1
|
Wang Y, Shi Y, Wang L, Xu J, Shan Z, Gao Z. Spatiotemporal expression of fibroblast growth factor 4 and 10 during the morphogenesis of deciduous molars in miniature pigs. Arch Oral Biol 2023; 155:105795. [PMID: 37619487 DOI: 10.1016/j.archoralbio.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) play pivotal roles in mediating interactions between dental epithelium and mesenchyme throughout tooth initiation and morphogenesis. This study aimed to elucidate the roles of FGF4 and FGF10 in the regulation of tooth development. DESIGN In this study, we investigated spatiotemporal expression patterns of FGF4 and FGF10 in the third deciduous molars (DM3) of miniature pigs at the cap, early bell, and late bell stages. Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Non-radioactive in situ hybridization, immunohistochemistry, and real-time PCR were used to detect mRNA and protein expression levels of FGF4 and FGF10. RESULTS FGF4 was expressed in the dental epithelium and mesenchyme at the cap stage. At the early bell stage, epithelial expression of FGF4 was reduced while mesenchymal expression got stronger. At the late bell stage, the FGF4 expression was restricted to the inner enamel epithelium (IEE) and differentiating odontoblasts. FGF10 was expressed intensely in both epithelium and mesenchyme at the cap stage. The expression of FGF10 was concentrated in the secondary enamel knots and surrounding mesenchyme at the early bell stage. FGF10 was weakly detected in the IEE by the late bell stage. CONCLUSIONS Our results indicated that FGF4 and FGF10 might have partially redundant functions in regulating epithelium morphogenesis. FGF4 may be involved in regulatory signaling cascades mediating interactions between the epithelium and mesenchyme. In addition, the downregulation of FGF10 expression may be associated with the cessation of mesenchymal cell proliferation and initiation of preodontoblast polarization.
Collapse
Affiliation(s)
- Yingxin Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuanyuan Shi
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Montazerian M, Baino F, Fiume E, Migneco C, Alaghmandfard A, Sedighi O, DeCeanne AV, Wilkinson CJ, Mauro JC. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. PROGRESS IN MATERIALS SCIENCE 2023; 132:101023. [DOI: 10.1016/j.pmatsci.2022.101023] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Burstyn-Cohen T. Cellular and Molecular Mechanisms Guiding the Development and Repair of the Dentin–Pulp Complex. CONTEMPORARY ENDODONTICS FOR CHILDREN AND ADOLESCENTS 2023:9-21. [DOI: 10.1007/978-3-031-23980-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
6
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
7
|
Mohammadi Amirabad L, Zarrintaj P, Lindemuth A, Tayebi L. Whole Tooth Engineering. APPLICATIONS OF BIOMEDICAL ENGINEERING IN DENTISTRY 2020:443-462. [DOI: 10.1007/978-3-030-21583-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Smith AJ, Sharpe PT. Biological tooth replacement and repair. PRINCIPLES OF TISSUE ENGINEERING 2020:1187-1199. [DOI: 10.1016/b978-0-12-818422-6.00066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Wang F, Li G, Wu Z, Fan Z, Yang M, Wu T, Wang J, Zhang C, Wang S. Tracking diphyodont development in miniature pigs in vitro and in vivo. Biol Open 2019; 8:bio.037036. [PMID: 30683673 PMCID: PMC6398454 DOI: 10.1242/bio.037036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abnormalities of tooth number in humans, such as agenesis and supernumerary tooth formation, are closely related to diphyodont development. There is an increasing demand to understand the molecular and cellular mechanisms behind diphyodont development through the use of large animal models, since they are the most similar to the mechanism of human tooth development. However, attempting to study diphyodont development in large animals remains challenging due to large tooth size, prolonged growth stage and embryo manipulation. Here, we characterized the expression of possible genes for diphyodont development and odontogenesis of an organoid bud from single cells of tooth germs in vitro using Wzhishan pig strain (WZSP). Following this, we used a method of ectopic transplantation of tooth germs at cap stage to dynamically track diphyodont development of tooth germs in mouse subrenal capsules to overcome the restrictions in pig embryos. The results showed that pig tooth germ at cap stage could restore diphyodont development and maintain efficient long-term survival and growth in mouse subrenal capsules, which is suitable for future manipulation of large mammalian tooth development. Our pilot study provided an alternative for studying diphyodont development in large mammals, which will further promote the use of pig as a diphyodont model similar to humans for craniofacial development study. Summary: Little is known about diphyodont development in large animals. Our pilot trial characterized this gene expression and developed an alternative method to track diphyodont development in pigs.
