1
|
Curvelo JADR, Barreto ALS, Bayona-Pacheco BL, de Moraes DC, Portela MB, Ferreira-Pereira A, Adade CM, Souto-Padrón T, Soares RMDA. Salivary proteins modulate Candida albicans virulence and may prevent oropharingeal candidiasis. Braz J Microbiol 2024:10.1007/s42770-024-01517-5. [PMID: 39320637 DOI: 10.1007/s42770-024-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Oral candidiasis can be presented in different ways due to the virulence factors of its etiology such as Candida albicans that have developed an effective set of these factors that are able to improve its pathogenesis. The role of salivary immunological components in the development of candidiasis can provide insights for the development of new methodologies aiming to control this disease. The aim of this study was to evaluate the antifungal activity of two salivary components, histatin 5 and lactoferrin on C. albicans viability and virulence using a fluconazole resistant C. albicans clinical strain. Results showed that histatin 5 and lactoferrin decreased cell viability, and the cell surface hydrophobicity was increased by 18% in presence of 151 µg/mL of histatin 5 but was not altered by lactoferrin. It was observed the reduction of 69.3% in the expression of mannoproteins on C. albicans surface in the presence of 151 µg/mL of histatin, but proteolytic activity of serine proteinases was not inhibited by any of the proteins. Histatin 5 altered cell ultrastructure predominantly in the cytoplasmic compartment. However, this peptide does not interfere with mitochondrial function neither in membrane permeability of the yeasts. The association index between C. albicans and epithelial cells was increased by 51% in presence of 151 µg/mL of histatin. Results suggest that histatin 5 and lactoferrin affects viability and virulence of C. albicans at physiological levels, and the maintenance of these levels may be essential in the prevention of oropharyngeal candidiasis. Exogenous administration of these proteins may become a therapeutic alternative for resistant strains of C. albicans, circumventing toxicity issues, considering their constitutive features.
Collapse
Affiliation(s)
| | - Anna Lea Silva Barreto
- Grande Área Ciências Biológicas e da Saúde, Centro Universitário IBMR, Rio de Janeiro, Brazil.
| | - Brayan Leonardo Bayona-Pacheco
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, via Puerto Colombia, Área Metropolitana de Barranquilla, 081007, Colombia
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maristela Barbosa Portela
- Faculdade de Odontologia, Centro de Ciências Médicas, Universidade Federal Fluminense, Niterói, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Marques Adade
- NanoOnco3D, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | - Thaïs Souto-Padrón
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosangela Maria de Araújo Soares
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hung CCU, Costa RC, Pereira G, Abdo VL, Noronha MDS, Retamal-Valdes B, Bertolini M, Feres M, Shibli JA, Barão VAR, Souza JGS. Oral microbial colonization on titanium and polyetheretherketone dental implant healing abutments: An in vitro and in vivo study. J Prosthet Dent 2023:S0022-3913(23)00538-3. [PMID: 37716897 DOI: 10.1016/j.prosdent.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
STATEMENT OF PROBLEM Although polyetheretherketone (PEEK) implant healing abutments have become popular because of their esthetic, mechanical, and chemical properties, studies analyzing oral polymicrobial adhesion to PEEK abutments are lacking. PURPOSE The purpose of this in vitro and in vivo study was to evaluate oral microbial adhesion and colonization on titanium (Ti) and PEEK healing abutments. MATERIAL AND METHODS Ti (N=35) and PEEK substrates (N=35) were evaluated in vitro in terms of the initial adhesion (1 hour) or biofilm accumulation (48 hours) of Candida albicans and a polymicrobial inoculum using stimulated human saliva to mimic a diverse oral microbiome. Surface decontamination ability was evaluated after 24 hours of in vitro biofilm formation after exposure to an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Conventional and flowable composite resin veneering on PEEK was also tested for microbial adhesion. In addition, an in vivo model with 3 healthy volunteers was conducted by using a palatal appliance containing the tested materials (3 or 4 specimens of each material per appliance) for 2 days to evaluate the effect of substrate on the microbial profile. Biofilms were evaluated by live cell counts and scanning electron microscopy images, and the microbial profile by Checkerboard deoxyribonucleic acid (DNA)-DNA hybridization. The t test and Mann-Whitney test were used to compare the groups (α=.05). RESULTS PEEK and Ti materials showed similar fungal adhesion (P>.05). Although the PEEK surface limited the initial in vitro polymicrobial adhesion (approximately 2 times less) compared with Ti (P=.040), after 48 hours of biofilm accumulation, the microbial load was statistically similar (P=.209). Er:YAG laser decontamination was more effective on PEEK than on Ti surfaces, reducing approximately 11 times more microbial accumulation (P=.019). Both composite resins tested showed similar microbial adhesion (1 hour). In vivo, the PEEK material showed reduced levels of 6 bacterial species (P<.05), including the putative pathogen Treponema denticola. CONCLUSIONS Although PEEK and Ti had similar bacterial and fungus biofilm attachment and accumulation, PEEK promoted a host-compatible microbial profile with a significantly reduced T. denticola load.
