1
|
Li H, Kang L, Dou S, Zhang Y, Zhang Y, Li N, Cao Y, Liu M, Han D, Li K, Feng W. Gleditsiae Sinensis Fructus ingredients and mechanism in anti-asthmatic bronchitis research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155857. [PMID: 39074420 DOI: 10.1016/j.phymed.2024.155857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Gleditsiae Sinensis Fructus (GSF) is commonly used in traditional medicine to treat respiratory diseases such as bronchial asthma. However, there is a lack of research on the chemical composition of GSF and the pharmacological substance and mechanism of action for GSF in treating bronchial asthma. PURPOSE The chemical constituents of GSF were analyzed using ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). In this study, we combined network pharmacology, molecular docking techniques, and experimental validation to explore the therapeutic efficacy and underlying mechanism of GSF in the treatment of bronchial asthma. METHODS Characterization of the chemical constituents of GSF was conducted using UHPLC-Q-Orbitrap HRMS. The identified chemical components were subjected to screening for active ingredients in the Swiss Absorption, Distribution, Metabolism, and Excretion (ADME) database. Relevant databases were utilized to retrieve target proteins for the active ingredients and targets associated with bronchial asthma disease, and the common targets between the two were selected. Subsequently, the protein-protein interaction (PPI) network was constructed using the String database and Cytoscape software to identify key targets. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the Metascape database. The "component-common target" network was constructed using Cytoscape to identify the primary active ingredients. Molecular docking validation was conducted using AutoDock software. The bronchial asthma mouse model was established using ovalbumin (OVA), and the lung organ index of the mice was measured. Lung tissue pathological changes were observed using hematoxylin and eosin (HE), Periodic Acid-Schiff (PAS), and Masson staining. The respiratory resistance (Penh) of the mice was assessed using a pulmonary function test instrument. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IgE, IL-4, IL-5, and IL-13 in the mouse serum. Immunofluorescence staining was performed to detect the protein expression levels of AKT and PI3K in the lung tissues. An in vitro experiment was performed to observe the effects of echinocystic acid (EA) on IL-4 stimulated Human ASMCs (hASMCs). Cell viability was measured using a CCK-8 assay to calculate the IC50 value of the EA. A wound healing test was conducted to observe the effect of EA on degree of healing. RT-qPCR was performed to detect the influence of EA on the mRNA expression levels of ALB, SRC, TNF-α, AKT1, and IL6 in the cells. RESULTS A total of 95 chemical constituents were identified from the GSF. Of these, 37 were identified as active ingredients. There were 169 overlapping targets between the active ingredients and the disease targets. A topological analysis of the protein-protein interaction (PPI) network identified the core targets as IL6, TNF, ALB, AKT1, and SRC. An enrichment analysis revealed that the treatment of bronchial asthma with GSF primarily involved the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway, among others. The primary active ingredients included 13(s)-HOTRE, linolenic acid, and acacetin. The molecular docking results demonstrated a favorable binding activity between the critical components of GSF and the core targets. Animal experimental studies indicated that GSF effectively improved symptoms, lung function, and lung tissue pathological changes in the OVA-induced asthmatic mice, while alleviating inflammatory responses. GSF decreased the fluorescent intensity of the AKT and PI3K proteins. The IC50 value of EA was 30.02μg/ml. EA (30) significantly promoted the proliferation of IL4-stimulated hASMCs cells. EA (30) significantly increased the expression of ALB and SRC mRNA and decreased the expressions of TNF-α, AKT, and IL6 mRNA. CONCLUSION The multiple active ingredients found in GSF exerted their anti-inflammatory effects through multiple targets and pathways. This preliminary study revealed the core target and the mechanism of action underlying its treatment of bronchial asthma. These findings provided valuable insights for further research on the pharmacological substances and quality control of GSF.
Collapse
Affiliation(s)
- Hongwei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Le Kang
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China.
| | - Shirong Dou
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Yiming Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Yumei Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Ning Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Yangang Cao
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Mengyun Liu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Deen Han
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kai Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China.
