1
|
Stability and remineralization of proteoglycan-infused dentin substrate. Dent Mater 2021; 37:1724-1733. [PMID: 34538503 DOI: 10.1016/j.dental.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study tested the effects of small leucine-rich proteoglycan (SLRP) proteins on phosphoric acid (PA)-treated dentin bonding overtime and the role of such SLRPs in the remineralization potential of demineralized dentin collagen. METHODS Coronal dentin sections of human molars were used. SLRPs were either decorin (DCN) or biglycan (BGN) in core or proteoglycan form (with glycosaminoglycans, GAGs). Groups were: No treatment (control), DCN core, DCN + GAGs, BGN core, BGN + GAGs. Samples were etched with PA for 15 s and prior to application of Adper Single Bond Plus and composite buildup an aliquot of the specific SLRPs was applied over dentin. Twenty-four hours or 6 months after the bonding procedure, samples were tested for microtensile bond strength (MTBS). Debonded beams were analyzed by scanning electron microscopy (SEM). For remineralization studies, dentin blocks were fully demineralized, infused with the SLRPs, placed in artificial saliva for 2 weeks, and evaluated by transmission electron microscopy (TEM). RESULTS MTBS test presented a mean of 51.4 ± 9.1 MPa in control with no statistically significant difference to DCN core (47.6 ± 8.3) and BGN core (48.3 ± 6.5). The full proteoglycan groups DCN + GAGs (27.4 ± 4.5) and BGN + GAGs (36.4 ± 13.6) showed decreased MTBS compared to control (p < 0.001). At 6 months, control or core-treated samples did not have a statistically significant difference in MTBS. However, SLRPs with GAGs showed statistically significant improvement of bonding (62.5 ± 6.0 for DCN and 52.8 ± 8.1 for BGN, p < 0.001) compared to their baseline values. SEM showed that GAGs seem to favor water retention but overtime help remineralization. TEM of demineralized dentin indicated a larger collagen fibril diameter pattern of samples treated with core proteins compared to control and a smaller diameter with DCN + GAGs in water with evidence of mineralization with DCN + GAGS, BGN core and BGN + GAGs. SIGNIFICANCE In conclusion, core proteins seem not to affect dentin adhesion significantly but the presence of GAGs can be detrimental to immediate bonding. However, after ageing of samples, full proteoglycans, particularly DCN, can significantly improve bonding overtime while promoting remineralization which can prove to be clinically beneficial.
Collapse
|
2
|
Silvent J, Robin M, Bussola Tovani C, Wang Y, Soncin F, Delgado S, Azaïs T, Sassoye C, Giraud-Guille MM, Sire JY, Nassif N. Collagen Suprafibrillar Confinement Drives the Activity of Acidic Calcium-Binding Polymers on Apatite Mineralization. Biomacromolecules 2021; 22:2802-2814. [PMID: 34101426 DOI: 10.1021/acs.biomac.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
Collapse
Affiliation(s)
- Jérémie Silvent
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France.,MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Marc Robin
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Yan Wang
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Fabrice Soncin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Sidney Delgado
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Capucine Sassoye
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Marie-Madeleine Giraud-Guille
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Jean-Yves Sire
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| |
Collapse
|
3
|
Qin H, Long J, Zhou J, Wu L, Xie F. Use of phosphorylated PAMAM and carboxyled PAMAM to induce dentin biomimetic remineralization and dentinal tubule occlusion. Dent Mater J 2021; 40:800-807. [PMID: 33642446 DOI: 10.4012/dmj.2020-222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is crucial to emphasize the biomineralization therapeutic method to repair etched dentin in clinic. Non-collagenous proteins (NCPs) play critical role in the biomineralization of dentine. In this paper, we synthesized the phosphate-terminated polyamidoamine dendrimer (PAMAM-PO3H2) by one-step modification successfully and examined by Fourier-transform infrared spectroscopy (FTIR) and 1H-nuclear Magnetic Resonance (1H-NMR) to characterize the structure of PAMAM-PO3H2. PAMAM-PO3H2 and carboxylterminated dendrimers (PAMAM-COOH) were applied as the dual biomimetic analogs of NCPs. Through the characterization of FT-IR, field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), the surfaces of human dentin were covered with regenerated crystals and the dentinal tubules were occluded by PAMAM-PO3H2 and PAMAM-COOH. In summary, the combination of PAMAM-PO3H2 and PAMAM-COOH may be another feasible therapeutic method for the treatment of dentin caries and dentin hypersensitivity.
