1
|
Crimi C, Murphy P, Patout M, Sayas J, Winck JC. Lessons from COVID-19 in the management of acute respiratory failure. Breathe (Sheff) 2023; 19:230035. [PMID: 37378059 PMCID: PMC10292773 DOI: 10.1183/20734735.0035-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulated evidence supports the efficacy of noninvasive respiratory support therapies in coronavirus disease 2019 (COVID-19)-related acute hypoxaemic respiratory failure, alleviating admissions to intensive care units. Noninvasive respiratory support strategies, including high-flow oxygen therapy, continuous positive airway pressure via mask or helmet and noninvasive ventilation, can be alternatives that may avoid the need for invasive ventilation. Alternating different noninvasive respiratory support therapies and introducing complementary interventions, like self-proning, may improve outcomes. Proper monitoring is warranted to ensure the efficacy of the techniques and to avoid complications while supporting transfer to the intensive care unit. This article reviews the latest evidence on noninvasive respiratory support therapies in COVID-19-related acute hypoxaemic respiratory failure.
Collapse
Affiliation(s)
- Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico “G. Rodolico-San Marco” University Hospital, Catania, Italy
| | - Patrick Murphy
- Lane Fox Respiratory Service, Guy's and St Thomas’ Hospitals NHS Trust, London, UK
- Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| | - Maxime Patout
- Service des Pathologies du Sommeil (Département R3S), Groupe Hospitalier Universitaire APHP-Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
- UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, INSERM, Paris, France
| | - Javier Sayas
- Pulmonology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
- Facultad de Medicina Universidad Complutense de Madrid, Madrid, Spain
| | - Joao Carlos Winck
- Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Centro De Reabilitação Do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova De Gaia, Portugal
| |
Collapse
|
2
|
Khonsari RH, Oranger M, François PM, Mendoza-Ruiz A, Leroux K, Boussaid G, Prieur D, Hodge JP, Belle A, Midler V, Morelot-Panzini C, Patout M, Gonzalez-Bermejo J. Quality versus emergency: How good were ventilation fittings produced by additive manufacturing to address shortages during the COVID19 pandemic? PLoS One 2022; 17:e0263808. [PMID: 35446853 PMCID: PMC9022824 DOI: 10.1371/journal.pone.0263808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The coronavirus disease pandemic (COVID-19) increased the risk of shortage in intensive care devices, including fittings with intentional leaks. 3D-printing has been used worldwide to produce missing devices. Here we provide key elements towards better quality control of 3D-printed ventilation fittings in a context of sanitary crisis. MATERIAL AND METHODS Five 3D-printed designs were assessed for non-intentional (junctional and parietal) and intentional leaks: 4 fittings 3D-printed in-house using FDeposition Modelling (FDM), 1 FDM 3D-printed fitting provided by an independent maker, and 2 fittings 3D-printed in-house using Polyjet technology. Five industrial models were included as controls. Two values of wall thickness and the use of coating were tested for in-house FDM-printed devices. RESULTS Industrial and Polyjet-printed fittings had no parietal and junctional leaks, and satisfactory intentional leaks. In-house FDM-printed fittings had constant parietal leaks without coating, but this post-treatment method was efficient in controlling parietal sealing, even in devices with thinner walls (0.7 mm vs 2.3 mm). Nevertheless, the use of coating systematically induced absent or insufficient intentional leaks. Junctional leaks were constant with FDM-printed fittings but could be controlled using rubber junctions rather than usual rigid junctions. The properties of Polyjet-printed and FDM-printed fittings were stable over a period of 18 months. CONCLUSIONS 3D-printing is a valid technology to produce ventilation devices but requires care in the choice of printing methods, raw materials, and post-treatment procedures. Even in a context of sanitary crisis, devices produced outside hospitals should be used only after professional quality control, with precise data available on printing protocols. The mechanical properties of ventilation devices are crucial for efficient ventilation, avoiding rebreathing of CO2, and preventing the dispersion of viral particles that can contaminate health professionals. Specific norms are still required to formalise quality control procedures for ventilation fittings, with the rise of 3D-printing initiatives and the perspective of new pandemics.