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Al-Ahmad M, Ali A, Maher A, Haider MZ. Association between interleukin-6-174G/C gene polymorphism and asthma severity: exploring the role of total serum IgE, blood eosinophils, and FeNO as markers of type 2 inflammation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:15. [PMID: 38388670 PMCID: PMC10885618 DOI: 10.1186/s13223-024-00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND While a connection has been established between serum interleukin-6 (IL-6) levels and the IL-6 gene (- 174G/C) polymorphism in allergic diseases such as asthma, its specific association with severe asthma remains unexplored. This study examined the relationship between the IL-6 (- 174G/C) gene polymorphism and mild and severe asthma, focusing on its influence on type 2 inflammation. METHODS Our study comprised 98 patients with mild asthma and 116 with severe asthma. Additionally, we recruited 121 healthy participants to serve as controls for comparative analyses. The IL-6 gene (- 174G/C) polymorphism was assessed utilizing the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS In our study, the risk of mild asthma exhibited a significant fourfold increase in individuals with the GG genotype pattern compared to healthy controls, yielding an odds ratio (OR) of 4.4 (p < 0.001). Conversely, we found no significant correlation between the IL-6 - 174G/C gene polymorphism and severe asthma when compared to the healthy control group. However, a noteworthy pattern emerged when we compared subgroups of mild and severe asthma. The risk of severe asthma increased fivefold in individuals with the GC polymorphism pattern, with an OR of 4.99 (p < 0.001), while the likelihood of mild asthma showed a similar fourfold increase with the GG polymorphism pattern, OR = 4.4 (p < 0.001). Consequently, we observed a significantly higher frequency of the C allele in patients with severe asthma, whereas the G allele was more prevalent in individuals with mild asthma (p = 0.05). Additionally, the correlation between markers of type 2 inflammation and the dominant model of the IL-6 gene -174G/C polymorphism (CC + CG vs GG) revealed a significant increase in total serum immunoglobulin E (IgE), Blood Eosinophil Counts (BEC), and Fractional Exhaled Nitric Oxide (FeNO) levels in asthmatic patients with the CC + CG gene pattern compared to those with GG, with p-values of 0.04, 0.03, and 0.04, respectively. Furthermore, after adjusting for other risk factors, the likelihood of developing severe asthma increased from fourfold to eightfold, with an OR of 8.12 (p = 0.01) with (CC + CG) gene pattern. Other predictors for severe asthma included older age and childhood-onset disease (OR = 1.13 and 19.19, p < 0.001). Allergic rhinitis (AR) and nasal polyps (NP) also demonstrated a substantial association with an increased risk of severe asthma, with odds ratios of 5 and 32.29 (p = 0.01 and < 0.001), respectively. Additionally, elevated Body Mass Index (BMI), BEC, and FeNO were linked to severe asthma, with ORs of 1.11, 1.00, and 1.04, respectively (p = 0.04, 0.05, and 0.001). CONCLUSION This study illuminated the intricate relationship between the IL-6 gene polymorphism, type 2 inflammation markers, and diverse risk factors in shaping asthma severity. As a significant association between the GG polymorphism of the IL-6 gene (- 174G/C) and mild asthma was found, while possessing at least one C allele, whether in a homozygous (CC) or heterozygous (CG) combination, independently predicts the likelihood of severe asthma.
Collapse
Affiliation(s)
- Mona Al-Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Safat, P.O. Box 24923, 13110, Kuwait City, Kuwait.