Collapse
Affiliation(s)
- Fu Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China.,Department of Basic Oral Sciences, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Guoqing Li
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhifang Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Yang
- Department of Basic Oral Sciences, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Tingting Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Wang F, Wu Z, Fan Z, Wu T, Wang J, Zhang C, Wang S. The cell re-association-based whole-tooth regeneration strategies in large animal, Sus scrofa. Cell Prolif 2018; 51:e12479. [PMID: 30028040 DOI: 10.1111/cpr.12479] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Whole-tooth regeneration for tooth loss has long been a goal of dentistry. There is also an increasing demand to carry out pre-clinical in vitro and in vivo research methods in large animal model similar to human. The miniature pig has proven to be an alternative as a large mammal model owing to its many similarities to human. However, whole-tooth regeneration in large animal remains a challenge. Here, we investigated the feasibility of cell re-association-based whole-tooth regeneration in miniature pigs. MATERIALS AND METHODS Single cells from the forth deciduous molar germs (p4) of pig were reconstituted to bioengineered tooth bud using different treatment for in vitro culture and in vivo transplantation in mouse subrenal capsules and jawbones. RESULTS The bioengineered tooth bud from re-aggregated epithelial to mesenchymal single cells with and without compartmentalization restored the morphogenesis, interactions or self-sorting between 2 cells in vitro culture. The pig bioengineered tooth bud transplanted in mouse subrenal capsules and jawbones restored odontogenesis and developed into large size tooth. CONCLUSIONS We characterized the morphogenesis and interaction of single-tooth germ cells in vitro, and first addressed efficient long-term survival and growth through transplantation of pig bioengineered tooth bud under mouse subrenal capsules or in mouse jawbones, where it can develop into large size tooth. Our study extends the feasibility of whole-tooth regeneration in large animal.
Collapse
Affiliation(s)
- Fu Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,School of Stomatology, Dalian Medical University, Liaoning, China
| | - Zhifang Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Tingting Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Abstract
Currently regeneration of tooth and periodontal damage still remains great challenge. Stem cell-based tissue engineering raised novel therapeutic strategies for tooth and periodontal repair. Stem cells for tooth and periodontal regeneration include dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), stem cells from the dental apical papilla (SCAPs), and stem cells from human exfoliated deciduous teeth (SHEDs), dental follicle stem cells (DFSCs), dental epithelial stem cells (DESCs), bone marrow mesenchymal stem cells (BMMSCs), adipose-derived stem cells (ADSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). To date, substantial advances have been made in stem cell-based tooth and periodontal regeneration, including dentin-pulp, whole tooth, bioroot and periodontal regeneration. Translational investigations have been performed such as dental stem cell banking and clinical trials. In this review, we present strategies for stem cell-based tissue engineering for tooth and periodontal repair, and the translational studies.
Collapse
Affiliation(s)
- L Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - S Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Jamal HA. Tooth Organ Bioengineering: Cell Sources and Innovative Approaches. Dent J (Basel) 2016; 4:dj4020018. [PMID: 29563460 PMCID: PMC5851265 DOI: 10.3390/dj4020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Various treatment approaches for restoring missing teeth are being utilized nowadays by using artificial dental crowns/bridges or the use of dental implants. All aforementioned restorative modalities are considered to be the conventional way of treating such cases. Although these artificial therapies are commonly used for tooth loss rehabilitation, they are still less conservative, show less biocompatibility and fail to restore the natural biological and physiological function. Adding to that, they are considered to be costly due to the risk of failure and they also require regular maintenance. Regenerative dentistry is currently considered a novel therapeutic concept with high potential for a complete recovery of the natural function and esthetics of teeth. Biological-cell based dental therapies would involve replacement of teeth by using stem cells that will ultimately grow a bioengineered tooth, thereby restoring both the biological and physiological functions of the natural tooth, and are considered to be the ultimate goal in regenerative dentistry. In this review, various stem cell-based therapeutic approaches for tooth organ bioengineering will be discussed.
Collapse
Affiliation(s)
- Hasan A Jamal
- Independent Researcher, Ibrahim Al- Jaffali, Awali, Mecca 21955, Saudi Arabia.
| |
Collapse
|
13
|
Kuchler-Bopp S, Bécavin T, Kökten T, Weickert JL, Keller L, Lesot H, Deveaux E, Benkirane-Jessel N. Three-dimensional Micro-culture System for Tooth Tissue Engineering. J Dent Res 2016; 95:657-64. [PMID: 26965424 DOI: 10.1177/0022034516634334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The arrangement of cells within a tissue plays an essential role in organogenesis, including tooth development. Progress is being made to regenerate teeth by reassociating dissociated embryonic dental cells and implanting them in vivo. In the present study, we tested the hanging drop method to study mixed epithelial-mesenchymal cell reorganization in a liquid instead of semisolid medium to see whether it could lead to tooth histogenesis and organogenesis. This method allowed the control of the proportion and number of cells to be used, and the forming microtissues showed homogeneous size. The liquid environment favored cell migrations as compared with collagen gels. Three protocols were compared. The one that sequentially combined the hanging drop and semisolid medium cultures prior to in vivo implantation gave the best results. Indeed, after implantation, teeth developed, showing a well-formed crown, mineralization of dentin and enamel, and the initiation of root formation. Vascularization and the cellular heterogeneity in the mesenchyme were similar to what was observed in developing molars. Finally, after coimplantation with a trigeminal ganglion, the dental mesenchyme, including the odontoblast layer, became innervated. The real advantage of this technique is the small number of cells required to make a tooth. This experimental model can be employed to study the development, physiology, metabolism, or toxicology in forming teeth and test other cell sources.