Collapse
Affiliation(s)
- Celeste Cecilia Urdaniga Hung
- PhD student, Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Raphael Cavalcante Costa
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Gabriele Pereira
- Graduate student, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Victória Lopes Abdo
- PhD student, Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Mayara do Santos Noronha
- Postdoctoral Fellow, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Belén Retamal-Valdes
- Professor, Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Martinna Bertolini
- Professor, Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Magda Feres
- Chair, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Mass
| | - Jamil Awad Shibli
- Professor, Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Valentim A R Barão
- Associate Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Gabriel Silva Souza
- Professor, Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil; and Professor, Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, Brazil..
| |
Collapse
|
4
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
5
|
Bachtiar BM, Fath T, Widowati R, Bachtiar EW. Quantification and Pathogenicity of Candida albicans in Denture-Wearing and Nondenture-Wearing Elderly. Eur J Dent 2020; 14:423-428. [PMID: 32542630 PMCID: PMC7440952 DOI: 10.1055/s-0040-1712779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective
The primary purpose of this study was to evaluate and compare the microbial loads and pathogenicity traits of oral
Candida albicans
in denture-wearing (DW;
n
= 15) and nondenture-wearing (NDW;
n
= 15) elderly persons.
Materials and Methods
The fungal counts of the saliva, tongue dorsa, and prosthesis-fitting surfaces of the participants were assessed using real-time polymerase chain reaction to compare the quantity and expression of selected
C. albicans
biofilm-associated genes (
ALS3
,
HWP1
, and
YWP1
).
Statistical Analysis
The obtained data were analyzed by one-way analysis of variance, followed by Bartlett’s test. When appropriate, the Student’s
t
-test was also used; a value of
p
< 0.05 was considered statistically significant.
Results
In both groups, the count of
C. albicans
was found to be significantly higher in saliva than in other oral samples. The expression of the hypha-specific genes (
ALS3
and
HWP1
) in the tongue dorsa was higher in the DW group (
p
< 0.05), whereas the transcription level of the yeast-specific gene (
YWP1)
was significantly higher in the NDW group.
Conclusion
Both tongue dorsa and dentures appear to be sharing factors that are important for
C. albicans
biofilm growth in abiotic and biotic oral surfaces of the elderly.
