1
|
Morris MJ, Hasebe K, Shinde AL, Leong MKH, Billah MM, Hesam-Shariati S, Kendig MD. Time-restricted feeding does not prevent adverse effects of palatable cafeteria diet on adiposity, cognition and gut microbiota in rats. J Nutr Biochem 2024; 134:109761. [PMID: 39251144 DOI: 10.1016/j.jnutbio.2024.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Time-restricted feeding (TRF) is a popular dietary strategy whereby daily food intake is limited to a <12h window. As little is known about the effects of TRF on cognitive and behavioral measures, the present study examined the effects of time-restricted (8h/day; zeitgeber time [ZT]12-20) or continuous access to a high-fat, high-sugar cafeteria-style diet (Caf; Caf and Caf-TRF groups; n=12 adult male Sprague-Dawley rats) or standard chow (Chow and Chow-TRF groups) on short-term memory, anxiety-like behavior, adiposity and gut microbiota composition over 13-weeks with daily food intake measures. TRF significantly reduced daily energy intake in Caf- but not chow-fed groups. In Caf-fed groups, TRF reduced the proportion of energy derived from sugar while increasing that derived from protein. Caf diet significantly increased weight gain, adiposity and fasting glucose within 4 weeks; TRF partially reduced these effects. Caf diet increased anxiety-like behavior in the Elevated Plus Maze in week 3 but not week 12, and impaired hippocampal-dependent place recognition memory in week 11; neither measure was affected by TRF. Global microbiota composition differed markedly between chow and Caf groups, with a small effect of TRF in rats fed chow. In both chow and Caf diet groups, TRF reduced microbiota alpha diversity measures of Shannon diversity and evenness relative to continuous access. Results indicate only limited benefits of TRF access to an obesogenic diet under these conditions, suggesting that more severe time restriction may be required to offset adverse metabolic and cognitive effects when using highly palatable diets.
Collapse
Affiliation(s)
| | - Kyoko Hasebe
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia
| | - Arya L Shinde
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia
| | | | | | | | - Michael D Kendig
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2024:1-15. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
3
|
Yuliyanasari N, Rejeki PS, Hidayati HB, Subsomwong P, Miftahussurur M. The effect of intermittent fasting on preventing obesity-related early aging from a molecular and cellular perspective. J Med Life 2024; 17:261-272. [PMID: 39044934 PMCID: PMC11262604 DOI: 10.25122/jml-2023-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/30/2023] [Indexed: 07/25/2024] Open
Abstract
Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.
Collapse
Key Words
- ADF, alternate-day fasting
- ADMF, alternate-day modified fasting
- AMPK, AMP-activated protein kinase
- BMI, body mass index
- FOXO, fork head box O
- IF, intermittent fasting
- IIS, insulin/insulin-like growth factor signaling
- PF, periodic fasting
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- PI3K, phosphatidylinositol 3-kinase
- TRE, time-restricted eating
- aging
- human health
- intermittent fasting
- mTOR, mammalian target of rapamycin
- obesity
- β-HB, β-hydroxy butyric acid
Collapse
Affiliation(s)
- Nurma Yuliyanasari
- Doctoral Program of Medical Science, Faculty Of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Armstrong OJ, Neal ES, Vidovic D, Xu W, Borges K. Transient anticonvulsant effects of time-restricted feeding in the 6-Hz mouse model. Epilepsy Behav 2024; 151:109618. [PMID: 38184948 DOI: 10.1016/j.yebeh.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Intermittent fasting enhances neural bioenergetics, is neuroprotective, and elicits antioxidant effects in various animal models. There are conflicting findings on seizure protection, where intermittent fasting regimens often cause severe weight loss resembling starvation which is unsustainable long-term. Therefore, we tested whether a less intensive intermittent fasting regimen such as time-restricted feeding (TRF) may confer seizure protection. METHODS Male CD1 mice were assigned to either ad libitum-fed control, continuous 8 h TRF, or 8 h TRF with weekend ad libitum food access (2:5 TRF) for one month. Body weight, food intake, and blood