Collapse
Affiliation(s)
- Hejia Qin
- Department of Endodontics, Stomatological Hospital, Guangxi Medical University
| | - Jindong Long
- Department of Endodontics, Stomatological Hospital, Guangxi Medical University
| | - Jun Zhou
- Department of Endodontics, Stomatological Hospital, Guangxi Medical University
| | - Liuxian Wu
- Department of Endodontics, Stomatological Hospital, Guangxi Medical University
| | - Fangfang Xie
- Department of Endodontics, Stomatological Hospital, Guangxi Medical University
| |
Collapse
|
4
|
Remineralization of Artificial Dentin Caries Using Dentin and Enamel Matrix Proteins. MATERIALS 2019; 12:ma12132116. [PMID: 31266157 PMCID: PMC6651374 DOI: 10.3390/ma12132116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 01/02/2023]
Abstract
To assess the remineralizing potential of dentin matrix proteins and enamel matrix derivatives (DMPs and EMDs) after application on artificially induced dentin lesions, given the hypothesis that these materials increase the mineral uptake, binding, and mineralization. Forty-eight caries-free human premolars were used. Teeth were cut, polished, and embedded, leaving an open window on the root surface, of which one-third was covered with a flowable composite to preserve the healthy untreated dentin. Then, samples were demineralized in Buskes solution for 33 days. A micro-CT scan prior to treatment was performed. Next, the samples were randomly allocated into four groups: (A) An untreated negative control (CON), (B) application of porcine dentin matrix proteins (DMP), (C) treatment with enamel matrix derivatives (EMD, Emdogain, Straumann), and (D) amine fluoride application (AMF, Elmex fluid, GABA). All samples were placed in artificial saliva for 21 days. A second micro-CT scan was performed, after which the change in gray scaling within a defined region of interest (0.25 mm3) was analyzed. ANCOVA was applied to discover statistical differences between the different treatments. Both, treatment with AMF; (P = 0.011 versus CON) as well as with DMP (P = 0.043 versus CON) yielded a statistically significant difference compared to the control treatment. EMD treatment was not found to differ (P > 0.05). Mainly the top layer of the defects showed clear signs of remineralization, which was also evident in CON. This study was able to visually confirm the remineralization potential of demineralized dentin especially after DMP application, which, however, did not outperform AMF. Based on this, additional studies combining proteins and fluorides are now warranted and ongoing.
Collapse
|
5
|
Ramachandran A, He K, Huang CC, Shahbazian-Yassar R, Shokuhfar T, George A. TRIP-1 in the extracellular matrix promotes nucleation of calcium phosphate polymorphs. Connect Tissue Res 2018; 59:13-19. [PMID: 29745814 DOI: 10.1080/03008207.2018.1424146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In search for bone and dentin extracellular matrix (ECM) proteins, transforming growth factor beta receptor II interacting protein 1 (TRIP-1) was identified as a novel protein synthesized by osteoblasts and odontoblasts and exported to the ECM. TRIP-1 is a WD-40 (WD is Tryptophan-Aspartic acid dipeptide) protein that has been well recognized for its physiological role in the endoplasmic reticulum (ER). In the ER, TRIP-1 functions as an essential subunit of eukaryotic elongation initiation factor 3 and is involved in the protein translational machinery. Recently, we reported that TRIP-1 is localized in the ECM of bone and dentin. In this study, we demonstrate that varying concentrations of TRIP-1 can participate in the nucleation of calcium phosphate polymorphs. Nucleation studies performed with high calcium and phosphate concentration demonstrated that recombinant TRIP-1 could orchestrate the formation of hydroxyapatite crystals. Nucleation experiments performed on demineralized and deproteinized dentin wafer under physiological conditions and subsequent transmission electron microscope analysis of the deposits at the end of 7 and 14 days showed that TRIP-1 promoted the deposition of calcium phosphate mineral aggregates in the gap-overlap region of type I collagen. Taken together, we provide mechanistic insight into the role of this intracellular protein in matrix mineralization.