Collapse
Affiliation(s)
- Boy M Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Turmidzi Fath
- Department of Biology, Graduate School, Universitas Nasional, South Jakarta, Indonesia
| | - Retno Widowati
- Department of Biology, Graduate School, Universitas Nasional, South Jakarta, Indonesia
| | - Endang W Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
6
|
Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int J Mol Sci 2019; 20:E2345. [PMID: 31083555 PMCID: PMC6539081 DOI: 10.3390/ijms20092345] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
7
|
Ghazal ARA, Idris G, Hajeer MY, Alawer K, Cannon RD. Efficacy of removing Candida albicans from orthodontic acrylic bases: an in vitro study. BMC Oral Health 2019; 19:71. [PMID: 31046747 PMCID: PMC6498590 DOI: 10.1186/s12903-019-0765-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/15/2019] [Indexed: 12/23/2022] Open
Abstract
Background This study evaluated the efficacy of four methods in removing Candida albicans from the acrylic base material used to fabricate removable orthodontic appliances. Methods Heat-processed bars of orthodontic acrylic were incubated in a suspension of C. albicans for 2 h at 37 °C. Samples were allocated into five groups (five bars per group) according to the cleaning method: (1) manual brushing using a toothbrush; (2) soaking in a commercial denture cleaning solution; (3) soaking in a commercial mouthwash solution; (4) using an ultrasonic cleaner; and (5) soaking in distilled water as a negative control. Yeast remaining attached to the bars after cleaning were removed by vortexing in growth medium and plated on Sabouraud dextrose agar. The reduction in yeast colony count after cleaning was calculated and expressed as the number of colony forming units per acrylic bar (CFU/bar). The experiment was carried out three times. Results All four cleaning methods resulted in a significant decrease in viable yeast cells associated with the acrylic bars compared to the control group. The mean percentage reduction in viable yeast cells affected by the cleaning methods was: brushing 89.9%; chlorhexidine 95.8%; ultrasonic cleaning 99.9%; and denture tablet 100%. Conclusions All four methods evaluated in this study were effective, to some extent, in removing C. albicans from orthodontic acrylic samples. The most effective, and readily available, cleaning method was the use of commercial denture sterilizing tablets.
Collapse
Affiliation(s)
| | - Ghassan Idris
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Mohammad Y Hajeer
- Department of Orthodontics, University of Damascus Dental School, Damascus, Syria
| | - Karam Alawer
- Research microbiology Laboratory, Hama University, Hama, Syria
| | - Richard D Cannon
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Norris HL, Friedman J, Chen Z, Puri S, Wilding G, Edgerton M. Salivary metals, age, and gender correlate with cultivable oral Candida carriage levels. J Oral Microbiol 2018; 10:1447216. [PMID: 29686781 PMCID: PMC5907636 DOI: 10.1080/20002297.2018.1447216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Little is known about the normal range of metal levels in unstimulated saliva, nor whether these might impact Candida carriage in healthy individuals. Both are important in determining which populations are at risk for candidiasis, as the availability of metal ions can influence the growth and pathogenesis of Candida albicans. Objective: We quantified salivary metals of healthy individuals to determine the correlation with C. albicans oral colonization. Design: Unstimulated whole saliva was collected from healthy adults and plated to determine fungal carriage, and metal content was measured using ICP-mass spectrometry (ICP-MS). Results: Zinc was most abundant, followed by iron, copper, manganese, and nickel. Cultivable oral Candida carriage was found in 48% of people. Total protein levels did not differ in salivas from donors with or without carriage. However, innate fungicidal activity was increased in donors with carriage; correlations between levels of several metals were stronger in salivas with fungal carriage, indicating a shift in the oral environment. Concentrations of copper and manganese, as well as age and gender, were significantly predictive of carriage levels in a multiple regression model. Conclusions: Salivary copper and manganese content along with age and gender could be used as a predictive metric for individuals that are more susceptible to Candida overgrowth.
