1
|
Soler-Cataluña JJ, Lopez-Campos JL. COPD Exacerbation Syndrome: The Spanish Perspective on an Old Dilemma. Int J Chron Obstruct Pulmon Dis 2022; 17:3139-3149. [PMID: 36601561 PMCID: PMC9807017 DOI: 10.2147/copd.s393535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
The definition of exacerbation of COPD as a syndrome, as proposed by the Spanish COPD guidelines (GesEPOC) 2021 update, and the consequences that this implies, have direct implications on patient care. This review analyzes this novel vision of the COPD exacerbation syndrome, its rationale, and its clinical implications, as opposed to the traditional symptoms-based or event-based definitions. An exacerbation conceived as a syndrome provides us with an umbrella term to include a set of diverse alterations, which, either in isolation or more frequently in combination, are clinically expressed in a similar way in patients with COPD. In patients with COPD, this occurs as a consequence of worsening expiratory airflow limitation or the underlying inflammatory process, producing a worsening in symptoms with respect to the baseline situation. This definition therefore assumes a worsening in at least one of the two key physiopathological markers, lung function and inflammation. The main features of this new physiopathological proposal include a syndromic approach with narrower differential diagnosis, the use of several biomarkers, treatable traits to better guide treatment, and a new severity classification. Further research is needed to examine the role of eosinophils in this context, but currently, the early results are promising. The evaluation of severity is key in the multidimensional characterization of exacerbation and the GesEPOC 2021 proposes new approaches and also recommends the use of multidisciplinary scores for severity categorization in patients. Finally, another innovation in the GesEPOC 2021 refers to the recurrence of exacerbations, which has implications for disease prognosis or long-term clinical impact which need to be elucidated in further studies.
Collapse
Affiliation(s)
- Juan Jose Soler-Cataluña
- Servicio de Neumología, Hospital Arnau de Vilanova-Lliria, Valencia, Departamento de Medicina, Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luis Lopez-Campos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Burke H, Cellura D, Freeman A, Hicks A, Ostridge K, Watson A, Williams NP, Spalluto CM, Staples KJ, Wilkinson TMA. Pulmonary EV miRNA profiles identify disease and distinct inflammatory endotypes in COPD. Front Med (Lausanne) 2022; 9:1039702. [PMID: 36590967 PMCID: PMC9797812 DOI: 10.3389/fmed.2022.1039702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition without effective disease modifying therapies. Identification of novel inflammatory endotype markers such as extracellular vesicles (EVs), which are important intercellular messengers carrying microRNA (miRNA), may enable earlier diagnosis and disease stratification for a targeted treatment approach. Our aim was to identify differentially expressed EV miRNA in the lungs of COPD patients compared with healthy ex-smokers and determine whether they can help define inflammatory COPD endotypes. Methods EV miRNA were isolated and sequenced from ex-smoking COPD patients and healthy ex-smoker bronchoalveolar lavage fluid. Results were validated with RT-qPCR and compared to differential inflammatory cell counts. Results Expression analysis identified five upregulated miRNA in COPD (miR-223-3p, miR-2110, miR-182-5p, miR-200b-5p and miR-625-3p) and three downregulated miRNA (miR-138-5p, miR-338-3p and miR-204-5p), all with a log2 fold change of >1/-1, FDR < 0.05. These miRNAs correlated with disease defining characteristics such as FEF 25-75% (a small airways disease measure) and DLCO% (a surrogate measure of emphysema). Receiver operator curve analysis demonstrated miR-2110, miR-223-3p, and miR-182-5p showed excellent combinatory predictive ability (AUC 0.91, p < 0.0001) in differentiating between health and mild COPD. Furthermore, miR-223-3p and miR-338-3p correlated with airway eosinophilia and were able to distinguish "pure eosinophilic" COPD from other airway inflammatory subtypes (AUC 0.94 and 0.85, respectively). Discussion This is the first study to identify differentially expressed miRNA in COPD bronchoalveolar lavage fluid EVs. These findings suggest specific lung derived EV miRNA are a strong predictor of disease presence even in mild COPD. Furthermore, specific miRNA correlated with inflammatory cell numbers in COPD, and may have a role in defining inflammatory endotypes for future treatment stratification.
