1
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
2
|
Ji-Eun K, Paras Man P, Jang S, Yi HK. Anti-inflammatory effect of luteoloside against methylglyoxal induced human dental pulp cells. J Appl Biomed 2024; 22:33-39. [PMID: 38505968 DOI: 10.32725/jab.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
PURPOSE The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. METHODS HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. RESULTS Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1β, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. CONCLUSION These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Sungil Jang
- Jeonbuk National University, School of Dentistry, Institute of Oral Bioscience, Departments of Oral Biochemistry, Jeonju, Korea
| | | |
Collapse
|
3
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
4
|
Dogan Buzoglu H, Ozcan M, Bozdemir O, Aydin Akkurt KS, Zeybek ND, Bayazit Y. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation. Clin Oral Investig 2023; 27:5913-5923. [PMID: 37642737 DOI: 10.1007/s00784-023-05203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the oxidative stress cycle consisting of reactive oxygen molecules (ROS), glutathione (GSH) and glutathione S-transferase (GST) in caries-related pulp inflammation. METHODOLOGY Fifty-four pulp tissue samples were collected from healthy donors with the diagnosis of reversible pulpitis, symptomatic irreversible pulpitis, and healthy pulp. Twelve pulp samples from each group were homogenized and total protein, ROS, GSH, and GST were measured by spectrophotometer. The remaining 6 samples from each group were prepared for paraffin block and used for the histopathologic and immunohistochemical evaluation of oxidative stress parameters and TUNEL labeling. Data were analyzed statistically. RESULTS The results revealed that total protein levels significantly decreased; however, ROS levels increased in both reversible and irreversible pulpitis compared to the healthy pulp (p < 0.01). Also, as inflammation increases, GST enzyme levels decrease while GSH levels increase significantly (p < 0.05). It was found that the number of TUNEL (+) cells was increased in irreversible pulpitis samples compared to healthy and reversible pulpitis groups (p < 0.05). GSTP1 and GSH immunoreactivity were also observed in irreversible pulpitis samples. CONCLUSIONS It has been revealed that caries-related inflammation alters the oxidative stress cycle in dental pulp tissue. The increase in GSH levels in the inflamed dental pulp due to the increase in ROS levels may improve the defensive ability of the dental pulp. CLINICAL RELEVANCE There is a relationship between oxidative stress and inflammation. Control of excessive oxidative stress in pulpitis can stimulate reparative and regenerative processes. The present findings may provide an overview of the management of oxidative stress in cases with pulpitis during regenerative treatments.
Collapse
Affiliation(s)
- H Dogan Buzoglu
- Department of Endodontics, Faculty of Dentistry, Hacettepe University, Sihhiye, 06230, Ankara, Turkey.
| | - M Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - O Bozdemir
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - K S Aydin Akkurt
- Department of Histology & Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - N D Zeybek
- Department of Histology & Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Y Bayazit
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Mendes Soares IP, Anselmi C, Pires MLBA, Ribeiro RADO, Leite ML, Soares DG, DE Souza Costa CA, Hebling J. Chronic exposure to lipopolysaccharides as an in vitro model to simulate the impaired odontogenic potential of dental pulp cells under pulpitis conditions. J Appl Oral Sci 2023; 31:e20230032. [PMID: 37493701 PMCID: PMC10382076 DOI: 10.1590/1678-7757-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Simulating a bacterial-induced pulpitis environment in vitro may contribute to exploring mechanisms and bioactive molecules to counteract these adverse effects. OBJECTIVE To investigate the chronic exposure of human dental pulp cells (HDPCs) to lipopolysaccharides (LPS) aiming to establish a cell culture protocol to simulate the impaired odontogenic potential under pulpitis conditions. METHODOLOGY HDPCs were isolated from four healthy molars of different donors and seeded in culture plates in a growth medium. After 24 h, the medium was changed to an odontogenic differentiation medium (DM) supplemented or not with E. coli LPS (0 - control, 0.1, 1, or 10 µg/mL) (n=8). The medium was renewed every two days for up to seven days, then replaced with LPS-free DM for up to 21 days. The activation of NF-κB and F-actin expression were assessed (immunofluorescence) after one and seven days. On day 7, cells were evaluated for both the gene expression (RT-qPCR) of odontogenic markers (COL1A1, ALPL, DSPP, and DMP1) and cytokines (TNF, IL1B, IL8, and IL6) and the production of reactive nitrogen (Griess) and oxygen species (Carboxy-H2DCFDA). Cell viability (alamarBlue) was evaluated weekly, and mineralization was assessed (Alizarin Red) at 14 and 21 days. Data were analyzed with ANOVA and post-hoc tests (α=5%). RESULTS After one and seven days of exposure to LPS, NF-κB was activated in a dose-dependent fashion. LPS at 1 and 10 µg/mL concentrations down-regulated the gene expression of odontogenic markers and up-regulated cytokines. LPS at 10 µg/mL increased both the production of reactive nitrogen and oxygen species. LPS decreased cell viability seven days after the end of exposure. LPS at 1 and 10 µg/mL decreased hDPCs mineralization in a dose-dependent fashion. CONCLUSION The exposure to 10 µg/mL LPS for seven days creates an inflammatory environment that is able to impair by more than half the odontogenic potential of HDPCs in vitro, simulating a pulpitis-like condition.
Collapse
Affiliation(s)
- Igor Paulino Mendes Soares
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Caroline Anselmi
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Maria Luiza Barucci Araujo Pires
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Rafael Antonio de Oliveira Ribeiro
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Maria Luísa Leite
- Department of Oral Health Sciences, The University of British Columbia, School of Dentistry, Vancouver, Canada
| | - Diana Gabriela Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Carlos Alberto DE Souza Costa
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| |
Collapse
|
6
|
Zhang W, Xu T, Li X, Zhang Y, Zou X, Chen F, Yue L. Single-cell atlas of dental pulp stem cells exposed to the oral bacteria Porphyromonas gingivalis and Enterococcus faecalis. Front Cell Dev Biol 2023; 11:1166934. [PMID: 37287452 PMCID: PMC10242116 DOI: 10.3389/fcell.2023.1166934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Porphyromonas gingivalis and Enterococcus faecalis promote the development of pulpitis and periapical periodontitis. These bacteria are difficult to eliminate from the root canal systems, leading to persistent infection and poor treatment outcomes. We explored the response of human dental pulp stem cells (hDPSCs) to bacterial invasion and the mechanisms underlying the impact of residual bacteria on dental pulp regeneration. Methods: Single-cell sequencing was used to categorize the hDPSCs into clusters based on their response to P. gingivalis and E. faecalis. We depicted a single-cell transcriptome atlas of hDPSCs stimulated by P. gingivalis or E. faecalis. Results: The most differentially expressed genes in the Pg samples were THBS1, COL1A2, CRIM1, and STC1, which are related to matrix formation and mineralization, and HILPDA and PLIN2, which are related to the cellular response to hypoxia. A cell cluster characterized by high expression levels of THBS1 and PTGS2 was increased after P. gingivalis stimulation. Further signaling pathway analysis showed that hDPSCs prevented P. gingivalis infection by regulating the TGF-β/SMAD, NF-κB, and MAPK/ERK signaling pathways. Differentiation potency and pseudotime trajectory analyses showed that hDPSCs infected by P. gingivalis undergo multidirectional differentiation, particularly to the mineralization-related cell lineage. Furthermore, P. gingivalis can create a hypoxia environment to effect cell differentiation. The Ef samples were characterized by the expression of CCL2, which is related to leukocyte chemotaxis, and ACTA2, which is related to actin. There was an increased proportion of a cell cluster that was similar to myofibroblasts and exhibited significant ACTA2 expression. The presence of E. faecalis promoted the differentiation of hDPSCs into fibroblast-like cells, which highlights the role of fibroblast-like cells and myofibroblasts in tissue repair. Discussion: hDPSCs do not maintain their stem cell status in the presence of P. gingivalis and E. faecalis. They differentiate into mineralization-related cells in the presence of P. gingivalis and into fibroblast-like cells in the presence of E. faecalis. We identified the mechanism underlying the infection of hDPSCs by P. gingivalis and E. faecalis. Our results will improve understanding of the pathogenesis of pulpitis and periapical periodontitis. Furthermore, the presence of residual bacteria can have adverse effects on the outcomes of regenerative endodontic treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tiansong Xu
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xueying Li
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaoying Zou
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Center of Stomatology, Peking University Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lin Yue
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
7
|
Liang C, Li W, Huang Q, Wen Q. CircFKBP5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. Int Dent J 2022; 73:377-386. [DOI: 10.1016/j.identj.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
|
8
|
PPARγ regulates the expression of genes involved in the DNA damage response in an inflamed endometrium. Sci Rep 2022; 12:4026. [PMID: 35256739 PMCID: PMC8901773 DOI: 10.1038/s41598-022-07986-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
AbstractInflammation is a biological response of the immune system, which can be triggered by many factors, including pathogens. These factors may induce acute or chronic inflammation in various organs, including the reproductive system, leading to tissue damage or disease. In this study, the RNA-Seq technique was used to determine the in vitro effects of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the expression of genes and long non-coding RNA, and alternative splicing events (ASEs) in LPS-induced inflammation of the porcine endometrium during the follicular phase of the estrous cycle. Endometrial slices were incubated in the presence of LPS and PPARγ agonists (PGJ2 or pioglitazone) and a PPARγ antagonist (T0070907). We identified 169, 200, 599 and 557 differentially expressed genes after LPS, PGJ2, pioglitazone or T0070907 treatment, respectively. Moreover, changes in differentially expressed long non-coding RNA and differential alternative splicing events were described after the treatments. The study revealed that PPARγ ligands influence the LPS-triggered expression of genes controlling the DNA damage response (GADD45β, CDK1, CCNA1, CCNG1, ATM). Pioglitazone treatment exerted a considerable effect on the expression of genes regulating the DNA damage response.