Collapse
Affiliation(s)
- Hannah L Norris
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Justin Friedman
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Ziqiang Chen
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Sumant Puri
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA.,Department of Pediatric Dentistry and Community Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Gregory Wilding
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
van der Wielen PA, Holmes AR, Cannon RD. Secretory component mediates Candida albicans binding to epithelial cells. Oral Dis 2017; 22:69-74. [PMID: 26577981 DOI: 10.1111/odi.12397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Candida albicans attaches to oral surfaces via a number of mechanisms including adherence mediated by salivary components adsorbed to the C. albicans cell surface. Our goal was to identify the salivary molecules involved. MATERIALS AND METHODS Biotinylated salivary polypeptides that were bound by C. albicans were detected in extracts from washed, saliva-treated yeast cells by polyacrylamide gel electrophoresis and electroblot or immunoblot transfer analysis and purified by electroelution. Purified material was tested for the ability to promote the adherence of radiolabelled C. albicans yeast cells to cultured epithelial monolayers. RESULTS Three of the polypeptides bound by C. albicans cells were identified as components of secretory IgA, including secretory component. Using non-denaturing polyacrylamide gel electrophoresis, we demonstrated that secretory component could be detected in its free form in saliva, and was bound by yeast cells. Secretory component which was purified by electroelution from non-denaturing PAGE-separated saliva, without detectable complete IgA, promoted adherence of yeast cells to cultured epithelial monolayers in a dose-dependent fashion. CONCLUSION These results indicate that despite the inhibitory effect on adherence of IgA specific to C. albicans, IgA components, in particular secretory component, also promote binding to cultured epithelial monolayers.
Collapse
Affiliation(s)
- P A van der Wielen
- Sir John Walsh Research Institute, University of Otago Faculty of Dentistry, Dunedin, New Zealand
| | - A R Holmes
- Sir John Walsh Research Institute, University of Otago Faculty of Dentistry, Dunedin, New Zealand
| | - R D Cannon
- Sir John Walsh Research Institute, University of Otago Faculty of Dentistry, Dunedin, New Zealand
| |
Collapse
|
10
|
Sadeghi Ardestani Z, Falahati M, Sayah Alborzi S, Ashrafi Khozani M, Rostam Khani F, Bahador A. The effect of nanochitosans particles on Candida biofilm formation. Curr Med Mycol 2016; 2:28-33. [PMID: 28681017 PMCID: PMC5490302 DOI: 10.18869/acadpub.cmm.2.2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose: In people wearing dentures, the growth of various Candida species under the prosthesis leads to the formation of biofilm, which can play the role of a reservoir for Candida and other kinds of microbes. Since nano-chitosan particles can cause lasting antimicrobial activity, a more recent approach that utilizes acrylic resins with nano-chitosan particles is proposed. Therefore, we aimed to study the inhibitory effect of nano-chitosan particles on the biofilm formation of Candida species in acrylic resins. Materials and Methods: In this analytical in-vitro study, acrylic resins with nano-chitosan particles with concentrations of 0, 1%, 5%, and %10 were put adjacent to the suspension of Candida cells isolated from the individuals’ mouth and biofilm formation on resins was measured and compared. Finally, the data were analyzed using Kruskal-Wallis and Chi-square tests. Results: The observed differences between unmodified acrylic resin (control) and acrylic resin with nano-chitosan particles in terms of biofilm formation were significant (P<0.05) but no significant difference was found in the formation of biofilm species on resins. Conclusion: Biofilm formation of Candida species depends on acrylic resin type, in a way that by adding nano-chitosan particles to acrylic resins, biofilm formation of Candida species was significantly reduced. To decrease the organization of biofilm and denture stomatitis, the use of acrylics with nano-chitosan particles in producing dentures is recommended.