Collapse
Affiliation(s)
- S Kuchler-Bopp
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - T Bécavin
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, Université de Lille, Lille, France
| | - T Kökten
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France INSERM U954-NEGRE (Nutrition-Génétique et Exposition aux risques environnementaux), Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - J L Weickert
- Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM Unité U 964, CNRS UMR 1704, UDS, Illkirch, France
| | - L Keller
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - H Lesot
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - E Deveaux
- Faculté de Chirurgie Dentaire, Université de Lille, Lille, France
| | - N Benkirane-Jessel
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| |
Collapse
|
14
|
Sivakumar M, Dineshshankar J, Sunil PM, Nirmal RM, Sathiyajeeva J, Saravanan B, Senthileagappan AR. Stem cells: An insight into the therapeutic aspects from medical and dental perspectives. J Pharm Bioallied Sci 2015; 7:S361-71. [PMID: 26538878 PMCID: PMC4606620 DOI: 10.4103/0975-7406.163453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The recent advancements in the field of stem cell (SC) biology have increased the hope of achieving the definitive treatments for the diseases which are now considered incurable such as diabetes, Parkinson's disease and other chronic long standing conditions. To achieve this possibility, it is necessary to understand the basic concepts of SC biology to utilize in various advanced techniques of regenerative medicine including tissue engineering and gene therapy. This article highlights the types of SCs available and their therapeutic capacity in regenerative medical and dental fields.
Collapse
Affiliation(s)
- Muniapillai Sivakumar
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Janardhanam Dineshshankar
- Department of Oral Pathology and Microbiology, Vivekanandha Dental College for Women, Tiruchengode, Namakkal, Tamil Nadu, India
| | - P M Sunil
- Department of Oral Pathology and Microbiology, Sree Anjaneya Institute of Dental Sciences, Calicut, Kerala, India
| | - R Madhavan Nirmal
- Department of Oral Pathology and Microbiology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - J Sathiyajeeva
- Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Balasubramanian Saravanan
- Department of Oral and Maxillofacial Surgery, Madha Dental College and Hospital, Kundrathur, Chennai, Tamil Nadu, India
| | - A R Senthileagappan
- Department of Pedodontics, Chettinad Dental College and Research Institute, Chettinad Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Keller LV, Kökten T, Kuchler-Bopp S, Lesot H. Tooth Organ Engineering. STEM CELL BIOLOGY AND TISSUE ENGINEERING IN DENTAL SCIENCES 2015:359-368. [DOI: 10.1016/b978-0-12-397157-9.00032-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Kökten T, Bécavin T, Keller L, Weickert JL, Kuchler-Bopp S, Lesot H. Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One 2014; 9:e86011. [PMID: 24465840 PMCID: PMC3899083 DOI: 10.1371/journal.pone.0086011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/04/2013] [Indexed: 01/24/2023] Open
Abstract
The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.
Collapse
Affiliation(s)
- Tunay Kökten
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Thibault Bécavin
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Laetitia Keller
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Weickert
- Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM Unité (U)964, Centre National de la Recherche Scientifique (CNRS) UMR1704, Université de Strasbourg, Illkirch, France
| | - Sabine Kuchler-Bopp
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hervé Lesot
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
17
|
(Tony) Smith AJ, Sharpe PT. Biological Tooth Replacement and Repair. PRINCIPLES OF TISSUE ENGINEERING 2014:1471-1485. [DOI: 10.1016/b978-0-12-398358-9.00070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Abstract
Dental pulp stem cells (DPSC) have been proposed as an alternative to pluripotent stem cells to study multilineage differentiation in vitro and for therapeutic application. Standard culture media for isolation and expansion of stem cells includes animal sera or animal-derived matrix components (e.g., Matrigel(®)). However, animal-derived reagents raise significant concerns with respect to the translational ability of these cells due to the possibility of infection and/or severe immune reaction. For these reasons clinical grade substitutes to animal components are needed in order for stem cells to reach their full therapeutic potential. In this chapter we detail a method for isolation and proliferation of DPSC in a chemically defined medium containing a low percentage of human serum. We demonstrate that in this defined culture medium a 1.25 % human serum component sufficiently replaces fetal bovine serum. This method allows for isolation of a morphologically and phenotypically uniform population of DPSCs from dental pulp tissue. DPSCs represent a rapidly proliferating cell population that readily differentiates into the osteoblastic, neuronal, myocytic, and hepatocytic lineages. This multilineage capacity of these DPSCs suggests that they may have a more broad therapeutic application than lineage-restricted adult stem cell populations such as mesenchymal stem cells. Further the culture protocol presented here makes these cells more amenable to human application than current expansion techniques for other pluripotent stem cells (embryonic stem cell lines or induced pluripotent stem cells).