Collapse
Affiliation(s)
- Hannah Burke
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Doriana Cellura
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anna Freeman
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Alex Hicks
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Kris Ostridge
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alastair Watson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Nicholas P. Williams
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Karl J. Staples
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Tom M. A. Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Blood Eosinophil Endotypes across Asthma and Chronic Obstructive Pulmonary Disease (COPD). Can Respir J 2022; 2022:9656278. [PMID: 36311545 PMCID: PMC9605838 DOI: 10.1155/2022/9656278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Eosinophils were common inflammatory cells involved in the occurrence and development of various inflammatory diseases. Multiple recent studies have pointed to the increasingly important role of eosinophils in respiratory diseases. This article aims to compare the expression differences of blood eosinophil counts between asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO). Methods Patients with asthma, COPD, and ACO who were seen in the First Affiliated Hospital of Guangzhou Medical University from January 2012 to June 2019 were included. We collected information such as age, gender, diagnosis, the eosinophil counts from the medical records. Moreover, the levels of 10 cytokines in the plasma of each group were detected by using the Meso Scale Discovery method. Results We included 9787 patients with asthma, 15806 patients with COPD, and 831 ACO patients. From our results, it can be first found that eosinophil levels were age-related in the three diseases (asthma and ACO: p < 0.001; COPD: P = 0.001); in asthma and COPD, the number of eosinophils in males was more significant than that in females (asthma: p < 0.001; COPD: p = 0.012). Second, asthma patients had higher blood eosinophil counts than those with COPD and ACO (p < 0.001). Moreover, we found out that eosinophil levels were highly expressed in the stable group of all three diseases. Finally, we found that most cytokines in ACO patients showed a downward trend when the level of eosinophils was low, whereas the results were reversed in asthma patients; 7 cytokines had similar trends in COPD and ACO patients. Conclusions In conclusion, eosinophils have their own unique endotypes in asthma, COPD, and ACO patients, which were reflected in the fluctuation of their levels and changes in cytokine secretion.
Collapse
|
4
|
Chen YC, Chang YP, Huang KT, Hsu PY, Hsiao CC, Lin MC. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms. Cells 2022; 11:cells11111728. [PMID: 35681424 PMCID: PMC9179497 DOI: 10.3390/cells11111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma and COPD overlap (ACO) is characterized by patients presenting with persistent airflow limitation and features of both asthma and COPD. It is associated with a higher frequency and severity of exacerbations, a faster lung function decline, and a higher healthcare cost. Systemic inflammation in COPD and asthma is driven by type 1 T helper (Th1) and Th2 immune responses, respectively, both of which may contribute to airway remodeling in ACO. ACO-related biomarkers can be classified into four categories: neutrophil-mediated inflammation, Th2 cell responses, arachidonic acid-eicosanoids pathway, and metabolites. Gene–environment interactions are key contributors to the complexity of ACO and are regulated by epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs. Thus, this review focuses on the link between epigenetics and ACO, and outlines the following: (I) inheriting epigenotypes without change with environmental stimuli, or epigenetic changes in response to long-term exposure to inhaled particles plus intermittent exposure to specific allergens; (II) epigenetic markers distinguishing ACO from COPD and asthma; (III) potential epigenetic drugs that can reverse oxidative stress, glucocorticoid insensitivity, and cell injury. Improved understanding of the epigenetic regulations holds great value to give deeper insight into the mechanisms, and clarify their implications for biomedical research in ACO.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