Collapse
|
9
|
Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. Biomolecules 2022; 12:biom12010138. [PMID: 35053286 PMCID: PMC8774278 DOI: 10.3390/biom12010138] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS) is widely used for induction of inflammation in various human tissues, including dental pulp. The purpose of this study was to summarize current medical literature focusing on (1) cell types used by researchers to simulate dental pulp inflammation, (2) LPS variants utilized in experimental settings and how these choices affect the findings. Our study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched for studies reporting outcomes of lipopolysaccharide application on dental pulp cells in vitro using electronic databases: MEDLINE, Web of Science and Scopus. Having gathered data from 115 papers, we aimed to present all known effects LPS has on different cell types present in dental pulp. We focused on specific receptors and particles that are involved in molecular pathways. Our review provides an essential foundation for further research using in vitro models of pulpitis.
Collapse
|
10
|
Specific parameters of infrared LED irradiation promote the inhibition of oxidative stress in dental pulp cells. Arch Oral Biol 2021; 131:105273. [PMID: 34600332 DOI: 10.1016/j.archoralbio.2021.105273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The present study aimed to assess the oxidative stress and the viability of dental pulp cells stimulated by lipopolysaccharide (LPS) and submitted to photobiomodulation (PBM) with infrared light-emitting diode (LED, 850 nm). DESIGN Three healthy primary teeth (n = 3) were collected and seeded in 24-well plates with 10 µg/mL of LPS to induce inflammatory mediator formation. The cells were irradiated (850 nm, 40 mW/cm2 and 80 mW/cm2) at the proposed radiant exposures of 0 (control), 4, 15, and 30 J/cm2 shortly after LPS supplementation. The tests were performed 24 h after irradiation to assess mitochondrial activity (MTT assay), the number of viable cells (Trypan Blue), cell morphology (Scanning Electron Microscopy - SEM), and the quantification of Nitric Oxide (NO) and Reactive Oxygen Species (ROS). The data were analyzed using Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS The irradiated groups showed larger viable cells number than the non-irradiated group with LPS (p < 0.0001). All irradiation parameters decreased ROS concentrations after LPS application compared to the non-irradiated group (p < 0.05). All irradiation parameters enhanced the NO values compared to those of the control group (p < 0.05). The SEM images showed cells with regular morphology that adhered to the substrate. CONCLUSIONS According to the parameters used in this study, the radiant exposure of 15 J/cm2 and irradiance of 40 mW/cm2 were the most effective irradiation parameters to stimulate and modulate oxidative stress in the primary teeth-derived dental pulp cells.
Collapse
|
11
|
Identifying the active compounds and mechanism of action of Banxia Xiexin decoction for treating ethanol-induced chronic gastritis using network pharmacology combined with UPLC-LTQ-Orbitrap MS. Comput Biol Chem 2021; 93:107535. [PMID: 34217946 DOI: 10.1016/j.compbiolchem.2021.107535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Banxia Xiexin decoction (BXD), a traditionally prescribed Chinese medicine, has been used to treat chronic gastritis for many years. However, the underlying mechanism and targets for its effects remain unknown. In the present study, we predicted the targets and active compounds of BXD in the treatment of chronic gastritis through network pharmacology and ultra-performance liquid chromatography coupled with linear trap quadrupole-Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap MS). METHOD A chronic gastritis model was established in rats by oral administration of 56 % ethanol. BXD was orally administered for 7 days. Stomach tissues were collected for histopathological analysis, and tumour necrosis factor (TNF)-α, interleukin (IL)-2, IL-8, and lactate dehydrogenase (LDH) levels were measured by enzyme-linked immunosorbent assay. UPLC-LTQ-Orbitrap MS was established to analyse compounds in rat plasma following oral BXD administration. The absorbed ingredients were selected as candidate active compounds. The chronic gastritis-related targets were screened using multiple databases. The potential targets for the treatment of chronic gastritis were used to construct a protein-protein interaction (PPI) network and were also analysed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, molecular docking was used to uncover the interaction between multi-components and putative targets, and the results were verified by surface plasmon resonance (SPR). RESULTS Intragastric administration of BXD ameliorated stomach injury resulting from chronic gastritis in rats and decreased the levels of TNF-α, IL-2, IL-8, and LDH. A comprehensive systematic strategy was used to successfully identify 38 candidate targets and 14 active compounds in BXD. Based on the network of compounds-targets and PPI, three hub genes that were associated with BXD therapy for chronic gastritis were selected and included intercellular adhesion molecule-1, peroxisome proliferator-activated receptor gamma and mitogen-activated protein kinase 14. The results of molecular docking and SPR demonstrated that the active compounds in BXD demonstrate affinity for these targets. Additionally, an enrichment analysis revealed that treatment of chronic gastritis with BXD primarily involves cytokine activation, the inflammatory response and nuclear factor-kappa B, hypoxia-inducible factor-1, phosphatidylinositol-3-kinase-protein-serine-threonine kinase and Janus kinase-signal transducer and activator of transcription signalling pathways, which may mediate the effects of BXD in the treatment of chronic gastritis. CONCLUSION BXD exhibits a therapeutic effect in ethanol-induced gastritis through multi-compound, multi-target and multi-pathway mechanisms. A strategy of network pharmacology combined with SPR may provide a feasible approach to explore the targets of herbal medicine and uncover novel bioactive components.
Collapse
|
12
|
Qiu JF, Ma N, He ZY, Zhong XN, Zhang JQ, Bai J, Deng JM, Tang XJ, Luo ZL, Huang M, Liang Q, Wei YL, Tang MJ, Li MH. Erythromycin inhibits cigarette smoke-induced inflammation through regulating the PPARγ/NF-κB signaling pathway in macrophages. Int Immunopharmacol 2021; 96:107775. [PMID: 34162143 DOI: 10.1016/j.intimp.2021.107775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022]
Abstract
Chronic obstructive pulmonary disease is characterized by chronic inflammation of the airway and lungs. Accumulating evidence has suggested that erythromycin (EM) plays a protective role against cigarette smoke-induced oxidative stress and the inflammatory response. However, the underlying mechanisms remain relatively unclear. The present study aimed to investigate the role of EM in inhibiting cigarette smoke-induced inflammation in human macrophages and its potential mechanism. A Cell Counting Kit-8 assay was used to determine the optimum concentration of EM and cigarette smoke extract (CSE) and it was found that 0.1 and 1% CSE and 0.1, 1.0 and 10 μg/ml EM exerted no significant effect on the cell proliferation activity, whereas 2 and 3% CSE exerted a significant inhibitory effect over the cell proliferation activity. We observed that 10 μmol/ml GW9662 (A PPARγ antagonist) and the presence of 1% CSE could promote the expression and activation of NF-κB p65. And this increased the expression of IL-6, IL-8 and reactive oxygen species (ROS). At the same time, 10 μmol/ml GW9662 and 1% CSE was found to inhibit the expression and activation of peroxisome proliferator activated receptors γ (PPARγ); However, 1 μg/ml EM was discovered to reverse these effects. Co-immunoprecipitation subsequently discovered an interaction between PPARγ and NF-κB p65. In conclusion, the present study suggested that EM may reduce the damage of PPARγ by inhibiting oxidative stress and reducing the expression of ROS and finally relieving cigarette smoke-induced inflammation through the PPARγ/NF-κB signaling pathway in macrophages.
