1
|
Chen RS, Yuan JC, Luo CL, Wang Y, Chen ZJ, Lin ZS, Xu ZL. Monoclonal antibody based colloidal gold immunochromatographic assay for the visual and rapid screening of profenofos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124848. [PMID: 39214446 DOI: 10.1016/j.envpol.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Profenofos (PFF) is a commonly used organophosphorus insecticide that requires strict monitoring due to its potential environmental, ecological, and human health risks originating from residues in soil and water systems, as well as accumulation in crops. In this study, a novel monoclonal antibody (mAb) specific to PFF was prepared for the first time and the recognition mechanism was investigated through molecular simulation. Subsequently, a mAb-based colloidal gold immunochromatographic assay (GICA) was developed for the rapid screening of PFF in fruit and vegetable samples. The mAb exhibited an IC50 value of 12.9 ng/mL, and limit of detection (LOD) of 4.6 ng/mL, respectively in indirect competitive immunosorbent enzyme-linked immunosorbent assay (ic-ELISA). After optimization, the developed GICA exhibited a visual limit of detection (vLOD) of 20 ng/mL and a quantitative of detection (qLOD) of 5.2 ng/mL, with a linear range from 10.0 to 83.8 ng/mL. Good correlation was observed between the results of GICA and standard Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) in matrix and recovery test. The developed GICA can be used for rapid sample detection within 15 min, which is an excellent tool for screening PFF in foods and environmental samples.
Collapse
Affiliation(s)
- Ri-Sheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Cheng Yuan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Chong-Lan Luo
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Zi-Jian Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Ze-Shan Lin
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China.
| |
Collapse
|
2
|
Wu Y, Lin H, Zheng S, Guo H, Yang F. Imidazolium-decorated Bis-cyanostilbene Macrocycle: An Effect Fluorescence Sensor for Pesticide Starane. Chem Asian J 2024; 19:e202400857. [PMID: 39136401 DOI: 10.1002/asia.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Fluorescence sensors for complicated molecules such as pesticides were paid much attention lately due to the merits of simple operation, high sensitivity and selectivity, and in-situ detection. In this work, a novel fluorescent sensor for pesticide starane was prepared based on imidazolium-decorated bis-cyanostilbene macrocycle (IBM). IBM exhibited the obvious "turn-on" fluorescence change from dark blue-green to bright blue after sensing starane with the high sensing selectivity among 28 kinds of guests. The detecting limitation was as low as 0.011 μM, which was the lowest one in literatures. The sensing mechanism was confirmed as that starane was located in cavity of IBM based on the molecular interaction of multiple hydrogen bonds, π-π stacking and hydrophobic interaction. The application experiments suggested that starane was examined well on test paper with good selectivity and was quantitatively detected in water samples, implying the good real-time and in-situ application potential for IBM on sensing starane in real environment and daily life.
Collapse
Affiliation(s)
- Yunmei Wu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hui Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Sining Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
3
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
4
|
Schopf MF, Pierezan MD, Rocha R, Pimentel TC, Esmerino EA, Marsico ET, De Dea Lindner J, Cruz AGD, Verruck S. Pesticide residues in milk and dairy products: An overview of processing degradation and trends in mitigating approaches. Crit Rev Food Sci Nutr 2023; 63:12610-12624. [PMID: 35876099 DOI: 10.1080/10408398.2022.2103642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Milk and dairy products present considerable socioeconomic importance but are also a regular pesticide residue contamination source, which is considered a worldwide public health concern and a major international trade issue. Thus, a literature review was conducted to assess pesticide residue levels in milk and dairy products, as well as the residue degradation capacity during its processing. Organochlorine, organophosphate, synthetic pyrethroid and/or triazine were found in fluid milk, powder products, yogurts, cheese, butter, and sour cream. Thermal processing reduced most residue levels, although some treatments increased total hexachlorocyclohexane and its isomers (α-, γ-, δ-, and β-). Emerging non-thermal treatments presented promising results, but some by-products had higher toxicity than their precursors. Biodegradation by lactic acid bacteria were effective during yogurt and cheese fermentation. However, β-hexachlorocyclohexane level seems to increase in yogurts containing Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis, while increase or maintenance of pesticide residue concentration was observed during coagulation and cheese maturation. Deep research is needed to understand the isomerization and degradation mechanisms after thermal, non-thermal, and fermentation processing. Emerging heat technology can be an excellent topic to be investigated for pesticide residues degradation in the future. These mitigation approaches can be a feasible future alternative to milk and dairy production.