Collapse
Affiliation(s)
- Z Sadeghi Ardestani
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Falahati
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Sayah Alborzi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Ashrafi Khozani
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - F Rostam Khani
- Department of Prosthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 2016; 54:149-69. [DOI: 10.1007/s12275-016-5514-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 12/20/2022]
|
12
|
Al-Shayyab MH, Abu-Hammad OA, Al-Omiri MK, Dar-Odeh NS. Antifungal prescribing pattern and attitude towards the treatment of oral candidiasis among dentists in Jordan. Int Dent J 2015; 65:216-26. [PMID: 26148537 DOI: 10.1111/idj.12173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM The aim of this study was to evaluate the attitude of Jordanian dentists towards the treatment of oral candidiasis and their current antifungal prescribing habits, shedding more light on the possible influence of their socio-professional factors on the pattern of prescribing and practice. METHODS A structured validated questionnaire was developed and tested; it was then emailed to a random sample of 600 Jordanian dental practitioners during the period of this cross-sectional survey. The questionnaire recorded practitioners' personal details and their attitude and prescribing of antifungal therapy for oral candidiasis. Statistical significance was based on probability values of <0.05 and was measured using the chi-square and Fisher's exact tests. Multiple logistic regression analysis was used to analyse the influence of respondents' socio-professional factors on their attitude towards oral candidiasis. RESULTS Of the 423 questionnaires returned, only 330 were included. The attitude of respondents was significantly influenced by their experience [odds ratio (OR) = 0.14; P < 0.001] and workplace (OR = 4.70; P < 0.001). Nystatin was the most commonly prescribed antifungal agent (78.2%), followed by miconazole (62.4%), which was prescribed for topical use. Systemic antifungals were prescribed by 21.2% of respondents, with a significant (P < 0.05) association with the country in which their qualification was obtained. CONCLUSION The attitude towards the treatment of oral candidiasis is much better among the least-experienced dentists working in private practice. Nystatin and miconazole are the most popular choices of antifungal agents among Jordanian dentists.
Collapse
Affiliation(s)
- Mohammad H Al-Shayyab
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology, Faculty of Dentistry, The University of Jordan, Amman, Jordan
| | - Osama A Abu-Hammad
- Department of Prosthodontics, Faculty of Dentistry, Taibah University, Al Madina Al Monawara, Saudi Arabia
| | - Mahmoud K Al-Omiri
- Department of Prosthodontics, Faculty of Dentistry, The University of Jordan, Amman, Jordan
| | - Najla S Dar-Odeh
- Department of Oral Medicine, Faculty of Dentistry, Taibah University, Al Madina Al Monawara, Saudi Arabia
| |
Collapse
|
13
|
Alves TP, Simões ACDC, Soares RMDA, Moreno DSA, Portela MB, Castro GFBDA. Salivary lactoferrin in HIV-infected children: Correlation with Candida albicans carriage, oral manifestations, HIV infection and its antifungal activity. Arch Oral Biol 2014; 59:775-82. [DOI: 10.1016/j.archoralbio.2014.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|
14
|
Gonçalves e Silva CR, Oliveira LDD, Leão MVP, Jorge AOC. Candida spp. adherence to oral epithelial cells and levels of IgA in children with orthodontic appliances. Braz Oral Res 2014; 28:28-32. [PMID: 25000599 DOI: 10.1590/s1806-83242013005000031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adhesion and colonization of the oral cavity by Candida albicans is an initial step in candidosis. Orthodontic and other oral appliances seem to favor candidal presence. The aim of this work was to compare the presence of Candida species in saliva, their adherence to oral epithelial cells, and the levels of anti–C. albicans IgA in children with or without orthodontic appliances. This study included 30 children 5 to 12 years old (9.1 ± 1.7 years old) who were users of removable orthodontic devices for at least 6 months and 30 control children of similar ages (7.7 ± 1.5 years old). The presence of yeast species in the saliva was evaluated by microbiological methods. Candida species were identified using phenotypic methods. Anti–C. albicans IgA levels in saliva were analyzed by ELISA. The yeasts adhering to oral epithelial cells were assessed by exfoliative cytology. No statistically significant differences were observed for saliva yeast counts and anti–C. albicans IgA levels between the studied groups. Children with orthodontic devices exhibited more yeast cells adhering to oral epithelial cells and a higher percentage of non-albicans species relative to the control group. In conclusion, orthodontic appliances may favor the adherence of Candida to epithelial cells but do not influence the presence of these yeasts in saliva, and the levels of anti–C. albicans IgA do not correlate with yeast adherence or presence of Candida in the oral cavity