Collapse
|
19
|
Goudouri O, Theodosoglou E, Kontonasaki E, Will J, Chrissafis K, Koidis P, Paraskevopoulos K, Boccaccini A. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. MATERIALS RESEARCH BULLETIN 2014; 49:399-404. [DOI: 10.1016/j.materresbull.2013.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Keller L, Kuchler‐Bopp S, Lesot H. Whole‐Tooth Engineering and Cell Sources. STEM CELLS IN CRANIOFACIAL DEVELOPMENT AND REGENERATION 2013:431-446. [DOI: 10.1002/9781118498026.ch24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Angelova Volponi A, Kawasaki M, Sharpe PT. Adult human gingival epithelial cells as a source for whole-tooth bioengineering. J Dent Res 2013; 92:329-34. [PMID: 23458883 DOI: 10.1177/0022034513481041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin.
Collapse
Affiliation(s)
- A Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Tower Wing Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | |
Collapse
|
22
|
Tai YY, Chen RS, Lin Y, Ling TY, Chen MH. FGF-9 accelerates epithelial invagination for ectodermal organogenesis in real time bioengineered organ manipulation. Cell Commun Signal 2012; 10:34. [PMID: 23176204 PMCID: PMC3515343 DOI: 10.1186/1478-811x-10-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023] Open
Abstract
Background Epithelial invagination is important for initiation of ectodermal organogenesis. Although many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. Electric cell-substrate impedance sensing (ECIS), a non-invasive, real-time surveillance system, had been used to detect changes in organ cell layer thickness through quantitative monitoring of the impedance of a cell-to-microelectrode interface over time. It was shown to be a good method for identifying significant real-time changes of cells. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9) on epithelial invagination in bioengineered ectodermal organs. We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model. Results Measurement of bioengineered ectodermal organ thickness showed that Fibroblast growth factor-9 (FGF-9) accelerates epithelial invagination in reaggregated mesenchymal cell layer within 3 days. Gene expression analysis revealed that FGF-9 stimulates and sustains early Ameloblastin and Amelogenin expression during odontogenesis. Conclusions This is the first real-time study to show that, FGF-9 plays an important role in epithelial invagination and initiates ectodermal organogenesis. Based on these findings, we suggest FGF-9 can be applied for further study in ectodermal organ regeneration, and we also proposed that the ‘FGF-BMP balancing system’ is important for manipulating the morphogenesis of ectodermal organs. The combined bioengineered organ-ECIS model is a promising method for ectodermal organ engineering and regeneration research.
Collapse
Affiliation(s)
- Yun-Yuan Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, 10002, Taiwan.
| | | | | | | | | |
Collapse
|
23
|
Ferro F, Spelat R, D'Aurizio F, Puppato E, Pandolfi M, Beltrami AP, Cesselli D, Falini G, Beltrami CA, Curcio F. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One 2012; 7:e41774. [PMID: 22844522 PMCID: PMC3402417 DOI: 10.1371/journal.pone.0041774] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/25/2012] [Indexed: 01/09/2023] Open
Abstract
Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES) pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC). A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A). Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Leone A, Volponi AA, Renton T, Sharpe PT. In-vitro regulation of odontogenic gene expression in human embryonic tooth cells and SHED cells. Cell Tissue Res 2012; 348:465-73. [PMID: 22427065 DOI: 10.1007/s00441-012-1379-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/13/2012] [Indexed: 01/09/2023]
Abstract
The bud-to-cap stage transition during early tooth development is a time when the tooth-inducing potential becomes restricted to the mesenchyme. Several key genes, expressed in the mesenchyme at this stage, are an absolute requirement for the progression of tooth development. These include the transcription factors Msx1 and Pax9. The inductive potential of tooth mesenchyme cells is a key requisite for whole-tooth bioengineering and thus identification of cells that can retain this property following expansion in culture is an important as yet unresolved, goal. We show here that in-vitro culture of embryonic human tooth mesenchyme cells and SHED cells express low levels of PAX9 and MSX1 and that these levels can be significantly upregulated by activation of different signalling pathways. Such in-vitro manipulation may thus offer a simple way of maintaining/restoring/inducing the odontogenic-inducing capacity in mesenchymal cells.
Collapse
Affiliation(s)
- Angelo Leone
- BioNec, Section of Histology and Embryology, Faculty of Medicine, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
25
|
Modolo F, Biz MT, de Sousa SM, Fachinelli RDL, Crema VO. Immunohistochemical expression of Rho GTPases in ameloblastomas. J Oral Pathol Med 2011; 41:400-7. [PMID: 22092654 DOI: 10.1111/j.1600-0714.2011.01108.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rho GTPases are proteins that regulate cell cycle, shape, polarization, invasion, migration, and apoptosis, which are important characteristics of normal and neoplastic cells. Rho GTPases expression has been reported in normal tooth germ and several pathologies; however, it has not been evaluated in ameloblastomas. The aim of this study was to analyze the expression and distribution of RhoA, RhoB, Rac1, and Cdc42 Rho GTPases in solid and unicystic ameloblastomas. Three-micrometer sections from paraffin-embedded specimens were evaluated by using an avidin-biotin immunohistochemical method with antibodies against the proteins mentioned above. RhoA and RhoB staining was observed in a high number of cells (P < 0.05) and greater intensity in non-polarized ones. Rac1 was not observed, and Cdc42 did not show any statistical differences between the number of non-polarized and basal positive cells (P > 0.05). Upon comparing the studied ameloblastomas, a higher number of positive cells in the unicystic variant was observed than that in the solid one (P < 0,05). The results obtained suggest that these GTPases could play a role in the ameloblastoma neoplastic epithelial cell phenotype determination (polarized or non-polarized), as well as in variant (solid or unicystic) and subtype (follicular or plexiform) determination. Furthermore, they could participate in solid ameloblastoma invasion mechanisms.