Collapse
Affiliation(s)
- Ju-Feng Qiu
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China; Department of critical care medicine, First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Nan Ma
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Yi He
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Ning Zhong
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Quan Zhang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing-Min Deng
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Juan Tang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhou-Ling Luo
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei Huang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Ling Wei
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming-Jiao Tang
- Department of rehabilitation medicine, First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Mei-Hua Li
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
13
|
Arora S, Cooper PR, Friedlander LT, Rizwan S, Seo B, Rich AM, Hussaini HM. Potential application of immunotherapy for modulation of pulp inflammation: opportunities for vital pulp treatment. Int Endod J 2021; 54:1263-1274. [PMID: 33797765 DOI: 10.1111/iej.13524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Caries results in the demineralization and destruction of enamel and dentine, and as the disease progresses, irreversible pulpitis can occur. Vital pulp therapy (VPT) is directed towards pulp preservation and the prevention of the progression of inflammation. The outcomes of VPT are not always predictable, and there is often a poor correlation between clinical signs and symptoms, and the events occurring at a molecular level. The inflamed pulp expresses increased levels of cytokines, including tumour necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-8, IL-17 and IL-23, which recruit and drive a complex cellular immune response. Chronic inflammation and sustained cytokine release can result in irreversible pulp damage and a decreased capacity for tissue healing. Other chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases and rheumatoid arthritis, are also characterized by an dysregulated immune response composed of relatively high cytokine levels and increased numbers of immune cells along with microbial and hard-soft tissue destructive pathologies. Whilst anti-cytokine therapies have been successfully applied in the treatment of these diseases, this approach is yet to be attempted in cases of pulp inflammation. This review therefore focuses on the similarities in the aetiology between chronic inflammatory diseases and pulpitis, and explores how anti-cytokine therapies could be applied to manage an inflamed pulp and facilitate healing. Further proof-of-concept studies and clinical trials are justified to determine the effectiveness of these treatments to enable more predictable outcomes in VPT.
Collapse
Affiliation(s)
- S Arora
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - P R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - L T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - S Rizwan
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - B Seo
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - A M Rich
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - H M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Chen W, Guan Y, Xu F, Jiang B. 4-Methylumbelliferone promotes the migration and odontogenetic differentiation of human dental pulp stem cells exposed to lipopolysaccharide in vitro. Cell Biol Int 2021; 45:1415-1422. [PMID: 33675275 DOI: 10.1002/cbin.11579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023]
Abstract
Hyaluronic acid (HA), a major component of the extracellular matrix, is essential to inflammatory regulation. 4-Methylumbelliferone (4-mu), as the specific inhibitor of HA synthesis, is an anti-inflammatory in multiple systems. However, there have been no studies, to our knowledge, regarding 4-mu treatment in pulp inflammation. Therefore, the purpose of this study was to investigate the effects of 4-mu on biological behaviors in human dental pulp stem cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro. hDPSCs were exposed to LPS to construct the inflammation model in vitro. Immunocytochemistry, quantitative polymerase chain reaction, western blotting, Cell Counting Kit-8, scratch/Transwell assay, and alizarin red staining/alkaline phosphatase staining were selected to explore the effect of 4-mu on the expression of inflammatory factors, cell proliferation, cell migration, and the odontogenic differentiation ability of hDPSCs. LPS stimulated hDPSCs to highly express the related inflammatory factors and CD44 (the major HA receptor), which were all inhibited by 0.1 mM of 4-mu. In addition, the cell proliferation ability of hDPSCs was suppressed by 4-mu, while cell migration and odontogenic differentiation abilities were significantly improved under inflammation. In conclusion, 4-mu suppressed inflammatory cytokines in inflamed hDPSCs and had a positive effect on the migration and odontogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yun Guan
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fangfang Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
15
|
Jariyamana N, Chuveera P, Dewi A, Leelapornpisid W, Ittichaicharoen J, Chattipakorn S, Srisuwan T. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells. Clin Oral Investig 2021; 25:3919-3928. [PMID: 33404763 DOI: 10.1007/s00784-020-03721-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES N-Acetyl cysteine (NAC), a well-known antioxidant molecule, has been used to modulate oxidative stress and inflammation. However, no studies have examined the effect of NAC in regenerative endodontic procedures (REPs). Therefore, the aim of this study was to investigate the effects of NAC on cell survival, mitochondrial reactive oxygen species (mtROS) production, and inflammatory and mitochondria-related gene expression on lipopolysaccharide (LPS)-treated apical papilla cells (APCs). MATERIALS AND METHODS To assess the NAC concentration, 5 and 10 mM NAC were administered to LPS-treated APCs. Cell proliferation was measured at 24, 48, and 72 h by using AlamarBlue® assay. The 5-mM concentration was further analyzed using different treatment durations: 10 min, 24 h, and the entire study period. The mtROS production was quantified using MitoSOX™ Red and MitoTracker™ Green. RT-PCR was used to detect the expression of IL-6 and TNF-α inflammatory genes and mitochondrial morphology-related genes (Mfn-2/Drp-1 and Bcl-2/Bax) at 6 and 24 h. The statistical significance level was set at 0.05. RESULTS Five-millimolar NAC promoted the highest LPS-treated APC proliferation. The use of 24-h NAC stimulated cell proliferation, whereas the entire-period NAC application (> 48 h) significantly reduced the cell number. The mtROS levels were slightly altered after NAC induction. Ten-minute NAC treatment downregulated the IL-6 and TNF-α expression, whereas the expression of Bcl-2/Bax and Mfn-2/Drp-1 ratios was upregulated at 6 h. CONCLUSIONS Under the LPS-induced inflammatory condition, NAC stimulated APC survival and decreased inflammation. Ten-minute NAC treatment was sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. CLINICAL RELEVANCE Ten-minute NAC application is sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. Therefore, NAC may be considered as a potential adjunctive irrigation solution in REPs.
Collapse
Affiliation(s)
- Nutcha Jariyamana
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchanee Chuveera
- Department of Family and Community Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anat Dewi
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jitjiroj Ittichaicharoen
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
de Souza GL, Moura CCG, Silva ACA, Marinho JZ, Silva TR, Dantas NO, Bonvicini JFS, Turrioni AP. Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models. Restor Dent Endod 2020; 45:e54. [PMID: 33294419 PMCID: PMC7691257 DOI: 10.5395/rde.2020.45.e54] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (−LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results ZnO:0.7Ca and ZnO:1.0Ca at 10 µg/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and −LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and −LPS cells (p < 0.05). Conclusions NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.
Collapse
Affiliation(s)
- Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Anielle Christine Almeida Silva
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thaynara Rodrigues Silva
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Noelio Oliveira Dantas
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Ana Paula Turrioni
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
17
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
18
|
Narayani SS, Saravanan S, Ravindran J, Ramasamy MS, Chitra J. In vitro anticancer activity of fucoidan extracted from Sargassum cinereum against Caco-2 cells. Int J Biol Macromol 2019; 138:618-628. [PMID: 31344415 DOI: 10.1016/j.ijbiomac.2019.07.127] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
Fucoidan is a marine sulfated polysaccharide, which is extracted from brown seaweed that has a wide range of bioactivities including anti-cancer properties. However, the underlying mechanism of fucoidan on its anti-cancer and apoptotic activity against colon cancer cell line Caco-2 remains to be elucidated. Hence, the present study evaluated the cytotoxicity, apoptotic and anti-cancer activity of fucoidan extracted from brown seaweed Sargassum cinereum against Caco-2 cell line. Cytotoxicity, morphological examination of nuclei, mitochondrial membrane potential, flow cytometry, reactive oxygen species (ROS) formation and detection of apoptotic efficacy of fucoidan were assessed by different assay protocols. Fucoidan inhibited growth of Caco-2 cells in a dose-dependent manner. IC50 concentration of fucoidan was found to be 250 μg/ml. AO/EB, Hoechst and Annexin V/PI staining confirmed the apoptosis induced by fucoidan in Caco-2 cells. Fucoidan was also found to increase ROS production and augment mitochondrial membrane permeability. The findings of the study suggest that fucoidan exerts potent anti-cancer and apoptotic effect on Caco-2 cells by enhancing ROS production. Thus, fucoidan may be used as a promising therapeutic regimen against various cancer cell types.