Collapse
Affiliation(s)
- Amsaveni Ramachandran
- a Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology , University of Illinois at Chicago , Chicago , IL , USA
| | - Kun He
- b Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , IL , USA
| | - Chun-Chieh Huang
- a Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology , University of Illinois at Chicago , Chicago , IL , USA
| | - Reza Shahbazian-Yassar
- b Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , IL , USA
| | - Tolou Shokuhfar
- c Department of Bioengineering , University of Illinois at Chicago , Chicago , IL , USA
| | - Anne George
- a Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
6
|
Effects of water extracts of Davallia formosana on ovariectomized mice. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Li H, Sun J, Li J, Yang H, Luo X, Chen J, Xie L, Huo F, Zhu T, Guo W, Tian W. Xenogeneic Bio-Root Prompts the Constructive Process Characterized by Macrophage Phenotype Polarization in Rodents and Nonhuman Primates. Adv Healthc Mater 2017; 6. [PMID: 28081294 DOI: 10.1002/adhm.201601112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/24/2016] [Indexed: 02/05/2023]
Abstract
Tissue or organ regeneration using xenogeneic matrices is a promising approach to address the shortage of donor matrices for allotransplantation. Success of such approach has been demonstrated to correlate with macrophage-mediated fibrotic homeostasis and tissue remodeling. The previous studies have demonstrated that treated dentin matrix (TDM) could be a suitable bioactive substrate for allogeneic tooth root regeneration. This study constructed xenogeneic bioengineered tooth root (bio-root) via a combination of porcine TDM (pTDM) with allogeneic dental follicle cells (DFCs). Macrophage phenotypes are used to evaluate the remodeling process of xenogeneic bio-roots in vitro and in vivo. pTDM can facilitate odontoblast differentiation of human derived DFCs. Xenogeneic bio-roots in rat subcutaneous tissue prompt constructive response via M1 macrophage infiltration during early postimplantation stages and increase restorative M2 phenotype at later stages. After implantation of bio-roots into jaws of rhesus monkeys for six months, periodontal ligament-like fibers accompanied by macrophage polarization are observed, which are positive for COL-1, Periostin, βIII-tubulin and display such structures as fibroblasts and blood vessels. The reconstructed bio-root possesses biomechanical properties for the dissipation of masticatory forces. These results support that xenogeneic bio-root could maintain fibrotic homeostasis during remodeling process and highlight the potential application of xenogeneic matrices in regenerative medicine.
Collapse
Affiliation(s)
- Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jie Li
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; College of Stomatology; Chongqing Medical University; Chongqing 401147 China
| | - Hefeng Yang
- Department of Dental Research; The Affiliated Stomatological Hospital of Kunming Medical University; Kunming 650031 China
| | - Xiangyou Luo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jinlong Chen
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Li Xie
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
| | - Tian Zhu
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Pediatric Dentistry; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Pediatric Dentistry; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| |
Collapse
|
8
|
Bienek DR, Skrtic D. Utility of Amorphous Calcium Phosphate-Based Scaffolds in Dental/Biomedical Applications. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY 2017; 7:1989-1994. [PMID: 29225960 PMCID: PMC5722246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Calcium phosphate (CaP) materials are important inorganic constituents in biological hard tissue. CaPs, including amorphous calcium phosphate (ACP) have been widely applied in dental and biomedical applications, such as tissue engineering. Scaffold constructs are commonly used as templates to create a biomimetic environment. This review considers ACP scaffold fabrication techniques, including tissue-engineered constructs with intrinsic incorporation of ACP as well as scaffolds formed via precipitation of mineralized solutions on a substrate. Attention is given to the approaches used to assess cellular and molecular responses elicited by ACP scaffolds, such as biocompatibility, cell conductivity, cell adhesion, cell differentiation, phenotypic profiles, and gene expression. Bioactivity of composite ACP scaffolds can be enhanced by incorporating biomolecules to create multi-functional properties. Herein we summarize the use of antibiotics, growth factors, and gene delivery systems to create multi-functional ACP scaffolds. Inasmuch as CaP materials have been investigated as drug delivery systems for many years, we briefly consider the potential of integrating these systems with existing ACP scaffold constructs and the potential for precision medicine.