5
|
Diagnosis of Chronic Obstructive Pulmonary Disease and Regulatory Mechanism of miR-149-3p on Alveolar Inflammatory Factors and Expression of Surfactant Proteins A (SP-A) and D (SP-D) on Lung Surface Mediated by Wnt Pathway. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7205016. [PMID: 35463266 PMCID: PMC9019401 DOI: 10.1155/2022/7205016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Objective To study the mechanism of chronic obstructive pulmonary disease (COPD) in diagnosing alveolar factors and analyze the effect of miR-149-3p on alveolar inflammatory factors and the expression of surfactant protein D (SP-D) and SP-A on the lung surface mediated by Wnt pathway. Methods Patients with stable COPD were taken as the research subjects, and healthy volunteers as the control group. Cardiac color Doppler ultrasound was adopted to measure the ventricular structure of patients. The ultrasound simulation method was introduced in the ultrasound imaging. The ultrasound image was processed based on the intelligent ultrasound simulation algorithm. The changes in the structure of the left and right ventricles were analyzed and compared in the two groups. The expression changes of miR-149-3p, Wnt1, β-catenin, RhoA, and Wnt5a in lung tissues of mice in three groups were detected, as well as the content of tumor necrosis factor- (TNF-) α, IL-1β, interleukin (IL-6), nuclear factor kB (NF-kB), and other inflammatory factors in bronchoalveolar tissues of mice in three groups. Results The position where the attenuation ratio was less than 0.92 in the experiment under the ultrasonic simulation algorithm had a gray value of 50. Compared with the control group, the right ventricular mass index of patients with stable COPD was statistically considerable (P < 0.05). In patients with stable COPD, the overall right ventricular longitudinal strain, right ventricular diastolic longitudinal strain rate (RV DLSR), right ventricular diastolic circumferential strain rate, and right ventricular longitudinal displacement were significantly impaired (P < 0.05). The content of miR-149-3p in the lung tissue of the model group was dramatically inferior to that of the control group and the interference group (P < 0.05). The contents of Wnt1, β-catenin, RhoA, and Wnt5a in the lung tissue of the model group were dramatically superior to those of the control group (P < 0.05). In addition, the expressions of TNF-α, IL-1β, IL-6, and NF-kB in the alveolar lavage fluid of the model group were statistically different from those of control group (P < 0.05). The expression levels of SP-D and surfactant protein A (SP-A) in the COPD group were also statistically different from those of control group (P < 0.05). Conclusion miR-149-3p regulated the expression of Wnt1, β-catenin, RhoA, and Wnt5a, which also affected the signal transmission of the Wnt pathway, causing changes in the expression of alveolar inflammatory factors. Eventually, it affected the development of COPD.
Collapse
|
6
|
Cerón-Pisa N, Iglesias A, Shafiek H, Martín-Medina A, Esteva-Socias M, Muncunill J, Fleischer A, Verdú J, Cosío BG, Sauleda J. Hsa-Mir-320c, Hsa-Mir-200c-3p, and Hsa-Mir-449c-5p as Potential Specific miRNA Biomarkers of COPD: A Pilot Study. PATHOPHYSIOLOGY 2022; 29:143-156. [PMID: 35466228 PMCID: PMC9036303 DOI: 10.3390/pathophysiology29020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease commonly induced by cigarette smoke. The expression of miRNAs can be altered in patients with COPD and could be used as a biomarker. We aimed to identify a panel of miRNAs in bronchoalveolar lavage (BAL) to differentiate COPD patients from smokers and non-smokers with normal lung function. Accordingly, forty-five subjects classified as COPD, smokers, and non-smokers (n = 15 per group) underwent clinical, functional characterization and bronchoscopy with BAL. The mean age of the studied population was 61.61 ± 12.95 years, BMI 25.72 ± 3.82 Kg/m2, FEV1/FVC 68.37 ± 12.00%, and FEV1 80.07 ± 23.63% predicted. According to microarray analysis, three miRNAs of the most upregulated were chosen: miR-320c, miR-200c-3p, and miR-449c-5p. These miRNAs were validated by qPCR and were shown to be differently expressed in COPD patients. ROC analysis showed that these three miRNAs together had an area under the curve of 0.89 in differentiating COPD from controls. Moreover, in silico analysis of candidate miRNAs by DIANA-miRPath showed potential involvement in the EGFR and Hippo pathways. These results suggest a specific 3-miRNA signature that could be potentially used as a biomarker to distinguish COPD patients from smokers and non-smoker subjects.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Margalida Esteva-Socias