glucose levels were measured. Seizure thresholds were determined at various time points using 6-Hz and maximal electroshock seizure threshold (MEST) tests. Protein levels and mRNA expression of genes, enzyme activity related to glucose metabolism, as well as mitochondrial dynamics were assessed in the cortex and hippocampus. Markers of antioxidant defence were evaluated in the plasma, cortex, and liver. RESULTS Body weight gain was similar in the ad libitum-fed and TRF mouse groups. In both TRF regimens, blood glucose levels did not change between the fed and fasted state and were higher during fasting than in the ad libitum-fed groups. Mice in the TRF group had increased seizure thresholds in the 6-Hz test on day 15 and on day 19 in a second cohort of 2:5 TRF mice, but similar seizure thresholds at other time points compared to ad libitum-fed mice. Continuous TRF did not alter MEST seizure thresholds on day 28. Mice in the TRF group showed increased maximal activity of pyruvate dehydrogenase in the cortex, which was accompanied by increased protein levels of mitochondrial pyruvate carrier 1 in the cortex and hippocampus. There were no other major changes in protein or mRNA levels associated with energy metabolism and mitochondrial dynamics in the brain, nor markers of antioxidant defence in the brain, liver, or plasma. CONCLUSIONS Both continuous and 2:5 TRF regimens transiently increased seizure thresholds in the 6-Hz model at around 2 weeks, which coincided with stability of blood glucose levels during the fed and fasted periods. Our findings suggest that the lack of prolonged anticonvulsant effects in the acute electrical seizure models employed may be attributed to only modest metabolic and antioxidant adaptations found in the brain and liver. Our findings underscore the potential therapeutic value of TRF in managing seizure-related conditions.
Collapse
Affiliation(s)
- Oliver J Armstrong
- School of Biomedical Sciences, Skerman Building 65, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Elliott S Neal
- School of Biomedical Sciences, Skerman Building 65, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Diana Vidovic
- School of Biomedical Sciences, Medical Building 181, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Weizhi Xu
- School of Biomedical Sciences, Skerman Building 65, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Karin Borges
- School of Biomedical Sciences, Skerman Building 65, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Intermittent fasting and mental and physical fatigue in obese and non-obese rats. PLoS One 2022; 17:e0275684. [PMID: 36322540 PMCID: PMC9629590 DOI: 10.1371/journal.pone.0275684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Intermittent fasting (IF) is an alternating pattern of restricting eating. This study evaluated mental and physical fatigue secondary to IF (daily 18-hour fast, 7-days-a-week) in the high-fat diet (HFD)-induced male obese Sprague Dawley rats. Fifty-four rats were randomly assigned to a HFD (n = 28) or a standard diet (SD; n = 26). After six weeks, the HFD rats were divided into one of four groups: obese HFD ad libitum (OB-HFD-AL), obese HFD-IF (OB-HFD-IF), obese SD-AL (OB-SD-AL), and obese SD-IF (OB-SD-IF). Similarly, non-obese controls were grouped into HFD-AL (C-HFD-AL), non-obese HFD-IF (C-HFD-IF), non-obese SD-AL (C-SD-AL), and non-obese SD-IF (C-SD-IF). After 2 weeks of IF, mental and physical fatigue were measured using open field (OF) and novel object recognition (NOR) tests. Rats on IF gained weight at a slower pace (p<0.05) and had lower glucose levels (p<0.01) compared to the AL group. In non-obese rats, ketone levels were higher in the IF-HFD group than IF-SD (p<0.05) and AL-SD (p<0.01) animals. Obese rats exhibited elevated blood ketone levels in IF-SD conditions versus AL-SD rats (p<0.01). AL-HFD rats had higher ketone levels than AL-SD animals in both obese and non-obese groups (p<0.05). In conclusion, rats with higher blood ketone levels, whether they were on IF or AL, traveled a greater distance during OF suggesting a lack of physical fatigue. There was no significant difference between IF and AL during NOR indicating a lack of mental fatigue. Thus, IF results in reduced body weight and blood glucose levels but does not induce physical or mental fatigue.