Collapse
Affiliation(s)
| | - S Saravanan
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India
| | - J Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Malaysia
| | - M S Ramasamy
- Indian Systems of Medicine - Natural Products Laboratory, MIT Campus of Anna University, AUKBC Research Centre, Anna University, Chennai, India
| | - J Chitra
- Indian Systems of Medicine - Natural Products Laboratory, MIT Campus of Anna University, AUKBC Research Centre, Anna University, Chennai, India
| |
Collapse
|
19
|
Qiao W, Huang Y, Bian Z, Sun X, Wang X, Gao Q, Peng Y, Meng L. Lipopolysaccharide-induced DNA damage response activates nuclear factor κB signalling pathway via GATA4 in dental pulp cells. Int Endod J 2019; 52:1704-1715. [PMID: 31260564 DOI: 10.1111/iej.13180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022]
Abstract
AIM To investigate the role of GATA-binding protein 4 (GATA4) in the inflammatory response induced by DNA double-strand breaks (DSBs) in human dental pulp cells (hDPCs). METHODOLOGY Lipopolysaccharide (LPS) was used for stimulating inflammation in dental pulp tissue in vivo and hDPCs in vitro. Expression levels of GATA4 and γ-H2A.X (a marker for DSBs) were detected at different stages of pulpitis in a rat model and human pulp tissues by immunohistochemistry. Real-time quantitative polymerase chain reaction and Western blot were performed to assess expression of GATA4 and γ-H2A.X and the activation of nuclear factor κB (NF-κB) in hDPCs stimulated by LPS. The comet assay was used for detecting the extent of DSBs in hDPCs. Immunocytochemistry and Western blot were utilized to evaluate expression of γ-H2A.X and GATA4 and activation of NF-κB in hDPCs pre-treated with inhibitors of DNA damage response or transfected with GATA4 small interfering RNA before the treatment of LPS. Data were analysed statistically using one-way anova or Kruskal-Wallis tests. RESULTS The expression of GATA4 and activation of DNA damage response and NF-κB in inflamed pulp tissue and LPS-treated hDPCs were identified. Significantly decreased expression of GATA4 and significantly decreased inflammatory processes in hDPCs were demonstrated via suppression of DNA damage response (P < 0.05). In GATA4-knockdown cells, the expression of γ-H2A.X did not change, but nuclear translocation of p65 was significantly suppressed (P < 0.05) upon induction by LPS. CONCLUSIONS Lipopolysaccharide-induced DSBs activated the NF-κB signalling pathway in hDPCs, and GATA4 acts as a positive moderator of the progress. The involvement of GATA4 in this pathology may serve as a therapeutic target in pulpitis.
Collapse
Affiliation(s)
- W Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Q Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Xu F, Qiao L, Zhao Y, Chen W, Hong S, Pan J, Jiang B. The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther 2019; 10:134. [PMID: 31109358 PMCID: PMC6528367 DOI: 10.1186/s13287-019-1247-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Concentrated growth factor (CGF), as a natural biomaterial, is known to contain platelets, cytokines, and growth factors to facilitate the healing process, but there has been little information acquired in regenerative endodontics. The purpose of this study was to investigate the effects of CGF on proliferation, migration, and differentiation in human dental stem pulp cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro and its potential role in pulp regeneration of the immature teeth in vivo. Methods In vitro experiments: CGF-conditioned medium were extracted by freeze-dried method. hDPSCs were isolated and identified. The proliferative potential of hDPSCs with different concentration of CGF and LPS was evaluated by Cell Counting Kit-8. Migration capacity was analyzed by Transwell assays, odonto/osteoblastic differentiation was determined by measuring alkaline phosphatase (ALP) activity using ALP staining, and the extent of mineralization was evaluated by using Alizarin red S staining. The mRNA expression level of DMP-1, DSPP, OPN, Runx2, and OCN were determined by quantitative polymerase chain reaction (qPCR). In vivo experiments: CGF were used as root canal filling agent of the immature single-rooted teeth in the beagle dogs. The teeth were then radiographed, extracted, fixed, demineralized, and subjected to histologic analyses at 8 weeks. The newly formed dentine-pulp complex and the development of apical foramen were evaluated by the hematoxylin-eosin (HE) and Masson trichrome technique. Soft tissues were analyzed by immunohistochemical staining of vascular endothelial growth factor (VEGF) and Nestin. Results In vitro experiments: The cultured cells exhibited the characteristics of mesenchymal stem cell. The treatment of LPS significantly increased the expression of TNF-α, IL-1β, IL-6, and IL-8 in hDPSCs, and CGF inhibited the mRNA expression of IL-8 in LPS-stimulated hDPSCs. The proliferation values of the CGF group in LPS-stimulated hDPSCs were significantly higher than that of the control group from day 3 to day 7 (P < 0.05). In addition, the number of migratory cells of the CGF group was greater than that of the control group at 24 h with or without LPS treatment. ALP activities increased gradually in both groups from day 4 to day 7. The mineralized nodules and the expression of odontogenesis-related genes DMP-1 and DSPP, osteogenesis-related genes OPN, Runx2, and OCN were dramatically enhanced by CGF in LPS-stimulated hDPSCs at days 21 and 28. In vivo experiments: In CGF treated group, the results of radiograph, HE, and Masson trichrome staining showed a continuing developed tooth of the immature teeth in the beagle dogs (i.e., the ingrowth of soft tissues into the root canal, the thickened internal root dentin walls, and the closed apex), which resembled the normal tooth development in the positive control group. The immunohistochemical staining showed that VEGF and Nestin were both moderately expressed in the regenerated pulp-like tissues which indicating the vascularization and innervation. Conclusions CGF has a positive effect on the proliferation, migration, and differentiation of hDPSCs exposed to LPS in vitro, and it can also promote the regeneration of dentine-pulp complex of the immature teeth in the beagle dogs in vivo. Therefore, CGF could be a promising alternative biomaterial in regenerative endodontics.
Collapse
Affiliation(s)
- Fangfang Xu
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Lu Qiao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yumei Zhao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Weiting Chen
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Shebing Hong
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Jing Pan
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Beizhan Jiang
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China.
| |
Collapse
|
21
|
Takanche JS, Kim JS, Kim JE, Han SH, Yi HK. Schisandrin C enhances odontoblastic differentiation through autophagy and mitochondrial biogenesis in human dental pulp cells. Arch Oral Biol 2018; 88:60-66. [PMID: 29407753 DOI: 10.1016/j.archoralbio.2018.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To investigate the role of Schisandrin C in odontoblastic differentiation, and its relations between autophagy and mitochondrial biogenesis in human dental pulp cells (HPDCs). DESIGN Fresh third molars were used, and cultured for HDPCs. Western blotting technique, Alizarin red S staining, alkaline phosphatase (ALP) activity, and confocal microscopy were used to detect autophagy, mitochondrial biogenesis, and odontoblastic differentiation. To understand the mechanism of Schisandrin C, the HDPCs were treated with lipopolysaccharide (LPS), autophagy and heme oxygenase-1 (HO-1) inhibitors: 3-Methyladenine (3-MA) and Zinc protoporphyrin IX (ZnPP), respectively. RESULTS LPS decreased the expression of autophagy molecules [autophagy protein 5 (ATG-5), beclin-1, and microtubule-associated protein 1A/1B light chain 3 (LC3-I/II)] and mitochondrial biogenesis molecules [heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)], and disrupted odontoblastic differentiation. The down-regulation of autophagy and mitochondrial biogenesis with 3-MA and ZnPP inhibited odontoblastic differentiation. However, Schisandrin C restored the expression of all the above molecules, even with LPS and inhibitor treatment. This result demonstrates that autophagy and mitochondrial biogenesis plays an essential role in odontoblastic differentiation, and Schisandrin C activates these systems to promote odontoblastic differentiation of HDPCs. CONCLUSION Schisandrin C has potential characters to regulate odontoblastic differentiation, and may be recommended for use as a compound for pulp homeostasis.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong-Seok Kim
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - S-H Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumseong, Republic of Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
22
|
Kim JE, Takanche JS, Yun BS, Yi HK. Anti-inflammatory character of Phelligridin D modulates periodontal regeneration in lipopolysaccharide-induced human periodontal ligament cells. J Periodontal Res 2018; 53:816-824. [PMID: 29851069 DOI: 10.1111/jre.12570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Phelligridin D is a hispidin analogue from the mushroom Phellinus baumii that is widely used as a food source in East Asia. This study tested phelligridin D for the anti-inflammatory effect and mechanism in lipopolysaccharide (LPS)-induced human periodontal ligament cells (HPDLCs). The objective of this study was to clarify whether the anti-inflammatory function of phelligridin D affects periodontal regeneration for supporting the HPDLCs of teeth. MATERIAL AND METHODS Primary HPDLCs were isolated from healthy teeth and then cultured. The anti-inflammatory function, mechanism and differentiation molecules were verified with reactive oxygen species generation and western blot analysis in LPS-induced HPDLCs. RESULTS HPDLCs showed increased inflammatory molecules (intracellular adhesion molecule-1 and vascular cell adhesion molecule-1) and decreased osteogenic proteins (bone morphogenetic protein-7, Osterix and runt-related transcription factor 2) by LPS treatment. Phelligridin D decreased inflammatory molecules and increased osteogenic molecules via downregulation of the extracellular signal-regulated kinase and c-jun N-terminal kinases pathway among the mitogen-activated protein kinase, followed by blocking of nuclear factor kappa-B translocation from cytosol to nucleus. In addition, phelligridin D showed antioxidant properties by reducing reactive oxygen species activity. Finally, the anti-inflammatory and antioxidant function of phelligridin D promoted the periodontal differentiation of HPDLCs. CONCLUSION These results suggest that phelligridin D supports teeth on the alveolar bone against outside stress, and may be used as an anti-inflammatory compound for the prevention of periodontitis or periodontal regenerative related disease.