- Department of Molecular Biology, Wallenberg Centre for Molecular Medicine, Umea University, 90187 Umea, Sweden
| | - Josep Muncunill
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aarne Fleischer
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Javier Verdú
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Borja G Cosío
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
7
|
Miravitlles M, Roman-Rodríguez M, Ribera X, Ritz J, Izquierdo JL. Inhaled Corticosteroid Use Among COPD Patients in Primary Care in Spain. Int J Chron Obstruct Pulmon Dis 2022; 17:245-258. [PMID: 35115771 PMCID: PMC8800566 DOI: 10.2147/copd.s342220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Inhaled corticosteroids (ICS) are frequently used to treat chronic obstructive pulmonary disease (COPD) outside the current recommendations. Our aim was to describe ICS use in COPD patients and to identify factors associated with ICS use among COPD patients treated within primary care in Spain. Patients and Methods This was a cross-sectional, non-interventional and multicenter study of patients with COPD treated in primary care. Patient characteristics and exacerbations were described in terms of ICS use among the overall cohort, and among those with spirometry confirmed COPD (post-bronchodilator forced expiratory volume in 1 second [FEV1]/forced vital capacity [FVC] ratio <70%). Multivariable logistic regression was used to identify factors associated with ICS use. Results A total of 901 patients were included, of which 47.9% (n = 432) were treated with ICS. A total of 240 patients (26.6%) experienced moderate/severe exacerbations in the prior year, while 309 (34.3%) during the previous two years. History of asthma totaled 11.6% (n = 105). The most frequent phenotype was non-exacerbator (51.6%), and the proportion of patient with moderate or severe exacerbations was significantly higher among ICS treated patients compared to non-treated: 37.5% versus 16.6% during the previous year (p < 0.001), and 46.8% versus 22.8% during the previous 2-years (p < 0.001), respectively. Patient characteristics were similar among spirometry confirmed patients and the overall population. Factors significantly associated with ICS use were a history of asthma (OR = 4.39, 95% CI: 2.67–7.26), the presence of moderate or severe exacerbations in the last year (OR = 2.52, 95% CI: 1.81–3.49), followed by higher mMRC and higher CAT score. Conclusion Nearly half of patients in primary care in Spain are treated with ICS, despite most of them being non-exacerbators. History of asthma, exacerbations, and worse dyspnea and CAT scores are associated with ICS use.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d´Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Correspondence: Marc Miravitlles, Pneumology Department, Hospital Universitari Vall d’Hebron, P. Vall d’Hebron 119-129, Barcelona, ES–08035, Spain, Email
| | - Miguel Roman-Rodríguez
- Centro de Salud Dra. Teresa Pique, Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Mallorca, Spain
| | - Xavier Ribera
- Boehringer Ingelheim España, Sant Cugat del Vallés, Barcelona, Spain
| | - John Ritz
- Syneos Health - Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - José Luis Izquierdo
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
- Pneumology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | |
Collapse
|
8
|