Collapse
Affiliation(s)
- Filipe Modolo
- Pathology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | | | | | | |
Collapse
|
26
|
Dentinogenic capacity: immature root papilla stem cells versus mature root pulp stem cells. Biol Cell 2011; 103:185-96. [PMID: 21323645 DOI: 10.1042/bc20100134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND INFORMATION Immature dental papilla stem cells and mature dental pulp stem cells are capable of performing the dentinogenesis under suitable circumstances. However, a dentinogenic comparison between immature and mature dental root stem cells remains unknown. RESULTS iRPSCs (immature root papilla stem cells) at the root-forming stage and mRPSCs (mature root pulp stem cells) at the root-completed stage were isolated from 16-day-old and 8-week-old rat first molar roots, respectively. Growth kinetics and flow cytometry results showed that iRPSCs presented more active proliferation properties than mRPSCs. Their odontoblastic differentiation and dentinogenic potential were subsequently compared both in vitro and in vivo. iRPSCs exhibited a more potent odontoblastic differentiation than mRPSCs in vitro, as indicated by the higher levels of gene expression for dentin sialophosphoprotein and ALP (alkaline phosphatase), increased protein expression of dentin sialoprotein and runt-related transcription factor 2, decreased gene/protein expression for osterix/osteocalcin (osteogenic markers), elevated ALP activity and enhanced calcium deposition in the mineralization-inducing media. Allotransplantation results demonstrated that all iRPSCs pellets in vivo performed typical dentinogenesis, whereas mRPSCs pellets mainly produced bone-like tissues. CONCLUSION iRPSCs presented stronger dentinogenesis but weaker osteogenesis than did mRPSCs, suggesting that the dentinogenic competence of root mesenchymal stem cells decreases, whereas their osteogenic potential the increases following the maturation of the tooth root.
Collapse
|
27
|
Ferro F, Spelat R, Falini G, Gallelli A, D'Aurizio F, Puppato E, Pandolfi M, Beltrami AP, Cesselli D, Beltrami CA, Ambesi-Impiombato FS, Curcio F. Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2299-310. [PMID: 21514442 PMCID: PMC3081158 DOI: 10.1016/j.ajpath.2011.01.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 01/09/2023]
Abstract
Tooth morphogenesis requires sequential and reciprocal interactions between the cranial neural crest-derived mesenchymal cells and the stomadial epithelium, which regulate tooth morphogenesis and differentiation. We show how mesenchyme-derived single stem cell populations can be induced to transdifferentiate in vitro in a structure similar to a dental bud. The presence of stem cells in the adipose tissue has been previously reported. We incubated primary cultures of human adipose tissue-derived stem cells in a dental-inducing medium and cultured the aggregates in three-dimensional conditions. Four weeks later, cells formed a three-dimensional organized structure similar to a dental bud. Expression of dental tissue-related markers was tested assaying lineage-specific mRNA and proteins by RT-PCR, immunoblot, IHC, and physical-chemical analysis. In the induction medium, cells were positive for ameloblastic and odontoblastic markers as both mRNAs and proteins. Also, cells expressed epithelial, mesenchymal, and basement membrane markers with a positional relationship similar to the physiologic dental morphogenesis. Physical-chemical analysis revealed 200-nm and 50-nm oriented hydroxyapatite crystals as displayed in vivo by enamel and dentin, respectively. In conclusion, we show that adipose tissue-derived stem cells in vitro can transdifferentiate to produce a specific three-dimensional organization and phenotype resembling a dental bud even in the absence of structural matrix or scaffold to guide the developmental process.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Renza Spelat
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Giuseppe Falini
- Department of Chemistry “G. Ciamican,” Alma Mater Studiorum University of Bologna, via Selmi, Bologna, Italy
| | | | | | - Elisa Puppato
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | - Maura Pandolfi
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | | | - Daniela Cesselli
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | | | | | - Francesco Curcio
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| |
Collapse
|
28
|
Nait Lechguer A, Couble ML, Labert N, Kuchler-Bopp S, Keller L, Magloire H, Bleicher F, Lesot H. Cell differentiation and matrix organization in engineered teeth. J Dent Res 2011; 90:583-9. [PMID: 21297012 DOI: 10.1177/0022034510391796] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering. Implantation of cultured cell-cell re-associations led to crown morphogenesis, epithelial histogenesis, organ vascularization, and root and periodontium development. The present work aimed to investigate the organization of predentin/dentin, enamel, and cementum which formed and mineralized after implantation. These implants were processed for histology, transmission electron microscopy, x-ray microanalysis, and electron diffraction. After two weeks of implantation, the re-associations showed gradients of differentiating odontoblasts. There were ciliated, polarized, and extended cell processes in predentin/dentin. Ameloblasts became functional. Enamel crystals showed a typical oriented arrangement in the inner and outer enamel. In the developing root, odontoblasts differentiated, cementogenesis occurred, and periodontal ligament fibroblasts interacted with the root surface and newly formed bone. The implantation of cultured dental cell re-associations allows for reproduction of complete functional differentiation at the cell, matrix, and mineral levels.
