1
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2024; 66:100726. [PMID: 39667580 PMCID: PMC11754522 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Wu Y, Green CL, Wang G, Yang D, Li L, Li B, Wang L, Li M, Li J, Xu Y, Zhang X, Niu C, Hu S, Togo J, Mazidi M, Derous D, Douglas A, Speakman JR. Effects of dietary macronutrients on the hepatic transcriptome and serum metabolome in mice. Aging Cell 2022; 21:e13585. [PMID: 35266264 PMCID: PMC9009132 DOI: 10.1111/acel.13585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/13/2022] [Indexed: 12/18/2022] Open
Abstract
Dietary macronutrient composition influences both hepatic function and aging. Previous work suggested that longevity and hepatic gene expression levels were highly responsive to dietary protein, but almost unaffected by other macronutrients. In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice were significantly associated with changes in dietary protein (5%–30%), fat (20%–60%), and carbohydrate (10%–75%), respectively. More genes in aging‐related pathways (notably mTOR, IGF‐1, and NF‐kappaB) had significant correlations with dietary fat intake than protein and carbohydrate intake, and the pattern of gene expression changes in relation to dietary fat intake was in the opposite direction to the effect of graded levels of caloric restriction consistent with dietary fat having a negative impact on aging. We found 732, 808, and 995 serum metabolites were significantly correlated with dietary protein (5%–30%), fat (8.3%–80%), and carbohydrate (10%–80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine‐1‐phosphate signaling was the significantly affected pathway by dietary fat content which has also been identified as significant changed metabolic pathway in the previous caloric restriction study. Our results suggest dietary fat has major impact on aging‐related gene and metabolic pathways compared with other macronutrients.
Collapse
Affiliation(s)
- Yingga Wu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Jianbo Li
- University of Dali Dali Yunnan Province People’s Republic of China
| | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Xueying Zhang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Davina Derous
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - John R. Speakman
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics Kunming People’s Republic of China
| |
Collapse
|
3
|
Effect of Empagliflozin on Sphingolipid Catabolism in Diabetic and Hypertensive Rats. Int J Mol Sci 2022; 23:ijms23052883. [PMID: 35270028 PMCID: PMC8910883 DOI: 10.3390/ijms23052883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
The profile of sphingomyelin and its metabolites shows changes in the plasma, organs, and tissues of patients with cardiovascular, renal, and metabolic diseases. The objective of this study was to investigate the effect of empagliflozin on the levels of sphingomyelin and its metabolites, as well as on the activity of acid and neutral sphingomyelinase (aSMase and nSMase) and neutral ceramidase (nCDase) in the plasma, kidney, heart, and liver of streptozotocin-induced diabetic and Angiotensin II (Ang II)-induced hypertension rats. Empagliflozin treatment decreased hyperglycemia in diabetic rats whereas blood pressure remained elevated in hypertensive rats. In diabetic rats, empagliflozin treatment decreased sphingomyelin in the plasma and liver, ceramide in the heart, sphingosine-1-phosphate (S1P) in the kidney, and nCDase activity in the plasma, heart, and liver. In hypertensive rats, empagliflozin treatment decreased sphingomyelin in the plasma, kidney, and liver; S1P in the plasma and kidney; aSMase in the heart, and nCDase activity in the plasma, kidney, and heart. Our results suggest that empagliflozin downregulates the interaction of the de novo pathway and the catabolic pathway of sphingolipid metabolism in the diabetes, whereas in Ang II-dependent hypertension, it only downregulates the sphingolipid catabolic pathway.