Wang W, Chen L, Zhu W, Huang X, Lin L, Quan Z, Sun K, Xu Q. miR-4486 reverses cisplatin-resistance of colon cancer cells via targeting ATG7 to inhibiting autophagy. Exp Ther Med 2021; 22:1465. [PMID: 34737805 PMCID: PMC8561764 DOI: 10.3892/etm.2021.10900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cisplatin (DDP) resistance is one of the main causes of treatment failure in patients with colon cancer (CC). Autophagy is a key mechanism of resistance to chemotherapy. Since autophagy-related 7 (ATG7) has been reported to be involved in the regulation of autophagy and DDP resistance for lung and esophageal cancer, the present study aimed to explore the functions of microRNA (miR)-4486 in the autophagy-mediated DDP resistance of CC. The expression level of miR-4486 in HCT116, DDP-resistant HCT116 cells (HCT116/DDP), SW480 and DDP-resistant SW480 cells (SW480/DDP) was quantified by reverse transcription-quantitative PCR. Western blotting was utilized to analyze the expression of ATG7, autophagy-related proteins Beclin 1 and LC3-I/II, as well as apoptosis-related proteins Bcl-2, Bax and cleaved-caspase 3 in HCT116/DDP and SW480/DDP cells. The half maximal inhibitory concentration of DDP on all cell lines and the cell viability of HCT116/DDP and SW480/DDP cells were measured using Cell Counting Kit 8 assay. Luciferase assay was used to examine the potential targets of miR-4486 and ATG7. The effects of upregulating mimic miR-4486 expression on the apoptosis and autophagy of HCT116/DDP and SW480/DDP cells were determined by flow cytometry and electron microscopy, respectively. It was found that miR-4486 expression was significantly decreased in HCT116/DDP and SW480/DDP cells compared with that in HCT116 and SW480 cells. Overexpression of miR-4486 could increase the sensitivity of HCT116/DDP and SW480/DDP cells to DDP by reducing cell viability, promoting apoptosis and inhibiting autophagy through downregulating Beclin 1 expression and the LC3-II/LC3-I ratio. Additionally, ATG7 was identified to be a target gene of miR-4486, where ATG7 overexpression could partially reverse the effects of miR-4486 on cell viability and apoptosis by promoting the formation of autophagosomes. In conclusion, the present results demonstrated that miR-4486 could reverse DDP resistance in HCT116/DDP and SW480/DDP cells by targeting ATG7 to inhibit autophagy.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Linxia Chen
- Department of Operating Room, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Wenjin Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xianjin Huang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Lin Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhenhao Quan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Qingwen Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
9
|
Mekov E, Nuñez A, Sin DD, Ichinose M, Rhee CK, Maselli DJ, Coté A, Suppli Ulrik C, Maltais F, Anzueto A, Miravitlles M. Update on Asthma-COPD Overlap (ACO): A Narrative Review. Int J Chron Obstruct Pulmon Dis 2021; 16:1783-1799. [PMID: 34168440 PMCID: PMC8216660 DOI: 10.2147/copd.s312560] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Although chronic obstructive pulmonary disease (COPD) and asthma are well-characterized diseases, they can coexist in a given patient. The term asthma-COPD overlap (ACO) was introduced to describe patients that have clinical features of both diseases and may represent around 25% of COPD patients and around 20% of asthma patients. Despite the increasing interest in ACO, there are still substantial controversies regarding its definition and its position within clinical guidelines for patients with obstructive lung disease. In general, most definitions indicate that ACO patients must present with non-reversible airflow limitation, significant exposure to smoking or other noxious particles or gases, together with features of asthma. In patients with a primary diagnosis of COPD, the identification of ACO has therapeutic implication because the asthmatic component should be treated with inhaled corticosteroids and some studies suggest that the most severe patients may respond to biological agents indicated for severe asthma. This manuscript aims to summarize the current state-of-the-art of ACO. The definitions, prevalence, and clinical manifestations will be reviewed and some innovative aspects, such as genetics, epigenetics, and biomarkers will be addressed. Lastly, the management and prognosis will be outlined as well as the position of ACO in the COPD and asthma guidelines.