Collapse
Affiliation(s)
- Roman Hossein Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker - Enfants Malades, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de Médecine, Université Paris Cité, Paris, France
- Délégation Inter-Départementale pour le Développement de la Fabrication Additive (DIDDFA), Direction générale, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Mathilde Oranger
- Service de Réhabilitation Respiratoire (Département R3S), Hôpital Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | | | | | | | - Ghilas Boussaid
- Service de Réhabilitation Respiratoire (Département R3S), Hôpital Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Delphine Prieur
- Délégation Inter-Départementale pour le Développement de la Fabrication Additive (DIDDFA), Direction générale, Assistance Publique – Hôpitaux de Paris, Paris, France
| | | | - Antoine Belle
- Service de Pneumologie, Centre Hospitalier Intercommunal de Compiègne-Noyon, Compiègne, France
| | - Vincent Midler
- Département de la Maîtrise d’Ouvrage et de la Politique Technique – DEFIP, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Capucine Morelot-Panzini
- Faculté de Médecine, Sorbonne Université, Paris, France
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Paris, France
| | - Maxime Patout
- Faculté de Médecine, Sorbonne Université, Paris, France
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Paris, France
- Service des Pathologies du Sommeil (Département R3S), Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jésus Gonzalez-Bermejo
- Service de Réhabilitation Respiratoire (Département R3S), Hôpital Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Paris, France
| |
Collapse
|
3
|
Chiner-Vives E, Cordovilla-Pérez R, de la Rosa-Carrillo D, García-Clemente M, Izquierdo-Alonso JL, Otero-Candelera R, Pérez-de Llano L, Sellares-Torres J, de Granda-Orive JI. Short and Long-Term Impact of COVID-19 Infection on Previous Respiratory Diseases. Arch Bronconeumol 2022; 58 Suppl 1:39-50. [PMID: 35501222 PMCID: PMC9012323 DOI: 10.1016/j.arbres.2022.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Till now, it affected 452.4 million (Spain, 11.18 million) persons all over the world with a total of 6.04 million of deaths (Spain, 100,992). It is observed that 75% of hospitalized COVID-19 patients have at least one COVID-19 associated comorbidity. It was shown that people with underlying chronic illnesses are more likely to get it and grow seriously ill. Individuals with COVID-19 who have a past medical history of cardiovascular disorder, cancer, obesity, chronic lung disease, diabetes, or neurological disease had the worst prognosis and are more likely to develop acute respiratory distress syndrome or pneumonia. COVID-19 can affect the respiratory system in a variety of ways and across a spectrum of levels of disease severity, depending on a person's immune system, age and comorbidities. Symptoms can range from mild, such as cough, shortness of breath and fever, to critical disease, including respiratory failure, shock and multi-organ system failure. So, COVID-19 infection can cause overall worsening of these previous respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease, etc. This review aims to provide information on the impact of the COVID-19 disease on pre-existing lung comorbidities.
Collapse
Affiliation(s)
- Eusebi Chiner-Vives
- Multidisciplinary Sleep Unit, Respiratory Department, Sant Joan University Hospital, Sant Joan d'Alacant, Alicante, Spain
| | - Rosa Cordovilla-Pérez
- Respiratory Department, Salamanca University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Marta García-Clemente
- Lung Management Area, HUCA, Institute for Health Research of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Izquierdo-Alonso
- Department of Medicine and Medical Specialties, University of Alcalá, Madrid, Spain; Respiratory Medicine, University Hospital of Guadalajara, Guadalajara, Spain
| | | | - Luis Pérez-de Llano
- Respiratory Department, Lucus Augusti University Hospital, EOXI Lugo, Monforte, CERVO, Lugo, Spain
| | - Jacobo Sellares-Torres
- Interstitial Lung Diseases Working Group, Respiratory Department, Clinic-University Hospital-IDIBAPS, Barcelona, Spain
| | | |
Collapse
|
4
|