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait.
| | - Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
- Department of Pulmonary Medicine, Abbassia Chest Hospital, Ministry of Health, Cairo, Egypt
| | - Ahmed Maher
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
| | - Mohammad Z Haider
- Department of Pediatrics, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
3
|
Shi J, He L, Zheng H, Li W, Huang S, Li Y, Tao R. Association of IL-4 and IL-18 genetic polymorphisms with atopic dermatitis in Chinese children. Front Pediatr 2023; 11:1202100. [PMID: 37325349 PMCID: PMC10266202 DOI: 10.3389/fped.2023.1202100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background Atopic dermatitis (AD) is a common chronic inflammatory skin disease, adversely affecting nearly 20% of the pediatric population worldwide. Interleukin-4 (IL-4) and interleukin-18 (IL-18) are considered to be involved in the pathogenesis and development of AD. The aim of this study was to investigate the association of IL-4 and IL-18 gene polymorphisms with the susceptibility and severity of AD in Chinese children. Methods Six candidate single nucleotide polymorphisms (SNPs) in IL-4 and IL-18 genes were genotyped through multi-PCR combined with next-generation sequencing in 132 AD children and 100 healthy controls, and all the analyses were performed on blood genome DNA. Results The frequencies of G allele, CG genotype and CG + GG genotype of IL-4 rs2243283, as well as the haplotype IL-4/GTT (rs2243283-rs2243250-rs2243248) were all significantly decreased in AD patients compared with the controls [G vs. C: P = 0.033, OR = 0.59; CG vs. CC: P = 0.024, OR = 0.47; CG + GG vs. CC: P = 0.012, OR = 0.49; GTT vs. CCT: P = 0.011, OR = 0.65]. Moreover, the frequencies of A allele, AA genotype and AG + AA genotype of IL-18 rs7106524, along with the haplotype IL-18/CAA (rs187238-rs360718-rs7106524) were statistically increased in the severe AD patients (A vs. G: P < 0.001, OR = 2.79; AA vs. GG: P = 0.003, OR = 5.51; AG + AA vs. GG: P = 0.036, OR = 2.93; CAA vs. CAG: P = 0.001, OR = 2.86). Conclusions Our findings suggested that genetic variation in IL-4 rs2243283 such as G allele, CG genotype and CG + GG genotype might confer the reduced susceptibility to AD in Chinese children. Furthermore, A allele, AA genotype and AG + AA genotype of IL-18 rs7106524 explored the strong association with severity in Chinese AD children.
Collapse
Affiliation(s)
- Jianrong Shi
- Department of Clinical Laboratory, the Children’ s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lin He
- Department of Clinical Laboratory, the Children’ s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huiwen Zheng
- Department of Dermatology, The Children' s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Clinical Laboratory, the Children’ s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuangshuang Huang
- Department of Clinical Laboratory, the Children’ s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yunling Li
- Department of Dermatology, The Children' s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Tao
- Department of Clinical Laboratory, the Children’ s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
4
|
Relationship between asthma and IL-17 gene polymorphism in a Turkish population. Ir J Med Sci 2023; 192:269-275. [PMID: 35325374 PMCID: PMC8942807 DOI: 10.1007/s11845-022-02956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Asthma is a prevalent chronic obstructive disease of the airways. AIMS The aim of our study was to investigate the relationship between asthma and IL-17F gene 74488 T > C, IL-17A gene -197G > A, and IL17A gene -737C > T polymorphisms in Turkish population. METHODS In our study, peripheral blood samples collected from a total of 127 subjects, with 65 in the patient group and 62 in the control group, were analyzed for IL-17F gene 74488 T > C, IL-17A gene -197G > A, and IL17A gene -737C > T polymorphisms using next-generation sequencing. RESULTS There was no statistically significant relationship between IL-17A gene -197G > A and IL-17A gene -737C > T polymorphisms and the risk of developing asthma. It was found that the risk of developing asthma was 2.9-fold higher in individuals with a C allele in the IL-17F gene 7488 T > C polymorphic site than the individuals with a T allele. It was shown that ATT and GCT haplotype carriers had a greater disease risk compared with the GTT haplotype carriers. CONCLUSIONS In conclusion, IL-17F gene 7488 T > C polymorphism was found to be associated with asthma in the Turkish population. The IL-17 gene should be further investigated as a potential candidate gene in predicting asthma susceptibility and in the treatment of asthma.