Collapse
Affiliation(s)
- Diane R. Bienek
- ADA Foundation, Volpe Research Center, Gaithersburg, MD 20899
| | | |
Collapse
|
9
|
TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization. Sci Rep 2016; 6:37885. [PMID: 27883077 PMCID: PMC5121659 DOI: 10.1038/srep37885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta receptor II interacting protein 1 (TRIP-1), a predominantly intracellular protein is localized in the ECM of bone. TRIP-1 lacks a signal peptide, therefore, in this study, we provide evidence that intracellular TRIP-1 can be packaged and exported to the ECM via exosomes. Overexpression of TRIP-1 in MC3T3-E1 cells resulted in increased matrix mineralization during differentiation and knockdown resulted in reduced effects. In vivo function of TRIP-1 was studied by an implantation assay performed using TRIP-1 overexpressing and knockdown cells cultured in a 3-dimmensional scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells showed higher calcium and phosphate deposits, arranged collagen fibrils and increased expression of Runx2 and alkaline phosphatase. Nucleation studies on demineralized and deproteinized dentin wafer is a powerful tool to determine the functional role of noncollagenous proteins in matrix mineralization. Using this system, we provide evidence that TRIP-1 binds to Type-I collagen and can promote mineralization. Surface plasmon resonance analysis demonstrated that TRIP-1 binds to collagen with KD = 48 μM. SEM and TEM analysis showed that TRIP-1 promoted the nucleation and growth of calcium phosphate mineral aggregates. Taken together, we provide mechanistic insights of this intracellular protein in matrix mineralization.
Collapse
|
10
|
Padovano JD, Ravindran S, Snee PT, Ramachandran A, Bedran-Russo AK, George A. DMP1-derived peptides promote remineralization of human dentin. J Dent Res 2015; 94:608-14. [PMID: 25694469 DOI: 10.1177/0022034515572441] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Remineralization of dentin during dental caries is of considerable clinical interest. Dentin matrix protein 1 (DMP1) is a non-collagenous calcium-binding protein that plays a critical role in biomineralization. In the present study, we tested if peptides derived from DMP1 can be used for dentin remineralization. Peptide pA (pA, MW = 1.726 kDa) and peptide pB (pB, MW = 2.185), containing common collagen-binding domains and unique calcium-binding domains, were synthesized by solid-phase chemistry. An extreme caries lesion scenario was created by collagenase digestion, and the biomineral-nucleating potential of these peptides was ascertained when coated on collagenase-treated dentin matrix and control, native human dentin matrix under physiological levels of calcium and phosphate. Scanning electron microscopy analysis suggests that peptide pB was an effective nucleator when compared with pA. However, a 1:4 ratio of pA to pB was determined to be ideal for dentin remineralization, based on hydroxyapatite (HA) morphology and calcium/phosphorus ratios. Interestingly, HA was nucleated on collagenase-challenged dentin with as little as 20 min of 1:4 peptide incubation. Electron diffraction confirmed the presence of large HA crystals that produced a diffraction pattern indicative of a rod-like crystal structure. These findings suggest that DMP1-derived peptides may be useful to modulate mineral deposition and subsequent formation of HA when exposed to physiological concentrations of calcium and phosphate.
Collapse
Affiliation(s)
- J D Padovano
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - S Ravindran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - P T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Ramachandran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - A George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|