Collapse
|
4
|
Bilousova T, Simmons BJ, Knapp RR, Elias CJ, Campagna J, Melnik M, Chandra S, Focht S, Zhu C, Vadivel K, Jagodzinska B, Cohn W, Spilman P, Gylys KH, Garg NK, John V. Dual Neutral Sphingomyelinase-2/Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease. ACS Chem Biol 2020; 15:1671-1684. [PMID: 32352753 PMCID: PMC8297715 DOI: 10.1021/acschembio.0c00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the discovery of a novel class of compounds that function as dual inhibitors of the enzymes neutral sphingomyelinase-2 (nSMase2) and acetylcholinesterase (AChE). Inhibition of these enzymes provides a unique strategy to suppress the propagation of tau pathology in the treatment of Alzheimer's disease (AD). We describe the key SAR elements that affect relative nSMase2 and/or AChE inhibitor effects and potency, in addition to the identification of two analogs that suppress the release of tau-bearing exosomes in vitro and in vivo. Identification of these novel dual nSMase2/AChE inhibitors represents a new therapeutic approach to AD and has the potential to lead to the development of truly disease-modifying therapeutics.
Collapse
Affiliation(s)
- Tina Bilousova
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
- School of Nursing, University of California, Los Angeles, California 90095, United States
| | - Bryan J Simmons
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Rachel R Knapp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Chris J Elias
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Jesus Campagna
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, California 90095, United States
| | - Sujyoti Chandra
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Samantha Focht
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Chunni Zhu
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Kanagasabai Vadivel
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Barbara Jagodzinska
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Whitaker Cohn
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Patricia Spilman
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Varghese John
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Dias IR, Santos CDS, Magalhães CODE, de Oliveira LRS, Peixoto MFD, De Sousa RAL, Cassilhas RC. Does calorie restriction improve cognition? IBRO Rep 2020; 9:37-45. [PMID: 33336102 PMCID: PMC7733132 DOI: 10.1016/j.ibror.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
Calorie restriction (CR) has been considered the most effective non-pharmacological intervention to counteract aging-related diseases and improve longevity. This intervention has shown beneficial effects in the prevention and treatment of several chronic diseases and functional declines related to aging, such as Parkinson's, Alzheimer's, and neuroendocrine disorders. However, the effects of CR on cognition show controversial results since its effects vary according to intensity, duration, and the period of CR. This review focuses on the main studies published in the last ten years regarding the consequences of CR on cognition in different neurological diseases and conditions of experimental animals. Also, possible CR mimetics are discussed. These findings highlight the potential beneficial effects of CR of up to 40 % on cognition when started early in life in non human animals.
Collapse
Affiliation(s)
- Isabella Rocha Dias
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Carina de Sousa Santos
- Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Lucas Renan Sena de Oliveira
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Marco Fabrício Dias Peixoto
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.,Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil.,Post Graduation Program in Health Science (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.,Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil.,Post Graduation Program in Health Science (PPGCS), UFVJM, Diamantina, MG, Brazil
| |
Collapse
|
6
|
Teimouri E, Rainey-Smith SR, Bharadwaj P, Verdile G, Martins RN. Amla Therapy as a Potential Modulator of Alzheimer’s Disease Risk Factors and Physiological Change. J Alzheimers Dis 2020; 74:713-733. [PMID: 32083581 DOI: 10.3233/jad-191033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elham Teimouri
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Giuseppe Verdile
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
7
|
Gültekin F, Nazıroğlu M, Savaş HB, Çiğ B. Calorie restriction protects against apoptosis, mitochondrial oxidative stress and increased calcium signaling through inhibition of TRPV1 channel in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2018; 33:1761-1774. [PMID: 30014177 DOI: 10.1007/s11011-018-0289-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
The TRPV1 channel is activated in neurons by capsaicin, oxidative stress, acidic pH and heat factors, and these factors are attenuated by the antioxidant role of calorie restriction (CR). Hence, we investigated the hypothesis that the antioxidant roles of CR and food frequency (FF) may modulate TRPV1 activity and apoptosis through inhibition of mitochondrial oxidative stress in hippocampal (HIPPON) and dorsal root ganglion neurons (DRGN). We investigated the contribution of FF and CR to neuronal injury and apoptosis through inhibition of TRPV1 in rats. We assigned rats to control, FF and FF + CR groups. A fixed amount of food ad libitum was supplemented to the control and FF groups for 20 weeks, respectively. FF + CR group were fed the same amount of food as the control group but with 20% less calories during the same period. In major results, TRPV1 currents, intracellular Ca2+ levels, apoptosis, reactive oxygen species, mitochondrial depolarization, PARP-1 expression, caspase 3 and 9 activity and expression values were found to be increased in the HIPPON and DRGN following FF treatment, and these effects were decreased following FF + CR treatment. The FF-induced decrease in cell viability of HIPPO and DRGN, and vitamin E concentration of brain, glutathione peroxidase, vitamin A, and β-carotene values of the HIPPO, DRGN, plasma, liver and kidney were increased by FF + DR treatment, although lipid peroxidation levels in the same samples were decreased. In conclusion, CR reduces FF-induced increase of oxidative stress, apoptosis and Ca2+ entry through TRPV1 in the HIPPON and DRGN. Our findings may be relevant to the etiology and treatment of obesity following CR treatment.