Collapse
Affiliation(s)
- J-E Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - J-S Takanche
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - B-S Yun
- Division of Biotechnology, College of Environmental & Biosource Science, Chonbuk National University, Jeonju, South Korea
| | - H-K Yi
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
23
|
Wu K, Yang Y, Liu D, Qi Y, Zhang C, Zhao J, Zhao S. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget 2018; 7:44572-44582. [PMID: 27323819 PMCID: PMC5190119 DOI: 10.18632/oncotarget.10067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/29/2016] [Indexed: 01/07/2023] Open
Abstract
Although substantial studies on peroxisome proliferator-activated receptor γ (PPARγ) have focused on the mechanisms by which PPARγ regulates glucose and lipid metabolism, recent reports have suggested that PPARγ shows tumorigenic or antitumorigenic effects. The roles and mechanisms of PPARγ activation in esophageal cancer remain unclarified. EC109 and TE10 esophageal cancer cells were treated with 0, 10, 20 and 40 mM of PPARγ agonist rosiglitazone (RGZ) for 24, 48, and 72 h, and the cell viability and apoptosis were detected using methyl thiazolyl tetrazolium (MTT) assay and Flow cytometric (FCM) analysis, respectively. Moreover, the effects of inhibition of PPARγ by antagonist or specific RNA interference on cell viability, apoptosis, the Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways were evaluated. Additionally, the effect of TLR4 signaling on the MAPK pathway, cell viability and apoptosis was assessed. The results showed that RGZ suppressed proliferation and induced apoptosis of esophageal cancer cells, which could be partly restored by inactivation of PPARγ. RGZ suppressed the MAPK and TLR4 pathways, and the inhibitory effect could be counteracted by PPARγ antagonist or specific RNA interference. We also suggested that MAPK activation was regulated by the TLR4 pathway and that blocking the TLR4 and MAPK pathways significantly suppressed proliferation and induced apoptosis of esophageal cancer cells. In conclusion, our data suggested that activation of PPARγ suppressed proliferation and induced apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway.
Collapse
Affiliation(s)
- Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
24
|
Tan Y, Zhang H, Guo D, Wang J, Yuan X, Yuan Z. Adipophilin Involved in Lipopolysaccharide-Induced Inflammation in RAW264.7 Cell via Extracellular Signal-Regulated Kinase 1/2-Peroxisome Proliferator-Activated Receptor Gamma Pathway. DNA Cell Biol 2017; 36:1159-1167. [DOI: 10.1089/dna.2017.3706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yanmei Tan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
- Department of Pathology, Changde Vocational Technical College, Changde, China
| | - Hai Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Dongming Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Jiangbo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Xu Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Zhonghua Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| |
Collapse
|
25
|
Takanche JS, Lee YH, Kim JS, Kim JE, Han SH, Lee SW, Yi HK. Anti-inflammatory and antioxidant properties of Schisandrin C promote mitochondrial biogenesis in human dental pulp cells. Int Endod J 2017; 51:438-447. [PMID: 28898431 DOI: 10.1111/iej.12861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/07/2017] [Indexed: 01/30/2023]
Abstract
AIM To examine the properties of Schisandrin C as an anti-inflammatory and antioxidant compound, and whether its characteristics promote mitochondrial biogenesis in human dental pulp cells (HDPCs). METHODOLOGY HDPCs were extracted from fresh third molars and cultured for experiments. Reactive oxidative stress (ROS) and nitric oxide (NO) formation were analysed by a Muse cell analyser. Western blotting and gelatin zymography were used to identify the presence of antioxidants, as well as anti-inflammatory and mitochondrial biogenesis with specific antibody. An unpaired Student's t-test was used for statistical analysis. RESULTS Schisandrin C inhibited lipopolysaccharide-stimulated inflammatory molecules; interleukin 1 beta, tumour necrosis factor alpha, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, matrix metalloproteinase-2 and -9, NO production, ROS formation, nuclear factor kappa B translocation (P < 0.05) through the mitogen-activated protein kinase pathway. Schisandrin C increased the expression of superoxide dismutase enzymes as well as haem oxygenase-1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha through the phosphorylated-protein kinase B (p-Akt) and nuclear factor erythroid 2-related factor-2 pathways (P < 0.05). The anti-inflammatory and antioxidant properties of Schisandrin C promoted mitochondrial biogenesis. CONCLUSIONS Schisandrin C has the potential to reduce inflammation and oxidation and to promote mitochondrial biogenesis. Therefore, Schisandrin C may be considered for use as an anti-inflammatory compound for oral inflammation through mitochondrial biogenesis.
Collapse
Affiliation(s)
- J S Takanche
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Y-H Lee
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J-S Kim
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J-E Kim
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - S-H Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumsung, Korea
| | - S-W Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumsung, Korea
| | - H-K Yi
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
26
|
PPARα/γ antagonists reverse the ameliorative effects of osthole on hepatic lipid metabolism and inflammatory response in steatohepatitic rats. Inflammopharmacology 2017; 26:425-433. [PMID: 28236037 DOI: 10.1007/s10787-017-0327-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/11/2017] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that osthole may ameliorate the hepatic lipid metabolism and inflammatory response in nonalcoholic steatohepatitic rats, but the underlying mechanisms remain unclear. This study aimed to determine whether the effects of osthole were mediated by the activation of hepatic peroxisome proliferator-activated receptor α/γ (PPARα/γ). A rat model with steatohepatitis was induced by orally feeding high-fat and high-sucrose emulsion for 6 weeks. These experimental rats were then treated with osthole (20 mg/kg), PPARα antagonist MK886 (1 mg/kg) plus osthole (20 mg/kg), PPARγ antagonist GW9662 (1 mg/kg) plus osthole (20 mg/kg) and MK886 (1 mg/kg) plus GW9662 (1 mg/kg) plus osthole (20 mg/kg) for 4 weeks. The results showed that after osthole treatment, the hepatic triglycerides, free fatty acids, tumor necrosis factor-α, monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-8 and liver index decreased by 52.3, 31.0, 32.4, 28.9, 36.3, 29.3 and 29.9%, respectively, and the score of steatohepatitis also decreased by 70.0%, indicating that osthole improved the hepatic steatosis and inflammation. However, these effects of osthole were reduced or abrogated after simultaneous addition of the specific PPARα antagonist MK886 or/and the PPARγ antagonist GW9662, especially in the co-PPARα/γ antagonists-treated group. Importantly, the osthole-induced hepatic expressions of PPARα/γ proteins were decreased, and the osthole-regulated hepatic expressions of lipogenic and inflammatory gene proteins were also reversed by PPARα/γ antagonist treatment. These findings demonstrated that the ameliorative effect of osthole on nonalcoholic steatohepatitis was mediated by PPARα/γ activation, and osthole might be a natural dual PPARα/γ activator.
Collapse
|
27
|
Zhang W, Shen XY, Zhang WW, Chen H, Xu WP, Wei W. The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level. Toxicol Mech Methods 2017; 27:245-252. [PMID: 27996362 DOI: 10.1080/15376516.2016.1273427] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wang Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology of Anhui Medical University, Hefei, Anhui, China
| | - Xin-Yue Shen
- Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Wen Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology of Anhui Medical University, Hefei, Anhui, China
| | - Hao Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology of Anhui Medical University, Hefei, Anhui, China
| | - Wei-Ping Xu
- Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
28
|
Zhai X, Chen X, Lu J, Zhang Y, Sun X, Huang Q, Wang Q. Hydrogen-rich saline improves non‑alcoholic fatty liver disease by alleviating oxidative stress and activating hepatic PPARα and PPARγ. Mol Med Rep 2017; 15:1305-1312. [PMID: 28098910 DOI: 10.3892/mmr.2017.6120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a range of liver diseases, between steatosis and non‑alcoholic steatohepatitis and liver cirrhosis, which are closely associated with diabetes mellitus. Previous studies have indicated that oxidative stress is a key factor in the development of NAFLD. Molecular hydrogen (H2) may ameliorate oxidative stress injuries by selectively neutralizing peroxynitrite and hydroxyl radicals. The present study evaluated the effects of H2 on NAFLD in rats and concluded that H2‑rich saline had significant therapeutic effects on NAFLD induced by hyperglycemia and hyperlipidemia, as demonstrated by hematoxylin and eosin and terminal deoxynucleotidyl-transferase‑mediated dUTP nick end labeling staining. H2‑rich saline improved fasting blood glucose, fasting insulin, insulin sensitivity and glucose tolerance, and lowered the expression levels of tumor necrosis factor alpha, interleukin‑1 beta, 3‑nitrotyrosine and 8‑hydroxy‑2'‑deoxyguanosine in the liver. In addition, the present study revealed that H2‑rich saline could significantly increase peroxisome proliferator‑activated receptor (PPAR) α and PPARγ expression in hepatocytes. In conclusion, H2‑rich saline may significantly improve NAFLD, possibly by reducing oxidative stress and activating hepatic PPARα and PPARγ expression.
