1
|
Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res 2023; 58:1139-1147. [PMID: 37712722 DOI: 10.1111/jre.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Periodontitis, a chronic infectious disease, primarily arises from infections and the invasion of periodontal pathogens. This condition is typified by alveolar bone loss resulting from host immune responses and inflammatory reactions. Periodontal pathogens trigger aberrant inflammatory reactions within periodontal tissues, thereby exacerbating the progression of periodontitis. Simultaneously, these pathogens and metabolites stimulate osteoclast differentiation, which leads to alveolar bone resorption. Moreover, a range of systemic diseases, including diabetes, postmenopausal osteoporosis, obesity and inflammatory bowel disease, can contribute to the development and progression of periodontitis. Many studies have underscored the pivotal role of gut microbiota in bone health through the gut-alveolar bone axis. The circulation may facilitate the transfer of gut pathogens or metabolites to distant alveolar bone, which in turn regulates bone homeostasis. Additionally, gut pathogens can elicit gut immune responses and direct immune cells to remote organs, potentially exacerbating periodontitis. This review summarizes the influence of oral microbiota on the development of periodontitis as well as the association between gut microbiota and periodontitis. By uncovering potential mechanisms of the gut-bone axis, this analysis provides novel insights for the targeted treatment of pathogenic bacteria in periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Thant L, Kaku M, Kakihara Y, Mizukoshi M, Kitami M, Arai M, Kitami K, Kobayashi D, Yoshida Y, Maeda T, Saito I, Uoshima K, Saeki M. Extracellular Matrix-Oriented Proteomic Analysis of Periodontal Ligament Under Mechanical Stress. Front Physiol 2022; 13:899699. [PMID: 35669581 PMCID: PMC9163570 DOI: 10.3389/fphys.2022.899699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
The periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis. In the present study, we determined the comprehensive ECM profile of mouse molar PDL using laser microdissection and mass spectrometry-based proteomic analysis with ECM-oriented data curation. Additionally, we evaluated changes in the ECM proteome under mechanical loading using a mouse orthodontic tooth movement (OTM) model and analyzed potential regulatory networks using a bioinformatics approach. Proteomic changes were evaluated in reference to the novel second harmonic generation (SHG)-based fiber characterization. Our ECM-oriented proteomics approach succeeded in illustrating the comprehensive ECM profile of the mouse molar PDL. We revealed the presence of type II collagen in PDL, possibly associated with the load-bearing function upon occlusal force. Mechanical loading induced unique architectural changes in collagen fibers along with dynamic compositional changes in the matrisome profile, particularly involving ECM glycoproteins and matrisome-associated proteins. We identified several unique matrisome proteins which responded to the different modes of mechanical loading in PDL. Notably, the proportion of type VI collagen significantly increased at the mesial side, contributing to collagen fibrogenesis. On the other hand, type XII collagen increased at the PDL-cementum boundary of the distal side. Furthermore, a multifaceted bioinformatics approach illustrated the potential molecular cues, including PDGF signaling, that maintain ECM homeostasis under mechanical loading. Our findings provide fundamental insights into the molecular network underlying ECM homeostasis in PDL, which is vital for clinical diagnosis and development of biomimetic tissue-regeneration strategies.
Collapse
Affiliation(s)
- Lay Thant
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- *Correspondence: Masaru Kaku,
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daiki Kobayashi
- Omics Unit, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci 2022; 23:1786. [PMID: 35163708 PMCID: PMC8836472 DOI: 10.3390/ijms23031786] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| |
Collapse
|
4
|
Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:201-208. [PMID: 34703508 PMCID: PMC8524191 DOI: 10.1016/j.jdsr.2021.09.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by periodontopathogenic bacteria, which eventually leads to bone tissue (alveolar bone) destruction as inflammation persists. Periodontal tissues have an immune system against the invasion of these bacteria, however, due to the persistent infection by periodontopathogenic bacteria, the host innate and acquired immunity is impaired, and tissue destruction, including bone tissue destruction, occurs. Osteoclasts are essential for bone destruction. Osteoclast progenitor cells derived from hematopoietic stem cells differentiate into osteoclasts. In addition, bone loss occurs when bone resorption by osteoclasts exceeds bone formation by osteoblasts. In inflammatory bone disease, inflammatory cytokines act on osteoblasts and receptor activator of nuclear factor-κB ligand (RANKL)-producing cells, resulting in osteoclast differentiation and activation. In addition to this mechanism, pathogenic factors of periodontal bacteria and mechanical stress activate osteoclasts and destruct alveolar bone in periodontitis. In this review, we focused on the mechanism of osteoclast activation in periodontitis and provide an overview based on the latest findings.