Collapse
Affiliation(s)
- A Nait Lechguer
- INSERM UMR 977, Faculté de Médecine, 11, rue Humann, F-67085 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 2010; 20:715-22. [PMID: 21035344 PMCID: PMC3000521 DOI: 10.1016/j.tcb.2010.09.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/18/2022]
Abstract
Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease.
Collapse
Affiliation(s)
- Ana Angelova Volponi
- Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
| | - Yvonne Pang
- Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
- Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Paul T. Sharpe
- Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
| |
Collapse
|
30
|
Honda MJ, Tsuchiya S, Shinohara Y, Shinmura Y, Sumita Y. Recent advances in engineering of tooth and tooth structures using postnatal dental cells. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2009.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
31
|
Nait Lechguer A, Kuchler-Bopp S, Lesot H. Crown formation during tooth development and tissue engineering. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:399-407. [PMID: 19132735 DOI: 10.1002/jez.b.21256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Considering tooth crown engineering, three main parameters have to be taken into account: (1) the relationship between crown morphology and tooth functionality, (2) the growth of the organ, which is hardly compatible with the use of preformed scaffolds, and (3) the need for easily available nondental competent cell sources. In vitro reassociation experiments using either dental tissues or bone marrow-derived cells (BMDC) have been designed to get information about the mechanisms to be preserved in order to allow crown engineering. As the primary enamel knot (PEK) is involved in signaling crown morphogenesis, the formation and fate of this structure was investigated (1) in heterotopic reassociations between embryonic day 14 (ED14) incisor and molar enamel organs and mesenchymes, and (2) in reassociations between ED14 molar enamel organs and BMDC. A PEK formed in cultured heterotopic dental tissue reassociations. The mesenchyme controls the fate of the EK cells, incisor or molar-specific using apoptosis as criterion, and functionality to drive single/multiple cusps tooth development. Although previous investigations showed that they might differentiate as odontoblast- or ameloblast-like cells, BMDC reassociated to an enamel organ could not support the development of multicusp teeth. These cells apparently could neither maintain nor stimulate the formation of a PEK.
Collapse
|
32
|
Nait Lechguer A, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H. Vascularization of engineered teeth. J Dent Res 2008; 87:1138-1143. [PMID: 19029082 DOI: 10.1177/154405910808701216] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The implantation of cultured dental cell-cell re-associations allows for the reproduction of fully formed teeth, crown morphogenesis, epithelial histogenesis, mineralized dentin and enamel deposition, and root-periodontium development. Since vascularization is critical for organogenesis and tissue engineering, this work aimed to study: (a) blood vessel formation during tooth development, (b) the fate of blood vessels in cultured teeth and re-associations, and (c) vascularization after in vivo implantation. Ex vivo, blood vessels developed in the dental mesenchyme from the cap to bell stages and in the enamel organ, shortly before ameloblast differentiation. In cultured teeth and re-associations, blood-vessel-like structures remained in the peridental mesenchyme, but never developed into dental tissues. After implantation, both teeth and re-associations became revascularized, although later in the case of the re-associations. In implanted re-associations, newly formed blood vessels originated from the host, allowing for their survival, and affording conditions organ growth, mineralization, and enamel secretion.
Collapse
Affiliation(s)
- A Nait Lechguer
- INSERM UMR 595, Faculté de Médecine, 11, rue Humann, 67085 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
33
|
Ikeda E, Tsuji T. Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther 2008; 8:735-44. [PMID: 18476785 DOI: 10.1517/14712598.8.6.735] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs that can replace organs lost or damaged due to disease, injury or aging. Dental regenerative medicine has made the most progress and is the most useful model for the consideration of strategies in future organ replacement therapies. OBJECTIVE This review describes strategies that have been pursued to date and experiments currently being conducted to bioengineer teeth in anticipation of the production of fully functional organs. METHODS To realize the practical application of 'bioengineered tooth' transplantation therapy, four major hurdles must be overcome. The present status of the hurdles to this therapy are described and discussed in this review. RESULTS/CONCLUSION The bioengineering techniques developed for tooth regeneration will in the future make substantial contributions to the ability to grow primordial organs in vitro and also to grow fully functioning organs, such as the liver, kidney and heart.