Collapse
Affiliation(s)
- Xiao Zhai
- Graduate Management Unit, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiao Chen
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiancan Lu
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yaping Zhang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xuejun Sun
- Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qijin Wang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
29
|
Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis. Inflammation 2016; 38:2105-15. [PMID: 26047949 DOI: 10.1007/s10753-015-0193-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.
Collapse
|
30
|
Yin G, Huang J, Ma M, Suo X, Huang Z. Oyster crude polysaccharides attenuates lipopolysaccharide-induced cytokines production and PPARγ expression in weanling piglets. SPRINGERPLUS 2016; 5:677. [PMID: 27350914 PMCID: PMC4899395 DOI: 10.1186/s40064-016-2319-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/10/2016] [Indexed: 11/21/2022]
Abstract
This study evaluated whether oyster crude polysaccharides (OPS) attenuates lipopolysaccharide (LPS)-induced immune stress in weanling piglets. Thirty healthy crossbred piglets (28 ± 1 days old) were randomly divided into five groups (6 piglets/group). Blank control and LPS groups were fed with the basal diet, while low, medium and high dose of OPS groups were fed with the basal diet supplemented with 0.5, 0.8 and 1.2 % OPS, respectively, for 30 days. LPS group, as well as low, medium and high dose of OPS groups were then injected intraperitoneally with LPS (100 μg/kg body weight), whereas the blank control group was given phosphate buffered saline. The concentrations of TNF-α, IL-1β and IL-6 in plasma were detected by ELISA. The mRNA levels of PPARγ in liver, spleen, adrenal gland and thymus were evaluated by quantitative real-time PCR. The results showed that compared with the blank control, LPS treatment significantly increased plasma IL-1β, IL-6 and TNF-α levels, which was significantly attenuated by supplementing 0.5, 0.8 or 1.2 % OPS in the diet. In addition, LPS significantly induced expression of PPARγ mRNA in liver, spleen, adrenal gland, and thymus, which was blocked by adding OPS regardless of the doses. These results indicate that dietary supplementation of OPS was able to alleviate the immune stress induced by LPS.
Collapse
Affiliation(s)
- Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Juhui Huang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Maotao Ma
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| |
Collapse
|
31
|
Abstract
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Collapse
|
32
|
Cheng R, Choudhury D, Liu C, Billet S, Hu T, Bhowmick NA. Gingival fibroblasts resist apoptosis in response to oxidative stress in a model of periodontal diseases. Cell Death Discov 2015; 1:15046. [PMID: 27551475 PMCID: PMC4979524 DOI: 10.1038/cddiscovery.2015.46] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/17/2015] [Indexed: 02/05/2023] Open
Abstract
Periodontal diseases are classified as inflammation affecting the supporting tissue of teeth, which eventually leads to tooth loss. Mild reversible gingivitis and severe irreversible periodontitis are the most common periodontal diseases. Periodontal pathogens initiate the diseases. The bacterial toxin, lipopolysaccharide (LPS), triggers the inflammatory response and leads to oxidative stress. However, the progress of oxidative stress in periodontal diseases is unknown. The purpose of this study is to examine oxidative stress and cell damage in gingivitis and periodontitis. Our results showed that LPS increases reactive oxygen species (ROS) accumulation in gingival fibroblast (GF). However, oxidative stress resulting from excessive ROS did not influence DNA damage and cell apoptosis within 24 h. The mechanism may be related to the increased expression of DNA repair genes, Ogg1, Neil1 and Rad50. Detection of apoptosis-related proteins also showed anti-apoptotic effects and pro-apoptotic effects were balanced. The earliest damage appeared in DNA when increased γH2AX, an early biomarker for DNA damage, was detected in the LPS group after 48 h. Later, when recurrent inflammation persisted, 8-OHdG, a biomarker for oxidative stress was much higher in periodontitis model compared to the control in vivo. Staining of 8-OHdG in human periodontitis specimens confirmed the results. Furthermore, TUNEL staining of apoptotic cells indicated that the periodontitis model induced more cell apoptosis in gingival tissue. This suggested GF could resist early and acute inflammation (gingivitis), which was regarded as reversible, but recurrent and chronic inflammation (periodontitis) led to permanent cell damage and death.
Collapse
Affiliation(s)
- R Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - D Choudhury
- Cedars-Sinai Medical Center , Los Angeles, CA, USA
| | - C Liu
- Cedars-Sinai Medical Center, Los Angeles, CA, USA; Affiliated Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - S Billet
- Cedars-Sinai Medical Center , Los Angeles, CA, USA
| | - T Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - N A Bhowmick
- Cedars-Sinai Medical Center , Los Angeles, CA, USA
| |
Collapse
|
33
|
Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediators Inflamm 2015; 2015:230251. [PMID: 26538821 PMCID: PMC4619960 DOI: 10.1155/2015/230251] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023] Open
Abstract
Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.
Collapse
|
34
|
Soares DG, Basso FG, Scheffel DS, Hebling J, de Souza Costa CA. Responses of human dental pulp cells after application of a low-concentration bleaching gel to enamel. Arch Oral Biol 2015; 60:1428-36. [DOI: 10.1016/j.archoralbio.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/28/2015] [Accepted: 06/14/2015] [Indexed: 01/17/2023]
|
35
|
de Lima CL, Coelho MS, Royer C, Resende AP, Borges GA, Rodrigues da Silva J, Amato AA, Guerra E, Neves FDAR, Acevedo AC. Rosiglitazone Inhibits Proliferation and Induces Osteopontin Gene Expression in Human Dental Pulp Cells. J Endod 2015; 41:1486-91. [DOI: 10.1016/j.joen.2015.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
|
36
|
Liu SL, Peng BJ, Zhong YL, Liu YL, Song Z, Wang Z. Effect of 5-caffeoylquinic acid on the NF-κB signaling pathway, peroxisome proliferator-activated receptor gamma 2, and macrophage infiltration in high-fat diet-fed Sprague-Dawley rat adipose tissue. Food Funct 2015; 6:2779-86. [PMID: 26158223 DOI: 10.1039/c5fo00626k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity, considered as a consequence of overnutrition, sustains a low-degree inflammatory state and results in insulin-resistance and type 2 diabetes. Here, we investigated the anti-inflammatory effects of 5-caffeoylquinic acid (5-CQA) in high-fat diet-induced obese rats. Serum interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), total cholesterol (TC), triglyceride (TG), and free fatty acid (FFA) levels were determined. Expression of genes related to TG metabolism, macrophage biomarkers, and inflammation was assessed by real-time PCR. Protein expression of NF-κB, PPARγ2, and phosphorylated IκBα was evaluated by western blotting, and the histology of adipose tissue was examined. Supplementation of the rat diet with 5-CQA reduced obesity development, macrophage infiltration, and steatosis. Additionally, 5-CQA decreased the expression of NF-κB and downstream inflammatory cytokines, but increased the expression of PPARγ2, in a dose-dependent manner. Thus, 5-CQA improved obesity and obesity-related metabolic disturbances via PPARγ2 and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Si-Le Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | | | | | | | | | | |
Collapse
|
37
|
Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-kB activation. Int Immunopharmacol 2015; 28:270-8. [PMID: 26072062 DOI: 10.1016/j.intimp.2015.05.051] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 11/22/2022]
Abstract
Acute lung injury (ALI) has a high morbidity and mortality rate due to the serious inflammation and edema occurred in lung. Magnolol extracted from Magnolia officinalis, has been reported to exhibit anti-inflammatory, and antioxidant activities. Peroxisome proliferator-activated receptors (PPARs) are known to exert a cytoprotective effect against cellular inflammatory stress and oxidative injury. The aim of this study was to explore the involvement of PPAR-γ in the beneficial effect of magnolol in lipopolysaccharide (LPS)-induced ALI. We found that treatment with magnolol greatly improved the pathological features of ALI evidenced by reduction of lung edema, polymorphonuclear neutrophil infiltration, ROS production, the levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), the expression of iNOS and COX-2, and NF-κB activation in lungs exposed to LPS. Importantly, magnolol is capable of increasing the PPAR-γ expression and activity in lungs of ALI. However, blocking PPAR-γ activity with GW9662 markedly abolished the protective and anti-inflammatory effects of magnolol. Taken together, the present study provides a novel mechanism accounting for the protective effect of magnolol in LPS-induced ALI is at least partly attributed to induction of PPAR-γ in lungs, and in turn suppressing NF-κB-related inflammatory responses.