Collapse
|
5
|
Li M, Li M, Hou Y, HE H, Jiang R, Wang C, Sun S. Ferroptosis triggers airway inflammation in asthma. Ther Adv Respir Dis 2023; 17:17534666231208628. [PMID: 37947059 PMCID: PMC10638875 DOI: 10.1177/17534666231208628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a regulatory cell death characterized by intracellular iron accumulation and lipid peroxidation that leads to oxidative stress. Many signaling pathways such as iron metabolism, lipid metabolism, and amino acid metabolism precisely regulate the process of ferroptosis. Ferroptosis is involved in a variety of lung diseases, such as acute lung injury, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Increasing studies suggest that ferroptosis is involved in the development of asthma. Ferroptosis plays an important role in asthma. Iron metabolism disorders, lipid peroxidation, amino acid metabolism disorders lead to the occurrence of ferroptosis in airway epithelial cells, and then aggravate clinical symptoms in asthmatic patients. Moreover, several regulators of ferroptosis are involved in the pathogenesis of asthma, such as Nrf2, heme oxygenase-1, mevalonate pathway, and ferroptosis inhibitor protein 1. Importantly, ferroptosis inhibitors improve asthma. Thus, the pathogenesis of ferroptosis and its contribution to the pathogenesis of asthma help us better understand the occurrence and development of asthma, and provide new directions in asthma treatment. This article aimed to review the role and mechanism of ferroptosis in asthma, describing the relationship between ferroptosis and asthma based on signaling pathways and related regulatory factors. At the same time, we summarized current observations of ferroptosis in eosinophils, airway epithelial cells, and airway smooth muscle cells in asthmatic patients.
Collapse
Affiliation(s)
- Minming Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatric Medicine Class One, Kunming Medical University, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Huilin HE
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ruonan Jiang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatric Medicine Class One, Kunming Medical University, Kunming, China
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming 650032, China
| |
Collapse
|
6
|
Du JW, Xu ZL, Xu QX. Interaction of Interleukin 7 Receptor ( IL7R) and IL6 Gene Polymorphisms with Smoking Associated with Susceptibility to Asthma in Chinese Han Adults. Immunol Invest 2021; 51:1364-1371. [PMID: 34236279 DOI: 10.1080/08820139.2021.1941083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND the aim of this study was to investigate the relationship between the risk of asthma and multiple single nucleotide polymorphisms (SNPs) in interleukin 7 receptor (IL7R) and IL6 genes, as well as the gene- environment interactions. METHODS This is a hospital- based case- control study. A total of 430 patients with asthma were continuously recruited. Four SNPs within IL7R and IL6 gene were genotyped by PCR based restriction fragment length polymorphism. The Hardy- Weinberg balance of all participants was tested by SNPstats. The best interaction combination of four SNPs in IL7R and IL6 genes and smoking was screened by generalized multifactor dimensionality reduction (GMDR). Logistic regression was used to test the association between four SNPs and asthma, and stratified analysis for rs1800795 gene-smoking interaction, synergy index (SI) was calculated. RESULTS The rs1494558-G and rs1800795-C were associated with an increased risk of asthma, adjusted ORs (95% CI) was 1.81 (1.29-2.42) and 1.75 (1.20-2.28), respectively. GMDR indicated that the test accuracy for two-locus model involving rs1800795 and smoking was 0.5721, and the p = .011, the results providing evidence for rs1800795 gene-smoking interaction. The asthma risk was higher in smokers with GC or CC genotype than the sum of risks in subjects with smoking or GC or CC genotype alone, compared to the never smokers with GG genotype, the OR (95%CI) was 4.97 (3.01-7.24), and the synergy index (SI) was 1.68 (1.08-2.60). CONCLUSIONS The rs1494558-G and rs1800795-C alleles, gene- environment interaction between rs1800795 and smoking were all associated with increased asthma risk.