Collapse
Affiliation(s)
- Etsuko Ikeda
- Faculty of Industrial Science and Technology Tokyo University of Science, Department of Biological Science and Technology, Noda, Chiba 278-8510, Japan
| | | |
Collapse
|
34
|
Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:307-19. [PMID: 18665759 DOI: 10.1089/ten.teb.2008.0165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Junnan Shi
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of Oral Histology & Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
35
|
Nakao K, Tsuji T. Dental regenerative therapy: Stem cell transplantation and bioengineered tooth replacement. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2007.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
36
|
Nakao K, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan, Tsuji T, Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. Tooth Regenerative Therapy, Approached from Organogenesis. JOURNAL OF ROBOTICS AND MECHATRONICS 2007; 19:506-511. [DOI: 10.20965/jrm.2007.p0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Regenerative medicine is expected to be a novel therapeutic system in this century [1-3]. The human body consists of 200 cell species generated from immature stem cells. In the 1990s, a treatment transplanting hematopoietic stem cells to replace all blood cells was established and successfully cured leukemia [4]. With this as a model, stem cell transplantation therapy is being developed to restore the partial loss of organ function [5, 6]. The ultimate goal of regenerative medicine is to replace loss or damaged organs with artificial organs, so-called organ replacement therapy. Technical development to produce “tissues” made of a single cell species modeled on skin, bone, heart muscle, and cornea is advancing, but little development of organs per se has been attempted. In the sections that follow, we discuss why and explain how we are trying with the problems of “tooth regeneration.”
Collapse
|
37
|
Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2007; 331:359-72. [PMID: 17938970 DOI: 10.1007/s00441-007-0467-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/04/2007] [Indexed: 01/09/2023]
Abstract
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Department of Craniofacial Development, Dental Institute, Guy's Hospital, Kings College London, London Bridge, London, SE1 9RT, UK
| | | |
Collapse
|
38
|
Nakashima M. Tissue Engineering of Teeth. HANDBOOK OF BIOMINERALIZATION 2007:265-282. [DOI: 10.1002/9783527619443.ch61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
(Tony) Smith AJ, Sharpe PT. Biological Tooth Replacement and Repair. PRINCIPLES OF TISSUE ENGINEERING 2007:1067-1077. [DOI: 10.1016/b978-012370615-7/50074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J, Zhang Y, Chen Y. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 2006; 235:1334-44. [PMID: 16628661 DOI: 10.1002/dvdy.20706] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) has recently become a powerful tool to silence gene expression in mammalian cells, but its application in assessing gene function in mammalian developing organs remains highly limited. Here we describe several unique developmental properties of the mouse molar germ. Embryonic molar mesenchyme, but not the incisor mesenchyme, once dissociated into single cell suspension and re-aggregated, retains its odontogenic potential, the capability of a tissue to instruct an adjacent tissue to initiate tooth formation. Dissociated molar mesenchymal cells, even after being plated in cell culture, retain odontogenic competence, the capability of a tissue to respond to odontogenic signals and to support tooth formation. Most interestingly, while dissociated epithelial and mesenchymal cells of molar tooth germ are mixed and re-aggregated, the epithelial cells are able to sort out from the mesenchymal cells and organize into a well-defined dental epithelial structure, leading to the formation of a well-differentiated tooth organ after sub-renal culture. These unique molar developmental properties allow us to develop a strategy using a lentivirus-mediated RNAi approach to silence gene expression in dental mesenchymal cells and assess gene function in tooth development. We show that knockdown of Msx1 or Dlx2 expression in the dental mesenchyme faithfully recapitulates the tooth phenotype of their targeted mutant mice. Silencing of Barx1 expression in the dental mesenchyme causes an arrest of tooth development at the bud stage, demonstrating a crucial role for Barx1 in tooth formation. Our studies have established a reliable and rapid assay that would permit large-scale analysis of gene function in mammalian tooth development.
Collapse
Affiliation(s)
- Yiqiang Song
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 2006; 13:611-20. [PMID: 16319946 DOI: 10.1038/sj.gt.3302687] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Odontoblasts are postmitotic cells that differentiate from the dental papilla. These cells are responsible for producing the calcified dentin matrix. The pulp-odontoblast interphase contains undifferentiated mesenchymal stem cells, which have the ability to cytodifferentiate into odontoblast-like cells in response to specific signaling molecules. Dentin matrix protein 1 (DMP1) is one of the dentin noncollagenous extracellular matrix proteins that has been implicated in regulation of mineralization. In this study, we have examined the potential role of DMP1 in inducing cytodifferentiation of dental pulp stem cells into odontoblast-like cells and formation of reparative dentin in a rat model. Cavities were drilled and pulps exposed in maxillary first molars. Collagen matrix impregnated with recombinant DMP1 was implanted directly in Group 1, while calcium hydroxide, a commonly used pulp-capping agent was implanted in group 2, collagen matrix that was not impregnated with rDMP1 was implanted directly in group 3, which served as control. Each of these three groups was subdivided into two subgroups, A for 2 weeks time duration and B for 4 weeks duration. At the end of the time period the maxillae were excised, tissues were processed for histological and immunohistochemical evaluations. The results showed that DMP1 could act as a morphogen on undifferentiated mesenchymal cells present in the dentin-pulp complex. These differentiated cells had the potential to regenerate dentin-like tissue, which was confirmed by the presence of collagenous matrix, odontoblast specific markers and calcified deposits.