Collapse
Affiliation(s)
- Miguel Fiorin Schopf
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Milena Dutra Pierezan
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ramon Rocha
- Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Erick Almeida Esmerino
- Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adriano Gomes da Cruz
- Food Department, Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), Niterói, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Hayat M, Manzoor S, Raza H, Khan MI, Shanableh A, Sajid M, Almutairi TM, Luque R. Molecularly imprinted ormosil as a sorbent for targeted dispersive solid phase micro extraction of pyriproxyfen from strawberry samples. CHEMOSPHERE 2023; 320:137835. [PMID: 36702413 DOI: 10.1016/j.chemosphere.2023.137835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Novel molecularly imprinted organically modified silica was prepared by reacting acrylamide and 3-(tri-methoxysilyl) propyl methacrylate followed by condensation and hydrolysis with tetraethyl ortho-silicate for the determination of pyriproxyfen. The sorbent proved to be highly selective for the template molecule, pyriproxyfen. The characterization of sorbent was carried out using SEM, BET and TGA. The prominent peaks in FTIR at 3700 cm-1 and 1071 cm-1 confirmed the stretching of amide group's N-H and Si-O-Si bond linkage of MIOrmosil. The pseudo-first-order model (R2 0.99) described the adsorption kinetics of the MIOrmosil, whereas among adsorption isotherms, Freundlich model showed the best fit (R2 0.99). The molecularly imprinted silica was applied for the determination of target analytes from strawberries sample using dispersive solid-phase micro extraction (DSPME) followed by high-performance liquid chromatography (HPLC). The LOD (4.93 x10-5 μg mL-1) and LOQ (1.49 x10-4 μg m-1) values were calculated by signal to noise ratio through HPLC. Results show that the maximum binding capacity and percentage recovery values of MIOrmosil were 13 mg g-1 (n = 5) and 97.3% respectively.
Collapse
Affiliation(s)
- Muhammad Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Hina Raza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C 3), Campus de Rabanales, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
6
|
Vosough S, Amini S, Ebrahimzadeh H, Kandeh SH. Application of electrospun composite nanofibers as an efficient sorbent for extraction of pesticides from food samples. J Chromatogr A 2023; 1687:463699. [PMID: 36508768 DOI: 10.1016/j.chroma.2022.463699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Herein, the composite of polylactic acid (PLA)/ Iron-based metal-organic framework (r-MIL-88A)/ Cellulose electrospun nanofibers was fabricated; and then, applied as a novel sorbent for thin-film micro-extraction (TFME) of four selected pesticides followed by GC-FID analysis. From the evaluation of scanning electron microscopy, Fourier transform infrared spectroscopy energy dispersive X-ray spectroscopy and X-ray diffraction, the successful fabrication of composite nanaofibers was approved. The presence of r-MIL-88A/Cellulose with large surface area and plenty of OH-functional groups results in improving PLA extraction efficiency. The effect of various main parameters on extraction efficiency was evaluated. The LODs (based on S/N = 3) were in the range of 1.0 to 1.5 ng mL-1. Intra-day and inter-day relative standard deviations (RSDs) were in the range of 4.8% - 5.6% and 5.2%-6.4%, respectively. In addition, the fiber to fiber relative standard deviations were observed in the range of 5.2%-12.3%. By using the optimized factors, acceptable linearity ranges were obtained in the range of 3.0-1900.0 ng mL-1 for metribuzin and ethofumasate, and 5.0-2000.0 for atrazine and ametryn (R2 = 0.9913-0.9967). The developed method was investigated in fruit juice, vegetables, milk and honey samples, and recoveries (79.3-95.6%) indicate that the PLA/r-MIL-88A/Cellulose can be a prominent composite film for the extraction of the target analytes in various samples.
Collapse
Affiliation(s)
- Sahar Vosough
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|