Collapse
|
15
|
Estudio de confiabilidad de la prueba de sialometría para flujo no estimulado en sujetos adultos clínicamente sanos. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/s0718-5391(13)70116-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Altarawneh S, Bencharit S, Mendoza L, Curran A, Barrow D, Barros S, Preisser J, Loewy ZG, Gendreau L, Offenbacher S. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of Candida albicans, salivary flow, and dry mouth. J Prosthodont 2012; 22:13-22. [PMID: 23107189 DOI: 10.1111/j.1532-849x.2012.00906.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Multifactorial etiological factors contribute to denture stomatitis (DS), a type of oral candidiasis; however, unlike other oral candidiasis, DS can occur in a healthy person wearing a denture. In this study, we therefore attempt to explore the association between candida, denture, and mucosal tissue using (1) exfoliative cytology, (2) the candidal levels present in saliva, on mucosal tissues and on denture surfaces, and (3) the salivary flow rate and xerostomic symptoms. MATERIALS AND METHODS A cross-sectional study enrolled 32 edentulous participants, 17 without DS as controls and 15 with DS (Newton's classification type II and III). Participants with systemic or other known oral conditions were excluded. Participants completed a xerostomia questionnaire, and salivary flow rates were measured. Samples of unstimulated whole saliva (UWS) and stimulated whole saliva (SWS) were collected. UWS was used for fungal culturing. Periodic acid-Schiff (PAS) stain and quantitative exfoliative cytology were performed on samples from affected and unaffected mucosa from each participant. Levels of Candida species (albicans and non-albicans) were determined in salivary samples (expressed as colony-forming units, CFU), as well as from swab samples obtained from denture fitting surfaces, in addition to affected and unaffected mucosa. RESULTS There were no significant differences in salivary flow rates, mucosal wetness, or frequency of reported dry mouth comparing participants with and without DS. Exfoliative cytology of mucosal smears demonstrated significantly higher (p= 0.02) inflammatory cell counts in DS patients, as compared with smears of healthy denture-wearers. Candida albicans was significantly more prevalent in saliva (p= 0.03) and on denture surfaces (p= 0.002) of DS participants, whereas mucosal candidal counts and the presence of cytological hyphae did not show significant difference comparing DS to healthy participants. CONCLUSIONS In this investigation, we presented a unique group of healthy edentulous patients. This population may reflect the general DS population without systemic or other oral diseases. The prominent etiological factor for DS in this population is the presence of candida in denture and saliva. We found that other factors such as saliva flow/xerostomia, fitting of the denture, and the presence of candida in the mucosa, are less important in this population. Therefore, DS treatments in healthy patients should first focus on sanitization of an existing denture and/or fabrication of a new denture.
Collapse
Affiliation(s)
- Sandra Altarawneh
- Department of Prosthdontics, University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Searles SC, Woolley CM, Petersen RA, Hyman LE, Nielsen-Preiss SM. Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans. ASTROBIOLOGY 2011; 11:825-836. [PMID: 21936634 DOI: 10.1089/ast.2011.0664] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for a variety of cutaneous and systemic human infections. Virulence of C. albicans increases upon exposure to some environmental stresses; therefore, we explored phenotypic responses of C. albicans following exposure to the environmental stress of low-shear modeled microgravity. Upon long-term (12-day) exposure to low-shear modeled microgravity, C. albicans transitioned from yeast to filamentous forms at a higher rate than observed under control conditions. Consistently, genes associated with cellular morphology were differentially expressed in a time-dependent manner. Biofilm communities, credited with enhanced resistance to environmental stress, formed in the modeled microgravity bioreactor and had a more complex structure than those formed in control conditions. In addition, cells exposed to low-shear modeled microgravity displayed phenotypic switching, observed as a near complete transition from smooth to "hyper" irregular wrinkle colony morphology. Consistent with the presence of biofilm communities and increased rates of phenotypic switching, cells exposed to modeled microgravity were significantly more resistant to the antifungal agent Amphotericin B. Together, these data indicate that C. albicans adapts to the environmental stress of low-shear modeled microgravity by demonstrating virulence-associated phenotypes.