Collapse
Affiliation(s)
- Evgeni Mekov
- Department of Occupational Diseases, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada
| | | | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Diego Jose Maselli
- Division of Pulmonary Diseases & Critical Care, University of Texas Health, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Andréanne Coté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Charlotte Suppli Ulrik
- Department of Pulmonary Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - François Maltais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Antonio Anzueto
- Division of Pulmonary Diseases & Critical Care, University of Texas Health, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
10
|
Hirai K, Shirai T, Shimoshikiryo T, Ueda M, Gon Y, Maruoka S, Itoh K. Circulating microRNA-15b-5p as a biomarker for asthma-COPD overlap. Allergy 2021; 76:766-774. [PMID: 32713026 DOI: 10.1111/all.14520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND It remains unclear how to characterize different subtypes of asthma and chronic obstructive pulmonary disease (COPD). We previously described serum periostin and chitinase-3-like protein 1 (YKL-40) as useful markers for asthma-COPD overlap (ACO). MicroRNAs (miRNAs) are now recognized as markers for identifying the pathophysiological features in several diseases. This study aimed to identify circulating miRNAs that could discriminate patients with ACO from patients with asthma or COPD. METHODS This study included two independent cohorts. First, we screened 84 miRNAs for expression levels in patients with ACO (n = 6) or asthma (n = 6) using a quantitative real-time PCR array. The miRNAs showing at least a 2-fold difference in the discovery phase were analyzed in 30 patients each with asthma, COPD, or ACO in the replication phase. The diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUROC). RESULTS Nine miRNAs were identified in the discovery phase. Five of these miRNAs (miR-148a-3p, miR-15b-5p, miR-223-3p, miR-23a-3p, and miR-26b-5p) had lower levels in ACO patients and could discriminate between ACO patients and patients with either asthma or COPD. miR-15b-5p was the most accurate miRNA for the discrimination of patients with ACO (AUROC, 0.71). Moreover, the combined assessment of miR-15b-5p, serum periostin, and YKL-40 (AUROC, 0.80) improved diagnostic accuracy for ACO compared with the combined model of periostin and YKL-40 (AUROC, 0.69). CONCLUSIONS Circulating miR-15b-5p is a potential marker for identifying patients with ACO. By elucidating the molecular pathways controlled by miRNAs, we may better understand the pathophysiology of ACO.
Collapse
Affiliation(s)
- Keita Hirai
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
- Laboratory of Clinical Pharmacogenomics Shizuoka General Hospital Shizuoka Japan
| | - Toshihiro Shirai
- Department of Respiratory Medicine Shizuoka General Hospital Shizuoka Japan
| | - Takayuki Shimoshikiryo
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
| | - Megumi Ueda
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine Department of Internal Medicine Nihon University School of Medicine Tokyo Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine Department of Internal Medicine Nihon University School of Medicine Tokyo Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
- Laboratory of Clinical Pharmacogenomics Shizuoka General Hospital Shizuoka Japan
| |
Collapse
|
11
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
12
|
Zhai W, Sun H, Li Z, Li L, Jin A, Li Y, Chen J, Yang X, Sun Q, Lu S, Roth M. PRMT1 Modulates Processing of Asthma-Related Primary MicroRNAs (Pri-miRNAs) into Mature miRNAs in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:11-22. [PMID: 33239422 DOI: 10.4049/jimmunol.2000887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Protein arginine methyltransferase-1 (PRMT1) is an important epigenetic regulator of cell function and contributes to inflammation and remodeling in asthma in a cell type-specific manner. Disease-specific expression patterns of microRNAs (miRNA) are associated with chronic inflammatory lung diseases, including asthma. The de novo synthesis of miRNA depends on the transcription of primary miRNA (pri-miRNA) transcript. This study assessed the role of PRMT1 on pri-miRNA to mature miRNA process in lung epithelial cells. Human airway epithelial cells, BEAS-2B, were transfected with the PRMT1 expression plasmid pcDNA3.1-PRMT1 for 48 h. Expression profiles of miRNA were determined by small RNA deep sequencing. Comparing these miRNAs with datasets of microarrays from five asthma patients (Gene Expression Omnibus dataset), 12 miRNAs were identified that related to PRMT1 overexpression and to asthma. The overexpression or knockdown of PRMT1 modulated the expression of the asthma-related miRNAs and their pri-miRNAs. Coimmunoprecipitation showed that PRMT1 formed a complex with STAT1 or RUNX1 and thus acted as a coactivator, stimulating the transcription of pri-miRNAs. Stimulation with TGF-β1 promoted the interaction of PRMT1 with STAT1 or RUNX1, thereby upregulating the transcription of two miRNAs: let-7i and miR-423. Subsequent chromatin immunoprecipitation assays revealed that the binding of the PRMT1/STAT1 or PRMT1/RUNX1 coactivators to primary let-7i (pri-let-7i) and primary miR (pri-miR) 423 promoter was critical for pri-let-7i and pri-miR-423 transcription. This study describes a novel role of PRMT1 as a coactivator for STAT1 or RUNX1, which is essential for the transcription of pri-let-7i and pri-miR-423 in epithelial cells and might be relevant to epithelium dysfunction in asthma.