Collapse
Affiliation(s)
- Fatih Gültekin
- Department of Clinical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Hasan Basri Savaş
- Department of Clinical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Effects of Vitamin E on the Synthesis of Phospholipids and Brain Functions in Old Rats. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Bilousova T, Elias C, Miyoshi E, Alam MP, Zhu C, Campagna J, Vadivel K, Jagodzinska B, Gylys KH, John V. Suppression of tau propagation using an inhibitor that targets the DK-switch of nSMase2. Biochem Biophys Res Commun 2018; 499:751-757. [PMID: 29604274 DOI: 10.1016/j.bbrc.2018.03.209] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022]
Abstract
Targeting of molecular pathways involved in the cell-to-cell propagation of pathological tau species is a novel approach for development of disease-modifying therapies that could block tau pathology and attenuate cognitive decline in patients with Alzheimer's disease and other tauopathies. We discovered cambinol through a screening effort and show that it is an inhibitor of cell-to-cell tau propagation. Our in vitro data demonstrate that cambinol inhibits neutral sphingomyelinase 2 (nSMase2) enzyme activity in dose response fashion, and suppresses extracellular vesicle (EV) production while reducing tau seed propagation. Our in vivo testing with cambinol shows that it can reduce the nSMase2 activity in the brain after oral administration. Our molecular docking and simulation analysis reveals that cambinol can target the DK-switch in the nSMase2 active site.
Collapse
Affiliation(s)
- Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA; Gylys Lab, School of Nursing, University of California, Los Angeles, CA, USA
| | - Chris Elias
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Emily Miyoshi
- Gylys Lab, School of Nursing, University of California, Los Angeles, CA, USA
| | - Mohammad Parvez Alam
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jesus Campagna
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Kanagasabai Vadivel
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Barbara Jagodzinska
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Karen Hoppens Gylys
- Gylys Lab, School of Nursing, University of California, Los Angeles, CA, USA
| | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Wan JJ, Qin Z, Liu X. ORM Elevation in Response to Cognitive Impairment Is an Accompanying Phenomenon. CNS Neurosci Ther 2018; 22:723-4. [PMID: 27390178 DOI: 10.1111/cns.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jing-Jing Wan
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice. Front Cell Neurosci 2018; 12:4. [PMID: 29387000 PMCID: PMC5776087 DOI: 10.3389/fncel.2018.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.
Collapse
Affiliation(s)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Daniele Lettieri-Barbato
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Vozella V, Basit A, Misto A, Piomelli D. Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1502-1511. [DOI: 10.1016/j.bbalip.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
13
|
Neutral Sphingomyelinase Behaviour in Hippocampus Neuroinflammation of MPTP-Induced Mouse Model of Parkinson's Disease and in Embryonic Hippocampal Cells. Mediators Inflamm 2017; 2017:2470950. [PMID: 29343884 PMCID: PMC5733979 DOI: 10.1155/2017/2470950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 01/31/2023] Open
Abstract
Neutral sphingomyelinase is known to be implicated in growth arrest, differentiation, proliferation, and apoptosis. Although previous studies have reported the involvement of neutral sphingomyelinase in hippocampus physiopathology, its behavior in the hippocampus during Parkinson's disease remains undetected. In this study, we show an upregulation of inducible nitric oxide synthase and a downregulation of neutral sphingomyelinase in the hippocampus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced mouse model of Parkinson's disease. Moreover, the stimulation of neutral sphingomyelinase activity with vitamin 1,25-dihydroxyvitamin D3 reduces specifically saturated fatty acid sphingomyelin by making sphingomyelin a less rigid molecule that might influence neurite plasticity. The possible biological relevance of the increase of neutral sphingomyelinase in Parkinson's disease is discussed.