Collapse
Affiliation(s)
- Stephen C Searles
- Immunology and Infectious Diseases, Montana State University , Bozeman, USA
| | | | | | | | | |
Collapse
|
18
|
Virulence modulation of Candida albicans biofilms by metal ions commonly released from orthodontic devices. Microb Pathog 2011; 51:421-5. [PMID: 21925586 DOI: 10.1016/j.micpath.2011.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 11/23/2022]
Abstract
The installation of metal devices leads to an increase in the salivary concentration of metal ions and in the growth of salivary Candida spp. However, the relationship between released metal ions and Candida virulence has not been previously examined. The objective of this study was to evaluate whether metal ions affect fungal virulence. We prepared culture media containing Ni(2+), Fe(3+), Cr(3+), Co(2+) or a mixture of these metal ions at concentrations similar to those released in saliva of orthodontic patients. Biofilms of Candida albicans SC5314 were grown for 72 h and their biomasses were determined. The supernatants were analyzed for secretory aspartyl protease (SAP) and hemolysin activities. To verify changes in virulence following treatment with metals, proteolytic and hemolytic activities were converted into specific activities. The results revealed that all ions, except Co(2+), caused increases in biofilm biomass. In addition, Ni(2+) caused an increase in SAP activity and Fe(3+) reduced hemolytic activity. However, the SAP and hemolysin activities in the presence of the mixture of ions did not differ from those of control. These results indicate that metal ions released during the degradation of orthodontic appliances can modulate virulence factors in C. albicans biofilms.
Collapse
|
19
|
Calcedo R, Ramirez-Garcia A, Abad A, Rementeria A, Pontón J, Hernando FL. Phosphoglycerate kinase and fructose bisphosphate aldolase of Candida albicans as new antigens recognized by human salivary IgA. Rev Iberoam Micol 2011; 29:172-4. [PMID: 21906693 DOI: 10.1016/j.riam.2011.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/07/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Candida albicans is an opportunistic dimorphic fungus commonly present in the human oral cavity that causes infections in immunocompromised patients. The antigen variability, influenced by growth conditions, is a pathogenicity factor. AIMS To determine the effect of nutritional and heat stress on the antigen expression of C. albicans, and to identify major antigens recognized by human salivary secretory immunoglobulin A (sIgA). METHODS Under various different nutritional conditions, heat shock was induced in C. albicans cells in stationary and exponential growth phases. The expression of protein determinants of C. albicans was assessed by Western blot analysis against human saliva. The antigens were purified and characterized by two-dimensional electrophoresis and identified by protein microsequencing. RESULTS Five antigens recognized by salivary IgA were characterized as mannoproteins due to their reactivity with concanavalin A. They did not show reactivity with anti-heat shock protein monoclonal antibodies. Two of them (42 and 36 kDa) were found to be regulated by heat shock and by nutritional stress and they were identified as phosphoglycerate kinase and fructose bisphosphate aldolase, respectively. CONCLUSIONS These glycolytic enzymes are major antigens of C. albicans, and their differential expression and recognition by the mucosal immune response system could be involved in protection against oral infection.
Collapse
Affiliation(s)
- Roberto Calcedo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Oropharyngeal candidiasis (OPC, thrush) is an opportunistic infection caused by the commensal fungus Candida albicans. An understanding of immunity to Candida has recently begun to unfold with the identification of fungal pattern-recognition receptors such as C-type lectin receptors, which trigger protective T-helper (Th)17 responses in the mucosa. Hyper-IgE syndrome (HIES/Job's syndrome) is a rare congenital immunodeficiency characterized by dominant-negative mutations in signal transducer and activator of transcription 3, which is downstream of the Th17-inductive cytokines interleukin (IL)-6 and IL-23, and hence patients with HIES exhibit dramatic Th17 deficits. HIES patients develop oral and mucocutaneous candidiasis, supporting a protective role for Th17 cells in immunity to OPC. However, the Th17-dependent mechanisms of antifungal immunity in OPC are still poorly defined. An often unappreciated aspect of oral immunity is saliva, which is rich in antimicrobial proteins (AMPs) and exerts direct antifungal activity. In this study, we show that HIES patients show significant impairment in salivary AMPs, including β-defensin 2 and Histatins. This tightly correlates with reduced candidacidal activity of saliva and concomitantly elevated colonization with Candida. Moreover, IL-17 induces histatins in cultured salivary gland cells. This is the first demonstration that HIES is associated with defective salivary activity, and provides a mechanism for the severe susceptibility of these patients to OPC.