Collapse
|
38
|
Kim J, Yoon SP, Toews ML, Imig JD, Hwang SH, Hammock BD, Padanilam BJ. Pharmacological inhibition of soluble epoxide hydrolase prevents renal interstitial fibrogenesis in obstructive nephropathy. Am J Physiol Renal Physiol 2014; 308:F131-9. [PMID: 25377915 DOI: 10.1152/ajprenal.00531.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Treating chronic kidney disease (CKD) has been challenging because of its pathogenic complexity. Epoxyeicosatrienoic acids (EETs) are cytochrome P-450-dependent derivatives of arachidonic acid with antihypertensive, anti-inflammatory, and profibrinolytic functions. We recently reported that genetic ablation of soluble epoxide hydrolase (sEH), an enzyme that converts EETs to less active dihydroxyeicosatrienoic acids, prevents renal tubulointerstitial fibrosis and inflammation in experimental mouse models of CKD. Here, we tested the hypothesis that pharmacological inhibition of sEH after unilateral ureteral obstruction (UUO) would attenuate tubulointerstitial fibrosis and inflammation in mouse kidneys and may provide a novel approach to manage the progression of CKD. Inhibition of sEH enhanced levels of EET regioisomers and abolished tubulointerstitial fibrosis, as demonstrated by reduced collagen deposition and myofibroblast formation after UUO. The inflammatory response was also attenuated, as demonstrated by decreased influx of neutrophils and macrophages and decreased expression of inflammatory cytokines keratinocyte chemoattractant, macrophage inflammatory protein-2, monocyte chemotactic protein-1, TNF-α, and ICAM-1 in kidneys after UUO. UUO upregulated transforming growth factor-β1/Smad3 signaling and induced NF-κB activation, oxidative stress, tubular injury, and apoptosis; in contrast, it downregulated antifibrotic factors, including peroxisome proliferator-activated receptor (PPAR) isoforms, especially PPAR-γ. sEH inhibition mitigated the aforementioned malevolent effects in UUO kidneys. These data demonstrate that pharmacological inhibition of sEH promotes anti-inflammatory and fibroprotective effects in UUO kidneys by preventing tubular injury, downregulation of NF-κB, transforming growth factor-β1/Smad3, and inflammatory signaling pathways, and activation of PPAR isoforms. Our data suggest the potential use of sEH inhibitors in treating fibrogenesis in the UUO model of CKD.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - John D Imig
- Department of Pharmacology and Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sung Hee Hwang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
39
|
Kim J, Imig JD, Yang J, Hammock BD, Padanilam BJ. Inhibition of soluble epoxide hydrolase prevents renal interstitial fibrosis and inflammation. Am J Physiol Renal Physiol 2014; 307:F971-80. [PMID: 25164080 PMCID: PMC4200297 DOI: 10.1152/ajprenal.00256.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/15/2014] [Indexed: 11/22/2022] Open
Abstract
The pathophysiological events that lead to renal interstitial fibrogenesis are incompletely understood. Epoxyeicosatrienoic acid (EET), an arachidonic acid metabolite, has anti-inflammatory and profibrinolytic functions. Soluble epoxide hydrolase (sEH) converts EET to less active dihydroxyeicosatrienoic acid. Here, we tested the hypothesis that sEH deficiency would prevent tubulointerstitial fibrosis and inflammation induced by unilateral ureteral obstruction (UUO) in mouse kidneys. The loss of sEH enhanced levels of EET regioisomers and abolished tubulointerstitial fibrosis as demonstrated by reduced collagen deposition and myofibroblast formation at 3 and 10 days after UUO. The inflammatory response was prevented as demonstrated by decreased influx of neutrophil and macrophage, expression of inflammatory cytokines, and chemotactic factors in sEH-deficient UUO kidneys. Pharmacological inhibition of sEH also prevented inflammation and fibrosis after UUO. Next, we delved into the molecular mechanisms piloting the beneficial effects of sEH deficiency in renal fibrosis. UUO upregulated profibrotic factors associated with transforming growth factor (TGF)-β1/Smad3 signaling, oxidative stress, and NF-κB activation, and downregulated antifibrotic factors including peroxisome proliferator-activated receptor (PPAR) isoforms, especially PPARγ, but the loss of sEH prevented these adverse effects in UUO kidneys. Furthermore, administration of PPAR antagonists enhanced myofibroblast formation and activation of Smad3 and NF-κB p65, effects that were prevented by sEH deficiency in UUO kidneys. These data demonstrate that loss of sEH promotes anti-inflammatory and fibroprotective effects in UUO kidneys via activation of PPAR isoforms and downregulation of NF-κB, TGF-β1/Smad3, and inflammatory signaling pathways. Our data suggest the potential use of sEH inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea
| | - John D Imig
- Department of Pharmacology and Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
40
|
Zhao X, Xue J, Wang XL, Zhang Y, Deng M, Xie ML. Involvement of hepatic peroxisome proliferator-activated receptor α/γ in the therapeutic effect of osthole on high-fat and high-sucrose-induced steatohepatitis in rats. Int Immunopharmacol 2014; 22:176-81. [DOI: 10.1016/j.intimp.2014.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/31/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
|
41
|
Paudel U, Lee YH, Kwon TH, Park NH, Yun BS, Hwang PH, Yi HK. Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition. Oral Dis 2014; 20:827-32. [PMID: 24924779 DOI: 10.1111/odi.12266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/31/2014] [Accepted: 05/20/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to elucidate the role of 6-6 bieckol (EB1) and pholorofucofuroeckol-A (EB5) from brown seaweed marine algae (Eisenia bicyclis) on lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (HDPCs). METHODS The cytotoxicity of EB1 and EB5 was examined by MTT assay on LPS-induced human dental pulp cells. Their role on expression of inflammatory, odontogenic, and osteogenic molecules was determined by Western blot analysis. The dentin mineralization was checked by alkaline phosphatase activity. RESULTS The five compounds from E. bicyclis have different structure with non-cytotoxic in HDPCs. EB1 and EB5 showed anti-inflammatory properties and inhibited phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) and phosphorylated-c-jun N-terminal kinases (p-JNK) without any cytotoxicity. In particular, EB1 inhibited cyclooxygenase-2 (COX-2) and p-ERK1/2 signaling, and EB5 inhibited only p-ERK1/2 signaling but not COX-2. Both compounds inhibited nuclear factor kappa-B (NF-κB) translocation. Furthermore, EB1 and EB5 increased dentinogenic and osteogenic molecules, and dentin mineralized via alkaline phosphatase activity (ALP) in LPS-induced HDPCs. CONCLUSIONS This study elucidates that EB1 and EB5 have different types of anti-inflammatory property and help in dentin formation. Therefore, these compounds derived from marine algae of E. bicyclis may be used as selective therapeutic strategies for pulpitis and oral diseases.
Collapse
Affiliation(s)
- U Paudel
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 program, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Feng X, Feng G, Xing J, Shen B, Tan W, Huang D, Lu X, Tao T, Zhang J, Li L, Gu Z. Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). Cell Tissue Res 2014; 356:369-80. [DOI: 10.1007/s00441-014-1799-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 01/09/2023]
|
43
|
Miao SH, Sun HB, Ye Y, Yang JJ, Shi YW, Lu M, Hu G, Zhou JW. Astrocytic JWA expression is essential to dopaminergic neuron survival in the pathogenesis of Parkinson's disease. CNS Neurosci Ther 2014; 20:754-62. [PMID: 24628733 DOI: 10.1111/cns.12249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/09/2014] [Accepted: 02/13/2014] [Indexed: 12/26/2022] Open
Abstract
AIMS To investigate the role of astrocytic JWA expression in dopaminergic (DA) neuron degeneration and in the pathogenesis of Parkinson's disease (PD). METHODS Conditional astrocytic JWA null (JWA∆2/∆2/GFAP-Cre) mice and U251 glioma cells were used to evaluate the effects of JWA gene on DA neuron degeneration. The oxidative stress-driven molecular events were determined in both in vivo and in vitro models. RESULTS Conditional astrocytic JWA knockout resulted in significant activation of astrocytes measured by increase in glial fibrillary acidic protein-positive cells (1.34×10(3)±74.5 vs. 8.44×10(3)±1.35×10(3), P<0.01) in mouse substantia nigra, accompanied by loss of DA neurons (1.03×10(4)±238 vs. 6.17×10(3)±392, P<0.001). Deficiency of JWA significantly aggravated reactive oxygen species (ROS) accumulation in substantia nigra compared with the wild-type mice. Increasing JWA expression in U251 glioma cells inhibited ROS with a concomitant increase in intracellular glutathione. Furthermore, suppression of IKKβ-nuclear factor (NF)-κB signaling pathway was shown to regulate JWA in a PD model. CONCLUSIONS The JWA gene exerts neuroprotective roles against DA neuronal degeneration via modulating intracellular redox status and NF-κB signaling pathway and is a potential treatment target for PD.