Collapse
Affiliation(s)
- Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Moro-hongou, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
5
|
Tamura T, Miyata T, Hatori K, Himi K, Nakamura T, Toyama Y, Takeichi O. Role of S100A4 in the Pathogenesis of Human Periapical Granulomas. In Vivo 2021; 35:2099-2106. [PMID: 34182485 DOI: 10.21873/invivo.12479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIM S100A4 expression is associated with the pathology of chronic inflammatory diseases. In this study, we investigated the role of S100A4 and four inflammatory mediators (IL-1β, IκB, IL-10, and TNF-α) in human periapical granulomas (PGs). MATERIALS AND METHODS S100A4 expression in PGs obtained by apicoectomy was examined by immunohistochemistry. Further, the expression of S100A4 and four inflammatory mediators was compared between PGs and healthy gingival tissues (HGTs) using real-time PCR. RESULTS In the PGs, S100A4 was found to be expressed in endothelial cells and fibroblasts. Furthermore, real-time PCR revealed that the expression of S100A4 and IL-1β in PGs was significantly higher than that in HGTs. Although a correlation between the expression of S100A4 and IκB or IL-10 was not detected, a positive correlation between the expression of S100A4 and IL-1β or TNF-α was observed. CONCLUSION The expression of S100A4 correlates with the pathogenesis of PGs.
Collapse
Affiliation(s)
- Takahito Tamura
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Taiki Miyata
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Keisuke Hatori
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan; .,Division of Advanced Dental Treatment, Dental Research Center, Tokyo, Japan
| | - Kazuma Himi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Takeshi Nakamura
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Yurika Toyama
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Nihon University Graduate School of Dentistry, Dental Research Center, Tokyo, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Tokyo, Japan
| |
Collapse
|
6
|
Chengling L, Yulin Z, Xiaoyu X, Xingchen L, Sen Z, Ziming W, Xianming C. miR-325-3p, a novel regulator of osteoclastogenesis in osteolysis of colorectal cancer through targeting S100A4. Mol Med 2021; 27:23. [PMID: 33691630 PMCID: PMC7944890 DOI: 10.1186/s10020-021-00282-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate effect of microRNA-325-3p (miR-325-3p) on bone metastasis of colorectal cancer (CRC) and the precise role on osteoclastogenesis. METHODS CT-26 cells were injected into tibias to establish bone metastatic model of CRC in vivo. AgomiR-325-3p or antagomir-325-3p were injected in tail-veins of Balb/c mice to interfere the osteoclastogenesis and bone metastasis of CRC. Safranin O and Fast Green staining examined the changes of trabecular area and TRAP staining examined the osteoclast number in bone metastasis of CRC. Real-time PCR was conducted to test the RNA level of miR-325-3p and mRNA levels of TRAP and Cathepsin K in osteoclast precursors (OCPs). Dual-luciferase reporter system was utilized to identify the direct target of miR-325-3p. Conditioned medium from CT-26 cells was collected to stimulate the OCPs during osteoclastogenesis induced by RANKL and M-CSF in vitro. Western blot analysis was performed to examine the protein level of S100A4 in OCPs after interfered by agomiR-325-3p or antagomir-325-3p cultured in CM or not. RESULTS miR-325-3p downregulated in OCPs in CRC microenvironment both in vivo and in vitro. By luciferase activity assay, S100A4 was the target gene of miR-325-3p and the protein level of S100A4 in OCPs upregulated in CRC microenvironment. Overexpression of miR-325-3p inhibited the osteoclastogenesis of OCPs and it can be reversed after transfection with plasmid containing S100A4. Treatment with miR-325-3p can preserve trabecular area in bone metastasis of CRC. CONCLUSION miR-325-3p can prevent osteoclast formation through targeting S100A4 in OCPs. Overexpression of miR-325-3p efficiently decreased the osteoclast number and attenuated bone resorption in bone metastasis of CRC.