Collapse
|
6
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
7
|
Raji-Amirhasani A, Khaksari M, Shahrokhi N, Soltani Z, Nazari-Robati M, Mahani FD, Hajializadeh Z, Sabet N. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: the role of SIRT1 and TGF-β1. Nutrition 2022; 96:111588. [DOI: 10.1016/j.nut.2022.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
8
|
Chen Y, Su J, Yan Y, Zhao Q, Ma J, Zhu M, He X, Zhang B, Xu H, Yang X, Duan Y, Han J. Intermittent Fasting Inhibits High-Fat Diet-Induced Atherosclerosis by Ameliorating Hypercholesterolemia and Reducing Monocyte Chemoattraction. Front Pharmacol 2021; 12:719750. [PMID: 34658858 PMCID: PMC8517704 DOI: 10.3389/fphar.2021.719750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis is a major pathology for cardiovascular diseases (CVDs). Clinically, the intermittent fasting (IF) has been observed to reduce the risk of CVDs. However, the effect of IF on the development of atherosclerosis has not been fully elucidated. Herein, we determined the protection of IF against high-fat diet–induced atherosclerosis in pro-atherogenic low-density lipoprotein receptor deficient (LDLR-/-) mice and the potentially involved mechanisms. The LDLR-/- mice were scheduled intermittent fasting cycles of 3-day HFD feeding ad libitum and 1 day fasting, while the mice in the control group were continuously fed HFD. The treatment was lasted for 7 weeks (∼12 cycles) or 14 weeks (∼24 cycles). Associated with the reduced total HFD intake, IF substantially reduced lesions in the en face aorta and aortic root sinus. It also increased plaque stability by increasing the smooth muscle cell (SMC)/collagen content and fibrotic cap thickness while reducing macrophage accumulation and necrotic core areas. Mechanistically, IF reduced serum total and LDL cholesterol levels by inhibiting cholesterol synthesis in the liver. Meanwhile, HFD-induced hepatic lipid accumulation was attenuated by IF. Interestingly, circulating Ly6Chigh monocytes but not T cells and serum c-c motif chemokine ligand 2 levels were significantly reduced by IF. Functionally, adhesion of monocytes to the aortic endothelium was decreased by IF via inhibiting VCAM-1 and ICAM-1 expression. Taken together, our study indicates that IF reduces atherosclerosis in LDLR-/- mice by reducing monocyte chemoattraction/adhesion and ameliorating hypercholesterolemia and suggests its potential application for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Jiamin Su
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Yali Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Qian Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Jialing Ma
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Bhoumik S, Rizvi SI. Anti‐aging effects of intermittent fasting: a potential alternative to calorie restriction? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Alidadi M, Banach M, Guest PC, Bo S, Jamialahmadi T, Sahebkar A. The effect of caloric restriction and fasting on cancer. Semin Cancer Biol 2020; 73:30-44. [PMID: 32977005 DOI: 10.1016/j.semcancer.2020.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Cancer is one of the most frequent causes of worldwide death and morbidity and is a major public health problem. Although, there are several widely used treatment methods including chemo-, immune- and radiotherapies, these mostly lack sufficient efficiency and induce toxicities in normal surrounding tissues. Thus, finding new approaches to mitigate side effects and potentially accelerate treatment is paramount. In line with this, increasing preclinical evidence indicates that caloric restriction (CR) and fasting might have anticancer effects by reducing tumor progression, enhancing death of cancer cells, and elevating the effectiveness and tolerability of chemo- and radiotherapies. Nonetheless, clinical studies assessing the potential of CR and fasting in cancer are scarce and inconsistent, and more investigations are still required to clarify their effect in different aspects of cancer treatment. In this review, we have summarized the findings of preclinical and clinical studies of CR and fasting with respect to efficacy and on the adverse effects of standard cancer treatments.
Collapse
Affiliation(s)
- Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|