Rabec C, Fresnel E, Rétory Y, Zhu K, Joly K, Kerfourn A, Dudoignon B, Mendoza A, Cuvelier A, Muir JF, Melloni B, Chabot JF, Gonzalez-Bermejo J, Patout M. Addition of bacterial filter alters positive airway pressure and non-invasive ventilation performances. Eur Respir J 2022; 59:13993003.02636-2021. [PMID: 35086835 PMCID: PMC9030068 DOI: 10.1183/13993003.02636-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Recently, one manufacturer of home ventilators issued an alert regarding the potential risk of serious injury related to the use of some of their positive airway pressure (PAP) and non-invasive ventilation (NIV) devices [1]. The risk is caused by the polyurethane foam used in their ventilators. In some cases, the foam broke into the blower and could have been inhaled by patients. The manufacturer and some healthcare regulatory agencies advocated, as a temporary solution, to modify PAP and NIV circuits by adding an inline bacterial filter in order to reduce the risk of inhalation [2]. However, changing ventilator circuits can alter ventilator performances during PAP and NIV [3]. The recommendation to add a bacterial filter on home positive pressure devices has significant negative impact on their performances and precludes auto-titrating positive airway pressure to function. These data suggest to not follow such recommendation.https://bit.ly/31YrWyo
Collapse
Affiliation(s)
- Claudio Rabec
- Pulmonary Department and Respiratory Critical Care Unit, University Hospital Dijon, Dijon, France.,Fédération ANTADIR, Paris, France.,Groupe Assistance Ventilatoire et O2 (GAVO2), Société de Pneumologie de Langue Française, Paris, France
| | | | - Yann Rétory
- Centre EXPLOR, Air Liquide Healthcare, Gentilly, France
| | - Kaixian Zhu
- Centre EXPLOR, Air Liquide Healthcare, Gentilly, France
| | | | | | - Benjamin Dudoignon
- 6AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), Paris, France
| | - Alexis Mendoza
- Groupe Assistance Ventilatoire et O2 (GAVO2), Société de Pneumologie de Langue Française, Paris, France
| | - Antoine Cuvelier
- Normandie Univ, UNIRouen, EA3830-GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Groupe Assistance Ventilatoire et O2 (GAVO2), Société de Pneumologie de Langue Française, Paris, France
| | | | - Boris Melloni
- Fédération ANTADIR, Paris, France.,Pulmonary department, University Hospital Limoges, Limoges France
| | - Jean-François Chabot
- Fédération ANTADIR, Paris, France.,Département de Pneumologie, Université de Lorraine, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | - Jésus Gonzalez-Bermejo
- Groupe Assistance Ventilatoire et O2 (GAVO2), Société de Pneumologie de Langue Française, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maxime Patout
- Groupe Assistance Ventilatoire et O2 (GAVO2), Société de Pneumologie de Langue Française, Paris, France .,6AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
5
|
Wang YC, Lu MC, Yang SF, Bien MY, Chen YF, Li YT. Respiratory care for the critical patients with 2019 novel coronavirus. Respir Med 2021; 186:106516. [PMID: 34218168 PMCID: PMC8215880 DOI: 10.1016/j.rmed.2021.106516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through respiratory droplets, aerosols and close contact. Cross infections occur because viruses spread rapidly among humans. Nineteen percent (19%) of the infected patients developed severe pneumonia and acute respiratory distress syndrome (ARDS). Hypoxemia usually occurs and patients may require oxygen therapy or mechanical ventilation (MV) support. In this article, recently published clinical experience and observational studies were reviewed. Corresponding respiratory therapy regarding different stages of infection is proposed. Infection control principles and respiratory strategies including oxygen therapy, non-invasive respiratory support (NIRS), intubation evaluation, equipment preparation, ventilator settings, special maneuvers comprise of the prone position (PP), recruitment maneuver (RM), extracorporeal membrane oxygenation (ECMO), weaning and extubation are summarized. Respiratory equipment and device disinfection recommendations are worked up. We expect this review article could be used as a reference by healthcare workers in patient care while minimizing the risk of environmental contamination.
Collapse
Affiliation(s)
- Yao-Chen Wang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 402306, Taiwan.
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, 404332, Taiwan; Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, 406040, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung San Medical University, Taichung, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| | - Mauo-Ying Bien
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei, 116081, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| | - Yi-Fang Chen
- Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| | - Yia-Ting Li
- Institute of Medicine, Chung San Medical University, Taichung, 402306, Taiwan; Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| |
Collapse
|