Collapse
Affiliation(s)
- Li Chengling
- Daping Hospital of Army Medical University, Chongqing, 400042 People’s Republic of China
| | - Zhang Yulin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030 People’s Republic of China
| | - Xie Xiaoyu
- Daping Hospital of Army Medical University, Chongqing, 400042 People’s Republic of China
| | - Lu Xingchen
- Daping Hospital of Army Medical University, Chongqing, 400042 People’s Republic of China
| | - Zhang Sen
- Daping Hospital of Army Medical University, Chongqing, 400042 People’s Republic of China
| | - Wang Ziming
- Daping Hospital of Army Medical University, Chongqing, 400042 People’s Republic of China
| | - Chen Xianming
- Daping Hospital of Army Medical University, Chongqing, 400042 People’s Republic of China
| |
Collapse
|
7
|
Nazet U, Schröder A, Spanier G, Wolf M, Proff P, Kirschneck C. Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts. Eur J Orthod 2020; 42:359-370. [PMID: 31352484 DOI: 10.1093/ejo/cjz052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Periodontal ligament fibroblasts (PDLF) play an important mediating role in orthodontic tooth movement expressing various cytokines, when exposed to compressive or tensile strain. Here, we present a simplified and easy-to-handle, but reliable and valid method for simulating static isotropic tensile strain in vitro using spherical silicone cap stamps. Furthermore, we identify appropriate reference genes for data normalization in real-time quantitative polymerase chain reaction (RT-qPCR) experiments on PDLF subjected to tensile strain. MATERIALS AND METHODS PDLF were cultivated on flexible bioflex membranes and exposed to static isotropic tensile strain of different magnitudes and timeframes. We determined cell number, cytotoxicity, and relative expression of proinflammatory genes cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6). For normalization of RT-qPCR data, we tested the stability and validity of nine candidate reference genes with four mathematical algorithms (geNorm, NormFinder, comparative ΔCq, and BestKeeper) and ranked them based on their calculated expression stability. RESULTS We observed no decrease in cell number or cytotoxic effect at any of the applied magnitudes and timeframes of tensile strain. At 16 per cent and 35 per cent tensile strain for 48 hours, we detected a significant increase in COX-2 and decrease in IL-6 gene expression. Highest stability was found for TBP (TATA-box-binding protein) and PPIB (peptidylprolyl isomerase A) in reference gene validation. According to the geNorm algorithm, both genes in conjunction are sufficient for normalization. In contrast to all other candidate genes tested, gene expression normalization of target gene COX-2 to reference genes EEF1A1, RPL22, and RNA18S5 indicated no significant upregulation of COX-2 expression. CONCLUSIONS A strain magnitude of 16 per cent for 48 hours elicited the most distinct cellular response by PDLF subjected to static tensile isotropic strain by the presented method. TBP and PPIB in conjunction proved to be the most appropriate reference genes to normalize target gene expression in RT-qPCR studies on PDLF subjected to tensile strain.
Collapse
Affiliation(s)
- Ute Nazet
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Maxillo-Facial Surgery, University Medical Centre of Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
8
|
Pieters BCH, Cappariello A, van den Bosch MHJ, van Lent PLEM, Teti A, van de Loo FAJ. Macrophage-Derived Extracellular Vesicles as Carriers of Alarmins and Their Potential Involvement in Bone Homeostasis. Front Immunol 2019; 10:1901. [PMID: 31440259 PMCID: PMC6694442 DOI: 10.3389/fimmu.2019.01901] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles are a heterogeneous group of cell-derived membranous structures, which facilitate intercellular communication. Recent studies have highlighted the importance of extracellular vesicles in bone homeostasis, as mediators of crosstalk between different bone-resident cells. Osteoblasts and osteoclasts are capable of releasing various types of extracellular vesicles that promote both osteogenesis, as well as, osteoclastogenesis, maintaining bone homeostasis. However, the contribution of immune cell-derived extracellular vesicles in bone homeostasis remains largely unknown. Recent proteomic studies showed that alarmins are abundantly present in/on macrophage-derived EVs. In this review we will describe these alarmins in the context of bone matrix regulation and discuss the potential contribution macrophage-derived EVs may have in this process.
Collapse
Affiliation(s)
- Bartijn C H Pieters
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfredo Cappariello
- Research Laboratories - Department of Oncohematology IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
10
|
Kirschneck C, Batschkus S, Proff P, Köstler J, Spanier G, Schröder A. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 2017; 7:14751. [PMID: 29116140 PMCID: PMC5677027 DOI: 10.1038/s41598-017-15281-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
Meaningful, reliable and valid mRNA expression analyses by real-time quantitative PCR (RT-qPCR) can only be achieved, if suitable reference genes are chosen for normalization and if appropriate RT-qPCR quality standards are met. Human periodontal ligament (hPDL) fibroblasts play a major mediating role in orthodontic tooth movement and periodontitis. Despite corresponding in-vitro gene expression studies being a focus of interest for many years, no information is available for hPDL fibroblasts on suitable reference genes, which are generally used in RT-qPCR experiments to normalize variability between samples. The aim of this study was to identify and validate suitable reference genes for normalization in untreated hPDL fibroblasts as well as experiments on orthodontic tooth movement or periodontitis (Aggregatibacter actinomycetemcomitans). We investigated the suitability of 13 candidate reference genes using four different algorithms (geNorm, NormFinder, comparative ΔCq and BestKeeper) and ranked them according to their expression stability. Overall PPIB (peptidylprolyl isomerase A), TBP (TATA-box-binding protein) and RPL22 (ribosomal protein 22) were found to be most stably expressed with two genes in conjunction sufficient for reliable normalization. This study provides an accurate tool for quantitative gene expression analysis in hPDL fibroblasts according to the MIQE guidelines and shows that reference gene reliability is treatment-specific.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany.