Collapse
|
14
|
Sadagurski M, Cady G, Miller RA. Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell 2017; 16:652-660. [PMID: 28544365 PMCID: PMC5506421 DOI: 10.1111/acel.12590] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
Abstract
Aging leads to hypothalamic inflammation, but does so more slowly in mice whose lifespan has been extended by mutations that affect GH/IGF‐1 signals. Early‐life exposure to GH by injection, or to nutrient restriction in the first 3 weeks of life, also modulate both lifespan and the pace of hypothalamic inflammation. Three drugs extend lifespan of UM‐HET3 mice in a sex‐specific way: acarbose (ACA), 17‐α‐estradiol (17αE2), and nordihydroguaiaretic acid (NDGA), with more dramatic longevity increases in males in each case. In this study, we examined the effect of these anti‐aging drugs on neuro‐inflammation in hypothalamus and hippocampus. We found that age‐associated hypothalamic inflammation is reduced in males but not in females at 12 months of age by ACA and 17αE2 and at 22 months of age in NDGA‐treated mice. The three drugs blocked indices of hypothalamic reactive gliosis associated with aging, such as Iba‐1‐positive microglia and GFAP‐positive astrocytes, as well as age‐associated overproduction of TNF‐α. This effect was not observed in drug‐treated female mice or in the hippocampus of the drug‐treated animals. On the other hand, caloric restriction (CR; an intervention that extends the lifespan in both sexes) significantly reduced hypothalamic microglia and TNF‐α in both sexes at 12 months of age. Together, these results suggest that the extent of drug‐induced changes in hypothalamic inflammatory processes is sexually dimorphic in a pattern that parallels the effects of these agents on mouse longevity and that mimics the changes seen, in both sexes, of long‐lived nutrient restricted or mutant mice.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Division of Geriatric and Palliative Medicine; Department of Internal Medicine; University of Michigan; Ann Arbor MI USA
| | - Gillian Cady
- Department of Pathology and Geriatrics Center; University of Michigan; Ann Arbor MI USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center; University of Michigan; Ann Arbor MI USA
| |
Collapse
|
15
|
Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16:529-540. [PMID: 28139067 PMCID: PMC5418186 DOI: 10.1111/acel.12570] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend lifespan and improve health span. Using a global mass spectrometry-based metabolomic approach, we identified 193 metabolites that were significantly differentially expressed (SDE) in the livers of C57BL/6 mice, fed graded levels of CR (10, 20, 30 and 40% CR) compared to mice fed ad libitum for 12 h a day. The differential expression of metabolites also varied with the different feeding groups. Pathway analysis revealed that graded CR had an impact on carnitine synthesis and the carnitine shuttle pathway, sphingosine-1-phosphate (S1P) signalling and methionine metabolism. S1P, sphingomyelin and L-carnitine were negatively correlated with body mass, leptin, insulin-like growth factor- 1 (IGF-1) and major urinary proteins (MUPs). In addition, metabolites which showed a graded effect, such as ceramide, S1P, taurocholic acid and L-carnitine, responded in the opposite direction to previously observed age-related changes. We suggest that the modulation of this set of metabolites may improve liver processes involved in energy release from fatty acids. S1P also negatively correlated with catalase activity and body temperature, and positively correlated with food anticipatory activity. Injecting mice with S1P or an S1P receptor 1 agonist did not precipitate changes in body temperature, physical activity or food intake suggesting that these correlations were not causal relationships.