Collapse
Affiliation(s)
- A Almushayt
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
42
|
Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. TISSUE ENGINEERING 2006; 12:2069-2075. [PMID: 16968149 DOI: 10.1089/ten.2006.12.2069] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue engineering of teeth requires the coordinated formation of correctly shaped crowns, roots, and periodontal ligament. Previous studies have shown that the dental mesenchyme controls crown morphogenesis and epithelial histogenesis during tooth development in vivo, but little is known about the inductive potential of dissociated mesenchymal cells used in ex vivo cultures. A 2-step method is described in which, by using different types of reassociations between epithelial and mesenchymal tissues and/or cells from mouse embryos, reassociations were cultured in vitro before in vivo implantation. In vitro, the reassociated tissues developed and resulted in tooth-like structures that exhibited normal epithelial histogenesis and allowed the functional differentiation of odontoblasts and ameloblasts. After implantation, the reassociations formed roots and periodontal ligament, the latter connected to developing bone. The shape of the crown, initially suspected to depend on the integrity of the mesenchyme, could be modulated by adjusting the number of dissociated mesenchymal cells reassociated with the epithelial compartment. Based on these results, we propose a refined strategy for tooth tissue engineering that may help to eventually generate morphologically defined teeth.
Collapse
Affiliation(s)
- Bing Hu
- Institut National de la Santé et de la Recherche Médicale, UMR S595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
43
|
Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006; 346:116-24. [PMID: 16750168 DOI: 10.1016/j.bbrc.2006.05.096] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 05/14/2006] [Indexed: 11/23/2022]
Abstract
We isolated dental papilla mesenchymal cells (DPMCs) from different rat incisor germs at the late bell stage and incubated them as cell pellets in polypropylene tubes. In vitro pellet culture of DPMCs presented several crucial characteristics of odontoblasts, as indicated by accelerated mineralization, positive immunostaining for dentin sialophosphoprotein and dentin matrix protein 1, and expression of dentin sialophosphoprotein mRNA. The allotransplantation of these pellets into renal capsules was also performed. Despite the absence of dental epithelial components, dissociated DPMCs with a complete loss of positional information rapidly underwent dentinogenesis and morphogenesis, and formed a cusp-like dentin-pulp complex containing distinctive odontoblasts, predentin, dentin, and dentinal tubules. These results imply that DPMCs at the late bell stage can reexhibit the dental morphogenesis and dentinogenesis by themselves, and epithelial-mesenchymal interactions at this stage may not be indispensable. Furthermore, different DPMC populations from the similar stage may keep the same developmental pattern.
Collapse
Affiliation(s)
- Jin-Hua Yu
- Department of Endodontics, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Yen AHH, Sharpe PT. Regeneration of teeth using stem cell-based tissue engineering. Expert Opin Biol Ther 2006; 6:9-16. [PMID: 16370910 DOI: 10.1517/14712598.6.1.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tooth autotransplantation, allotransplantation and dental implants have existed for many years, but have never been totally satisfactory. Thus, the development of new methods of tooth replacement has become desirable, and with the increasing knowledge of stem cell biology becomes a realistic possibility. Stem cell-based tissue engineering involving the recapitulation of the embryonic environment demonstrates that dental, non-dental, embryonic and adult stem cells can contribute to teeth formation in the appropriate setting. Evidence that stem cell populations may be present in human teeth provides the opportunity to consider biological tooth replacement 'new for old'.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Dental Institute, Department of Craniofacial Development, Odontis Ltd, Kings College London, Guy's Hospital, London Bridge, SE1 9RT, UK
| | | |
Collapse
|
45
|
Hu B, Nadiri A, Bopp-Küchler S, Perrin-Schmitt F, Lesot H. Dental Epithelial Histomorphogenesis in vitro. J Dent Res 2005; 84:521-525. [PMID: 15914588 DOI: 10.1177/154405910508400607] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent developments in tooth-tissue engineering require that we understand the regulatory processes to be preserved to achieve histomorphogenesis and cell differentiation, especially for enamel tissue engineering. Using mouse first lower molars, our objectives were: (1) to determine whether the cap-stage dental mesenchyme can control dental epithelial histogenesis, (2) to test the role of the primary enamel knot (PEK) in specifying the potentialities of the dental mesenchyme, and (3) to evaluate the importance of positional information in epithelial cells. After tissue dissociation, the dental epithelium was further dissociated into individual cells, re-associated with dental mesenchyme, and cultured. Epithelial cells showed a high plasticity: Despite a complete loss of positional information, they rapidly underwent typical dental epithelial histogenesis. This was stimulated by the mesenchyme. Experiments performed at E13 demonstrated that the initial potentialities of the mesenchyme are not specified by the PEK. Positional information of dental epithelial cells does not require the memorization of their history.
Collapse
Affiliation(s)
- B Hu
- UMR INSERM 595, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|