Collapse
Affiliation(s)
- Weiqi Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; .,Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| |
Collapse
|
13
|
Lopez-Campos JL, Ruiz-Duque B, Carrasco-Hernandez L, Caballero-Eraso C. Integrating Comorbidities and Phenotype-Based Medicine in Patient-Centered Medicine in COPD. J Clin Med 2020; 9:jcm9092745. [PMID: 32854364 PMCID: PMC7565552 DOI: 10.3390/jcm9092745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite recent notable innovations in the management of chronic obstructive pulmonary disease (COPD), no major advances in patient-centered medicine have been achieved. Current guidelines base their proposals on the average results from clinical trials, leading to what could be termed ‘means-based’ medical practice. However, the therapeutic response is variable at the patient level. Additionally, the variability of the clinical presentation interacts with comorbidities to form a complex clinical scenario for clinicians to deal with. Consequently, no consensus has been reached over a practical approach for combining comorbidities and disease presentation markers in the therapeutic algorithm. In this context, from the patients’ first visit, the clinician faces four major dilemmas: (1) establishing the correct diagnosis of COPD as opposed to other airway diseases, such as bronchial asthma; (2) deciding on the initial therapeutic approach based on the clinical characteristics of each case; (3) setting up a study strategy for non-responding patients; (4) pursuing a follow-up strategy with two well-defined periods according to whether close or long-term follow-up is required. Here, we will address these major dilemmas in the search for a patient-centered approach to COPD management and suggest how to combine them all in a single easy-to-use strategy.
Collapse
Affiliation(s)
- José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (B.R.-D.); (L.C.-H.); (C.C.-E.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Borja Ruiz-Duque
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (B.R.-D.); (L.C.-H.); (C.C.-E.)
| | - Laura Carrasco-Hernandez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (B.R.-D.); (L.C.-H.); (C.C.-E.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Candelaria Caballero-Eraso
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (B.R.-D.); (L.C.-H.); (C.C.-E.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Yeh JJ, Lin CL, Kao CH. Associations among chronic obstructive pulmonary disease with asthma, pneumonia, and corticosteroid use in the general population. PLoS One 2020; 15:e0229484. [PMID: 32092112 PMCID: PMC7039502 DOI: 10.1371/journal.pone.0229484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To evaluate the association among chronic obstructive pulmonary disease (COPD) with asthma, steroid use, and pneumonia in the general population. Methods Using Taiwan’s National Health Insurance Research Database to identify patients with incident pneumonia, we established a COPD with asthma cohort of 12,538 patients and a COPD cohort of 25,069 patients. In both cohorts, the risk of incident pneumonia was assessed using multivariable Cox proportional hazards models. Results The adjusted hazard ratio (aHR) with 95% confidence interval (CI) for incident pneumonia was 2.38 (2.14, 2.66) in the COPD with asthma cohort, regardless of age, sex, comorbidities, and drug use. COPD cohort without inhaled corticosteroids (ICSs) use served as a reference. The aHR (95% CI) for COPD cohort with ICSs use was 1.34 (0.98, 1.83); that for COPD with asthma cohort without ICSs use was 2.46 (2.20, 2.76); and that for COPD with asthma cohort with ICSs use was 2.32 (1.99, 2.72). COPD cohort without oral steroids (OSs) use served as a reference; the aHR (95% CI) for COPD with asthma cohort without OSs use and with OSs use was 3.25 (2.72, 3.89) and 2.38 (2.07, 2.74), respectively. Conclusions The COPD with asthma cohort had a higher risk of incident pneumonia, regardless of age, sex, comorbidities, and ICSs or OSs use. COPD cohort with ICSs use did not have a notable risk of incident pneumonia. The COPD with asthma cohort had a higher risk of incident pneumonia, even without ICSs/OSs use.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi, Taiwan
- Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- * E-mail: ,
| |
Collapse
|