Collapse
Affiliation(s)
- Cara L. Green
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network; Institute of Biochemistry and Cell Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Daniel E. L. Promislow
- Department of Pathology and Department of Biology; University of Washington; Seattle WA USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| |
Collapse
|
16
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
17
|
Babenko NA, Shevereva VM, Gar’kavenko VV. Changes in the Sphingolipid Content in Tissues and Behavioral Modifications of Rats Subjected to Neurogenic Stress: Role of Sphingomyelinases. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Effects of Chronic Neurogenic Stress on Behavior of Rats and Contents of Sphingolipids in Their Brain and Peripheral Tissues. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Singh P. Budding Yeast: An Ideal Backdrop for In vivo Lipid Biochemistry. Front Cell Dev Biol 2017; 4:156. [PMID: 28119915 PMCID: PMC5222803 DOI: 10.3389/fcell.2016.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
Biological membranes are non-covalent assembly of lipids and proteins. Lipids play critical role in determining membrane physical properties and regulate the function of membrane associated proteins. Budding yeast Saccharomyces cerevisiae offers an exceptional advantage to understand the lipid-protein interactions since lipid metabolism and homeostasis are relatively simple and well characterized as compared to other eukaryotes. In addition, a vast array of genetic and cell biological tools are available to determine and understand the role of a particular lipid in various lipid metabolic disorders. Budding yeast has been instrumental in delineating mechanisms related to lipid metabolism, trafficking and their localization in different subcellular compartments at various cell cycle stages. Further, availability of tools and enormous potential for the development of useful reagents and novel technologies to localize a particular lipid in different subcellular compartments in yeast makes it a formidable system to carry out lipid biology. Taken together, yeast provides an outstanding backdrop to characterize lipid metabolic changes under various physiological conditions.
Collapse
Affiliation(s)
- Pushpendra Singh
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
20
|
Chen LY, Liu LK, Hwang AC, Lin MH, Peng LN, Chen LK, Lan CF, Chang PL. Impact of Malnutrition on Physical, Cognitive Function and Mortality among Older Men Living in Veteran Homes by Minimum Data Set: A Prospective Cohort Study in Taiwan. J Nutr Health Aging 2016; 20:41-7. [PMID: 26728932 DOI: 10.1007/s12603-016-0674-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the prevalence of malnutrition and its impact on mortality, functional decline and cognitive impairment among elder residents in long-term care settings. DESIGNS A prospective cohort study. SETTINGS Two veteran homes in Taiwan. PARTICIPANTS A total of 1,248 male residents aged equal or more than 65 years. MEASUREMENTS Charlson's comorbidity index (CCI), Minimum data set (MDS), resident assessment protocols (RAP), Activity of daily living-Hierarchy scale, Cognitive Performance Scale, MDS Social engagement scale. RESULTS The mean age of participants is 83.1 ± 5.1 years, and the prevalence of malnutrition was 6.1%. Inadequate dietary content (57.9%) and unintentional weight loss (31.6%) account for the majority of malnutrition identified by MDS tool. Higher 18-month mortality rate (25% vs. 14.2%), higher baseline CCI (median 1 vs. 0), and higher baseline sum of RAP triggers (median 8.5 vs. 5) were noted among residents with malnutrition. Furthermore, malnutrition was shown predictive for functional decline (OR: 3.096, 95% CI: 1.715-5.587) and potential cognitive improvement (OR: 2.469, 95% CI: 1.188-5.128) among survivors after adjustment for age, body mass index and CCI. CONCLUSION Malnutrition among elder men residing in veteran homes was associated with multimorbidities and higher care complexity, and was predictive for mortality and functional decline.
Collapse
Affiliation(s)
- L-Y Chen
- Liang-Kung Chen, MD, PhD, Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2nd, Shih-Pai Rd. Taipei, Taiwan 11217, Tel: +886-2-28757830, Fax: +886-2-28757711, E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Babenko NA, Kharchenko VS. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2015; 80:104-12. [PMID: 25754045 DOI: 10.1134/s0006297915010125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.