Collapse
Affiliation(s)
- Shu-Han Miao
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rosiglitazone regulates anti-inflammation and growth inhibition via PTEN. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787924. [PMID: 24757676 PMCID: PMC3971553 DOI: 10.1155/2014/787924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/18/2014] [Accepted: 02/01/2014] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) agonist has anti-inflammatory and anticancer properties. However, the mechanisms by which PPARγ agonist rosiglitazone interferes with inflammation and cancer via phosphatase and tensin homolog-(PTEN)-dependent pathway remain unclear. We found that lower doses (<25 μ M) of rosiglitazone significantly inhibited lipopolysaccharide-(LPS)-induced nitric oxide (NO) release (via inducible nitric oxide synthase, iNOS), prostaglandin E2 (PGE2) production (via cyclooxygenase-2, COX-2), and activation of Akt in RAW 264.7 murine macrophages. However, rosiglitazone did not inhibit the production of reactive oxygen species (ROS). In PTEN knockdown (shPTEN) cells exposed to LPS, rosiglitazone did not inhibit NO release, PGE2 production, and activation of Akt. These cells had elevated basal levels of iNOS, COX-2, and ROS. However, higher doses (25-100 μ M) of rosiglitazone, without LPS stimulation, did not block NO release and PGE2 productions, but they inhibited p38 MAPK phosphorylation and blocked ROS generation in shPTEN cells. In addition, rosiglitazone caused G1 arrest and reduced the number of cells in S + G2/M phase, leading to growth inhibition. These results indicate that the anti-inflammatory property of rosiglitazone is related to regulation of PTEN independent of inhibition on ROS production. However, rosiglitazone affected the dependence of PTEN-deficient cell growth on ROS.
Collapse
|
45
|
The survival role of peroxisome proliferator-activated receptor gamma induces odontoblast differentiation against oxidative stress in human dental pulp cells. J Endod 2014; 39:236-41. [PMID: 23321237 DOI: 10.1016/j.joen.2012.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/24/2012] [Accepted: 11/06/2012] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptor gamma (PPARγ) has well-known anti-inflammatory action in human dental pulp cells (HDPCs). The purpose of this study was to investigate whether the anti-inflammatory action of PPARγ involves in cellular cytoprotection and supports odontoblast differentiation under oxidative stress in HDPCs. METHODS To simulate long-term oxidative stress, pulp cells were treated with 150 μmol hydrogen peroxide (H(2)O(2)) for 12 days. The replication deficiency adenovirus (adenovirus PPARγ) was introduced for PPARγ overexpression in pulp cells. The cellular cytotoxicity and reactive oxygen species formation by H(2)O(2) were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 2',7'-dichlorodihydrofluorescein diacetate with fluorescence-activated cell sorting assay. To determine the roles of PPARγ, several molecules of odontogenic/osteogenic and signal pathway were analyzed by reverse-transcription polymerase chain reaction and Western hybridization. Dentin mineralization was determined by alizarin red stain and alkaline phosphatase activity assay. RESULTS Pulp cells treated with long-term H(2)O(2) showed high reactive oxygen species formation, low cell viability, down-expression of antioxidant molecules (Cu/Zn and Mn superoxide dismutase), and odontogenic/osteogenic markers (eg, dentin sialophosphoprotein, dentin matrix protein-1, osteopontin, bone sialoprotein, Runx-2, and bone morphogenetic protein 2 and 7). In addition, pulp cells with oxidative stress underwent the activation of ERK1/2, activator protein-1, and nuclear factor-κB translocation to the nucleus. However, the PPARγ-overexpressed cells gave opposite results although under oxidative stress. Furthermore, PPARγ and its agonist rosiglitazone exhibited an induction of dentin mineralization under oxidative stress. CONCLUSIONS PPARγ in pulp cells increases cell viability, odontoblastic differentiation, and dentin mineralization under oxidative stress. These results offer new insights into the potential antioxidative activity of PPARγ and its agonist for therapeutic agents for pulp vitality in HDPCs.
Collapse
|
46
|
Montoro LA, Turrioni APS, Basso FG, de Souza Costa CA, Hebling J. Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells. Int Endod J 2013; 47:747-55. [PMID: 24215116 DOI: 10.1111/iej.12211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/07/2013] [Indexed: 01/29/2023]
Abstract
AIM To investigate the effect of infrared light-emitting diode (LED) irradiation on the oxidative stress induced in human dental pulp cells (HDPCs) by lipopolysaccharide (LPS). METHODOLOGY Human dental pulp cells (HDPCs) were harvested from sound primary teeth that were near exfoliation. Cells were seeded (10(5) cells cm(-2) ) using α-MEM supplemented with 10% FBS and after 24 h, were placed in contact with LPS (10 μg mL(-1) of culture medium). Immediately afterwards, HDPCs were subjected to a single irradiation with an infrared LED (855 nm) delivering different doses of energy (0, 2, 4, 8, 15 or 30 J cm(-2) ). For each dose, there was a control group without LPS application. Twenty-four hours after irradiation, groups were tested for nitric oxide (NO) quantification, cell viability (MTT assay) and qualitative assessment of reactive oxygen species (ROS). Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α = 0.05). RESULTS Lipopolysaccharide (LPS)-induced stress resulted in significant increase in NO production by HDPC without causing damage to cell respiratory metabolism. Irrespective of energy dose delivered, NO production was significantly reduced when LPS-stressed cells were irradiated with infrared LED (2 J cm(-2) , P = 0.003; 95% CI = 5.84-27.71; 4 J cm(-2) , P = 0.001; 95% CI = 7.52-26.39; 8 J cm(-2) , P = 0.0195; 95% CI = -2.86-16.01; 15 J cm(-2) , P = 0.0001; 95% CI = 12.10-30.96; 30 J cm(-2) , P = 0.007; 95% CI = 5.84-24.71). The highest decrease in NO production was observed when 15 J cm(-2) was delivered to cells. Infrared LED irradiation resulted in a decrease in ROS production, whilst HDPC metabolism was not significantly affected. CONCLUSION Biomodulation of oxidative stress of HPDC can be achieved by irradiation with a single dose of infrared LED. Within the range investigated, 15 J cm(-2) resulted in the least production of NO.
Collapse
Affiliation(s)
- L A Montoro
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
47
|
Cooper PR, Smith AJ. Molecular mediators of pulp inflammation and regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/etp.12036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Lim JH, Ko MM, Lee H, Go HY, Moon TW, Cha MH, Lee MS. Differential Association of Uncoupling Protein 2 Polymorphisms with Pattern Identification among Korean Stroke Patients: A Diagnostic System in Traditional Korean Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:532078. [PMID: 22927880 PMCID: PMC3424818 DOI: 10.1155/2012/532078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 02/08/2023]
Abstract
Uncoupling protein 2 (UCP2), a mitochondrial protein present in many organs and cell types, is known to dissipate the proton gradient formed by the electron transport chain. Its function is correlated with predictive parameters, such as obesity, diabetes, and metabolic syndromes. We analyzed the distribution of UCP2 polymorphisms in stroke patients diagnosed with one of the following four stroke subtypes based on the TKM standard pattern identification (PI): Qi-deficiency (QD), Dampness and Phlegm (D&P), Yin-deficiency (YD), and Fire and Heat (F&D). We studied a total of 1,786 stroke patients (397/QD, 645/D&P, 223/YD, and 522/F&D, 586/normal). Genotyping for the G-1957A, G-866A and A55V UCP2 polymorphisms was performed using the TaqMan. G-866A and A55V were significantly associated with the D&P and H&F subtypes. The frequency of subjects with the A allele of G-866A was significantly lower than the frequency of subjects with the GG type. The A55V polymorphism was also shown similar effect with G-866A in the dominant model. In contrast, no SNPs were shown to be associated with the QD or YD subtypes in this study. These results showed that the G-866A and A55V UCP2 polymorphisms may be genetic factors for specific PI types among Korean stroke patients.
Collapse
Affiliation(s)
- Ji Hye Lim
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Mi Mi Ko
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Hoyoung Lee
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Ho Yeon Go
- Department of Korean Oriental Medicine, Semyung University, 836 Bongbang-dong, Chungju 380-960, Republic of Korea
| | - Tae-Woong Moon
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Min Ho Cha
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Myeong Soo Lee
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| |
Collapse
|