| | - Sarah Batschkus
- Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Josef Köstler
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Gerrit Spanier
- Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
11
|
Verma SK, Leikina E, Melikov K, Gebert C, Kram V, Young MF, Uygur B, Chernomordik LV. Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J Biol Chem 2017; 293:254-270. [PMID: 29101233 DOI: 10.1074/jbc.m117.809681] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans, the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.
Collapse
Affiliation(s)
- Santosh K Verma
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Evgenia Leikina
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Kamran Melikov
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Claudia Gebert
- Genomic Imprinting, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Vardit Kram
- Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Berna Uygur
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Leonid V Chernomordik
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
12
|
Kim H, Lee YD, Kim MK, Kwon JO, Song MK, Lee ZH, Kim HH. Extracellular S100A4 negatively regulates osteoblast function by activating the NF-κB pathway. BMB Rep 2017; 50:97-102. [PMID: 27998393 PMCID: PMC5342873 DOI: 10.5483/bmbrep.2017.50.2.170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 01/04/2023] Open
Abstract
Patients with inflammatory bone disease or cancer exhibit an increased risk of fractures and delayed bone healing. The S100A4 protein is a member of the calcium-binding S100 protein family, which is abundantly expressed in inflammatory diseases and cancers. We investigated the effects of extracellular S100A4 on osteoblasts, which are cells responsible for bone formation. Treating primary calvarial osteoblasts with recombinant S100A4 resulted in matrix mineralization reductions. The expression of osteoblast marker genes including osteocalcin and osterix was also suppressed. Interestingly, S100A4 stimulated the nuclear factor-kappaB (NF-κB) signaling pathway in osteoblasts. More importantly, the ex vivo organ culture of mouse calvariae with recombinant S100A4 decreased the expression levels of osteocalcin, supporting the results of our in vitro experiments. This suggests that extracellular S100A4 is important for the regulation of bone formation by activating the NF-κB signaling pathway in osteoblasts. [BMB Reports 2017; 50(2): 97-102].
Collapse
Affiliation(s)
- Haemin Kim
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Yong Deok Lee
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Min-Kyoung Song
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
13
|
Chen D, Zheng Z, Xiao B, Li W, Long M, Chen H, Li M, Rock DL, Hao W, Luo S. Orf Virus 002 Protein Targets Ovine Protein S100A4 and Inhibits NF-κB Signaling. Front Microbiol 2016; 7:1389. [PMID: 27679610 PMCID: PMC5020088 DOI: 10.3389/fmicb.2016.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Orf virus (ORFV), a member of Parapoxvirus, has evolved various strategies to modulate the immune responses of host cells. The ORFV-encoded protein ORFV002, a regulator factor, has been found to inhibit the acetylation of NF-κB-p65 by blocking phosphorylation of NF-κB-p65 at Ser276 and also to disrupt the binding of NF-κB-p65 and p300. To explore the mechanism by which ORFV002 regulates NF-κB signaling, the understanding of ORFV002 potential binding partners in host cells is critical. In this study, ovine S100 calcium binding protein A4 (S100A4), prolyl endopeptidase-like (PREPL) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8) were found to interact with ORFV002 based on the yeast two-hybrid (Y2H) assay using a cDNA library derived from primary ovine fetal turbinate cells (OFTu). GST pull-down and bidirectional co-immunoprecipitation assay results demonstrate that ORFV002 interacts with S100A4 directly. Following the pEGFP-ORFV002 (p002GFP) transfection, we found that cytoplasmic S100A4 translocates into the nucleus and co-localizes with ORFV002. Furthermore, the inhibitory effect of ORFV002 on NF-κB signaling was significantly restored by S100A4 knock-down phenotype, suggesting that ovine S100A4 participates in the ORFV002-mediated NF-κB signaling. These data demonstrate that ORFV002 inhibits the NF-κB activation through its interaction with S100A4 along with its nucleus translocation.
Collapse
Affiliation(s)
- Daxiang Chen
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Zewei Zheng
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Bin Xiao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Wei Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Mingjian Long
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Huiqin Chen
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Ming Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Daniel L Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| |
Collapse
|