Collapse
Affiliation(s)
- Jun-Wei Du
- Department of Respiratory Medicine, The First People's Hospital of Fuyang, Hangzhou, Zhejiang, China
| | - Ze-Lan Xu
- Department of Respiratory Medicine, The First People's Hospital of Fuyang, Hangzhou, Zhejiang, China
| | - Qin-Xing Xu
- Department of Respiratory Medicine, The First People's Hospital of Fuyang, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Jin RM, Huang HZ, Zhou Y, Wang YY, Fu HC, Li Z, Fu XZ, Li NQ. Characterization of mandarin fish (Siniperca chuatsi) IL-6 and IL-6 signal transducer and the association between their SNPs and resistance to ISKNV disease. FISH & SHELLFISH IMMUNOLOGY 2021; 113:139-147. [PMID: 33848638 DOI: 10.1016/j.fsi.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
In fish, interleukin-6 (IL-6) is a very important immune-regulatory cytokine that plays a polyfunctional role in inflammation, metabolism, regeneration, and neural processes. IL-6 signal transducer (IL-6ST) is a specific receptor for IL-6 and expressed mainly in immune cells and hepatocytes. In this study, the complete cDNA and genomic DNA sequences of mandarin fish (Siniperca chuatsi) IL-6 and IL-6ST genes were identified and analyzed. Quantitative real-time PCR showed that IL-6 and IL-6ST were chiefly expressed in the immune organs. After challenge with infectious spleen and kidney necrosis virus (ISKNV), the expression levels of IL-6 were significantly up-regulated after 6 h and 24 h in the head kidney and spleen, respectively (p < 0.01), the peak value for both reached at 72 h, IL-6ST increased significantly after 120 h with a peak at 168 h in the head kidney (p < 0.01) and improved markedly at 168 h in the spleen (p < 0.01). Besides, IL-6 and IL-6ST have been identified 3 and 8 single nucleotide polymorphisms (SNPs), respectively. Statistical analysis showed that one SNP locus (1625C/T) in the coding region of IL-6 was significantly related to the resistance of mandarin fish against ISKNV. The 1625C→T locus in the coding region of IL-6 is a synonymous mutation; compared with the susceptible group, the frequency of allele T in the disease resistance group was significantly higher, which may be due to the rare codon produced by the mutation affecting translation. The involvement of IL-6 and IL-6ST in response to ISKNV infection in mandarin fish clearly indicate that the role of SNP markers in IL-6 was associated with the ISKNV resistance, which was demonstrated for the first time in our results. Thus, the current study may provide fundamental information for further breeding of mandarin fish with resistance to ISKNV infection.
Collapse
Affiliation(s)
- Rui-Ming Jin
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - He-Zhong Huang
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China.
| | - Yu Zhou
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Ying-Ying Wang
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Huang-Cui Fu
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Ze Li
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Xiao-Zhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ning-Qiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| |
Collapse
|
8
|
The Impact of DNA Methylation on IL6 mRNA Levels in Hematinic Deficiency and Atopy-Associated Recurrent Aphthous Stomatitis Patients. Int J Dent 2021; 2021:5560695. [PMID: 33936205 PMCID: PMC8055433 DOI: 10.1155/2021/5560695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the DNA methylation using pyrosequencing and its effects on the upregulation of IL6 mRNA in patients with recurrent aphthous stomatitis (RAS) in connection with hematinic deficiency and atopy. Material and Methods. This cross-sectional study was conducted at Dr. Hasan Sadikin Hospital, Bandung, from January–March 2019 and was approved by the Health Research Ethics Committee of Universitas Padjadjaran (Ethics No. 990/UN6.KEP/EC/2018). Furthermore, the subjects had RAS ulcers with a history of at least twice a year along with atopy and dietary imbalance with no history of recurrent intraoral herpes or any systemic diseases. This study was performed on 23 RAS patients and 21 healthy subjects, and the sampling was carried out consecutively. The blood samples were collected from all the subjects, and then, the DNA and RNA were extracted from the peripheral blood mononuclear cells (PBMCs). Consequently, the bisulfite-modified DNA was used to confirm the methylation status of the IL6 gene promoter through the pyrosequencing method. The methylation levels of the IL6 promoter were assessed by a reverse transcriptase-polymerase chain reaction technique. The gene expression of RAS and the control group was analyzed by the 2−ΔΔCT method. The statistical analysis using the Mann–Whitney U test was conducted to evaluate IL6 mRNA levels and DNA methylation with p value <0.05 considered to be statistically significant. Result The IL6 mRNA levels were approximately 1.88-fold in RAS patients, and there was a significant relationship between the expression of the IL6 gene and the increased risk of RAS (p < 0.001). It was reported that four out of six sites in the cytosine phosphate guanine (CpG) island IL6 promoter had a lower degree of methylation, and two other sites in patients with RAS had greater methylation compared with control, but not statistically significant. Conclusion This study showed the upregulation of IL6 mRNA levels in RAS patients compared to control. DNA methylation in the present study is at sites 566–658, whereas the location of the IL6 promoter is at sites 1–1684. Thus, it would be necessary conducting some research at other CpG sites of IL6 promoter islands to determine the status of DNA methylation.
