|
14
|
Divya, Dkhar DS, Kumari R, Mahapatra S, Kumar R, Chandra P. Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. BIOSENSORS 2022; 12:81. [PMID: 35200341 PMCID: PMC8869721 DOI: 10.3390/bios12020081] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
Viral infections are becoming the foremost driver of morbidity, mortality and economic loss all around the world. Treatment for diseases associated to some deadly viruses are challenging tasks, due to lack of infrastructure, finance and availability of rapid, accurate and easy-to-use detection methods or devices. The emergence of biosensors has proven to be a success in the field of diagnosis to overcome the challenges associated with traditional methods. Furthermore, the incorporation of aptamers as bio-recognition elements in the design of biosensors has paved a way towards rapid, cost-effective, and specific detection devices which are insensitive to changes in the environment. In the last decade, aptamers have emerged to be suitable and efficient biorecognition elements for the detection of different kinds of analytes, such as metal ions, small and macro molecules, and even cells. The signal generation in the detection process depends on different parameters; one such parameter is whether the labelled molecule is incorporated or not for monitoring the sensing process. Based on the labelling, biosensors are classified as label or label-free; both have their significant advantages and disadvantages. Here, we have primarily reviewed the advantages for using aptamers in the transduction system of sensing devices. Furthermore, the labelled and label-free opto-electrochemical aptasensors for the detection of various kinds of viruses have been discussed. Moreover, numerous globally developed aptasensors for the sensing of different types of viruses have been illustrated and explained in tabulated form.
Collapse
Affiliation(s)
| | | | | | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (D.S.D.); (R.K.); (S.M.); (R.K.)
| |
Collapse
|
15
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|