Collapse
|
21
|
Abstract
Candiduria is a common finding in hospitalized patients with indwelling urine-draining devices. Animal models for candiduria are not well-developed and, despite its prevalence and associated mortality, candiduria is understudied. The presence of Candida in urine does not imply disease because it is also a commensal. Biofilm formation on catheters and the host-pathogen interaction are likely to be important factors that contribute to the pathogenesis. The objective of this study was to establish a candiduria model in mice with indwelling catheters. Our data demonstrate that biofilm formation on indwelling catheters and persistent candiduria can be established in mice. The study supports the concept that biofilm formation contributes to persistence. It also outlines differences between catheter-related candiduria in mice and humans. Specifically, mice exhibit higher levels of leukocyturia. In addition, mean daily fungal burden in urine in the murine model is 10- to 100-fold lower than that in humans. These important findings must be taken into consideration when using this model to study host-pathogen interaction in the setting of candiduria.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Medicine at Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology at Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bettina C Fries
- Department of Medicine at Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology at Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Sonesson M, Hamberg K, Wallengren MLL, Matsson L, Ericson D. Salivary IgA in minor-gland saliva of children, adolescents, and young adults. Eur J Oral Sci 2011; 119:15-20. [DOI: 10.1111/j.1600-0722.2010.00794.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Thaweboon B, Thaweboon S. Effect of Phyllanthus emblica Linn. on candida adhesion to oral epithelium and denture acrylic. ASIAN PAC J TROP MED 2011; 4:41-5. [DOI: 10.1016/s1995-7645(11)60029-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/27/2010] [Accepted: 12/25/2010] [Indexed: 10/18/2022] Open
|
24
|
Conti HR, Gaffen SL. Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect 2010; 12:518-27. [PMID: 20381638 PMCID: PMC2892252 DOI: 10.1016/j.micinf.2010.03.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 12/14/2022]
Abstract
Candida albicans causes mucosal and disseminated candidiasis, which represent serious problems for the rapidly expanding immunocompromised population. Until recently, Th1-mediated immunity was thought to confer the primary protection, particularly for oral candidiasis. However, emerging data indicate that the newly-defined Th17 compartment appears to play the predominant role in mucosal candidiasis.
Collapse
Affiliation(s)
| | - Sarah L. Gaffen
- University at Buffalo, SUNY, Dept. of Oral Biology, Buffalo NY
- University of Pittsburgh, Department of Medicine, Division of Rheumatology and Clinical Immunology, Pittsburgh PA
| |
Collapse
|
25
|
Hoshi N, Mori H, Taguchi H, Taniguchi M, Aoki H, Sawada T, Kawabata M, Kuwabara A, Oono A, Tanaka K, Hori N, Toyoda M, Kimoto K. Management of oral candidiasis in denture wearers. J Prosthodont Res 2010; 55:48-52. [PMID: 20381447 DOI: 10.1016/j.jpor.2010.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/22/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
In many cases, dentists try to manage denture pain by adjusting dentures. However, some patients complain of oral discomfort over a long period even after appropriate denture adjustments. In some of these situations, simple denture adjustment does not alleviate the discomfort of these patients. It is known that denture stomatitis may occur in response to plaque accumulation on dentures. One of the chief pathogenic microorganisms causing this type of inflammation is Candida albicans. A common symptom of oral candidiasis is pain in the oral mucosa complicated by angular stomatitis. In this paper, we report a case of oral candidiasis that was diagnosed and managed based on the patient's complaints.
Collapse
Affiliation(s)
- Noriyuki Hoshi
- Division of Fixed Prosthodontics, Department of Oral & Maxillofacial Rehabilitaion, Kanagawa Dental College, Yokosuka, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|