Collapse
|
9
|
Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, González-Barcala FJ, Cruz MJ. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1129-1138. [PMID: 30586799 DOI: 10.1016/j.scitotenv.2018.10.188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 05/12/2023]
Abstract
Exposure to air pollutants has been correlated with an increase in the severity of asthma and in the exacerbation of pre-existing asthma. However, whether or not environmental pollution can cause asthma remains a controversial issue. The present review analyzes the current scientific evidence of the possible causal link between diesel exhaust particles (DEP), the solid fraction of the complex mixture of diesel exhaust, and asthma. The mechanisms that influence the expression and development of asthma are complex. In children prolonged exposure to pollutants such as DEPs may increase asthma prevalence. In adults, this causal relation is less clear, probably because of the heterogeneity of the studies carried out. There is also evidence of physiological mechanisms by which DEPs can cause asthma. The most frequently described interactions between cellular responses and DEP are the induction of pulmonary oxidative stress and inflammation and the activation of receptors of the bronchial epithelium such as toll-like receptors or increases in Th2 and Th17 cytokines, which generally orchestrate the asthmatic response. Others support indirect mechanisms through epigenetic changes, pulmonary microbiome modifications, or the interaction of DEP with environmental antigens to enhance their activity. However, in spite of this evidence, more studies are needed to assess the harmful effects of pollution - not only in the short term in the form of increases in the rate of exacerbations, but in the medium and long term as well, as a possible trigger of the disease.
Collapse
Affiliation(s)
- X Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - E Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Pulmonology Department-Muscle Research and Respiratory System Unit (URMAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)-Hospital del Mar, Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - V Bustamante
- Pneumology Department, Hospital Universitario Basurto, Osakidetza/University of the Basque Country, Bilbao, Spain
| | - J L Lopez-Campos
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unidad Médico-quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - F J González-Barcala
- Respiratory Department, Clinic University Hospital, Santiago de Compostela, Spain
| | - M J Cruz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Huo Y, Zhang HY. Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes (Basel) 2018; 9:genes9050237. [PMID: 29751569 PMCID: PMC5977177 DOI: 10.3390/genes9050237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic disease that is caused by airway inflammation. The main features of asthma are airway hyperresponsiveness (AHR) and reversible airway obstruction. The disease is mainly managed using drug therapy. The current asthma drug treatments are divided into two categories, namely, anti-inflammatory drugs and bronchodilators. However, disease control in asthma patients is not very efficient because the pathogenesis of asthma is complicated, inducing factors that are varied, such as the differences between individual patients. In this paper, we delineate the genetic mechanisms of asthma, and present asthma-susceptible genes and genetic pharmacology in an attempt to find a diagnosis, early prevention, and treatment methods for asthma. Finally, we reposition some clinical drugs for asthma therapy, based on asthma genetics.
Collapse
Affiliation(s)
- Yue Huo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Lajunen TK, Jaakkola JJK, Jaakkola MS. IL6 polymorphisms modify the effects of smoking on the risk of adult asthma. J Allergy Clin Immunol 2017; 141:799-802.e9. [PMID: 28987812 DOI: 10.1016/j.jaci.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Taina K Lajunen
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Maritta S Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|