Collapse
Affiliation(s)
- N A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, Kharkov, 61077, Ukraine.
| | | |
Collapse
|
22
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Fonteh AN, Ormseth C, Chiang J, Cipolla M, Arakaki X, Harrington MG. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease. PLoS One 2015; 10:e0125597. [PMID: 25938590 PMCID: PMC4418746 DOI: 10.1371/journal.pone.0125597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired participants. In dementia, altered sphingolipid metabolism, decreased acid sphingomyelinase activity and its lost association with CSF amyloid β42 concentration, underscores the potential of sphingolipids as disease biomarkers, and acid sphingomyelinase as a target for AD diagnosis and/or treatment.
Collapse
Affiliation(s)
- Alfred N. Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, California, United Sates of America
- * E-mail:
| | - Cora Ormseth
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, California, United Sates of America
| | - Jiarong Chiang
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, California, United Sates of America
| | - Matthew Cipolla
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, California, United Sates of America
| | - Xianghong Arakaki
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, California, United Sates of America
| | - Michael G. Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, California, United Sates of America
| |
Collapse
|
24
|
Sauerbeck AD, Laws JL, Bandaru VVR, Popovich PG, Haughey NJ, McTigue DM. Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 2014; 32:159-69. [PMID: 25036371 DOI: 10.1089/neu.2014.3497] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes major disruption to peripheral organ innervation and regulation. Relatively little work has investigated these post-SCI systemic changes, however, despite considerable evidence that multiple organ system dysfunction contributes to chronic impairments in health. Because metabolic dysfunction is common after SCI and the liver is a pivotal site for metabolic homeostasis, we sought to determine if liver pathology occurs as a result of SCI in a rat spinal contusion model. Histologic evidence showed excess lipid accumulation in the liver for at least 21 days post-injury after cervical or midthoracic SCI. Lipidomic analysis revealed an acute increase in hepatic ceramides as well as chronically elevated lactosylceramide. Post-SCI hepatic changes also included increased proinflammatory gene expression, including interleukin (IL)-1α, IL-1β, chemokine ligand-2, and tumor necrosis factor-α mRNA. These were coincident with increased CD68+ macrophages in the liver through 21 days post-injury. Serum alanine transaminase, used clinically to detect liver damage, was significantly increased at 21 days post-injury, suggesting that early metabolic and inflammatory damage preceded overt liver pathology. Surprisingly, liver inflammation was even detected after lumbar SCI. Collectively, these results suggest that SCI produces chronic liver injury with symptoms strikingly similar to those of nonalcoholic steatohepatitis (fatty liver disease). These clinically significant hepatic changes after SCI are known to contribute to systemic inflammation, cardiovascular disease, and metabolic syndrome, all of which are more prevalent in persons with SCI. Targeting acute and prolonged hepatic pathology may improve recovery and reduce long-term complications after SCI.
Collapse
Affiliation(s)
- Andrew D Sauerbeck
- 1 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
25
|
Kornhuber J, Müller CP, Becker KA, Reichel M, Gulbins E. The ceramide system as a novel antidepressant target. Trends Pharmacol Sci 2014; 35:293-304. [PMID: 24793541 DOI: 10.1016/j.tips.2014.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 01/01/2023]
Abstract
Major depression is a systems disorder which impairs not only central nervous system aspects of mood and behavior but also peripheral organ systems. Current views on the pathogenesis and treatment of depression are predominantly based on proteins and transmitters and thus are difficult to reconcile central with peripheral pathomechanisms. Recent research showed that there is also a lipid-based pathway involved in the pathology of depression, which is activated by psychosocial stress, oxidative stress, or inflammation. Inducible dysfunction of the ceramide pathway, which is abundant in the brain as well as in peripheral organs, may account for mood disorder, behavioral symptoms, and further promote inflammation and oxidative stress in peripheral systems. As such, the lipid ceramide pathway may provide the missing link between brain dysfunction and somatic symptoms of depression. Pharmacological interventions that reduce ceramide abundance also show antidepressant action and may promise a better treatment of major depression.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|