1
|
Wu Y, Xu H, Wang Y, Li C, Tang G, Hua H, Li X, Jin X, Zeng X, Zhou Y, Chen Q. An improved scoring system for monitoring oral lichen planus: A preliminary clinical study. Oral Dis 2023; 29:3337-3345. [PMID: 35686391 DOI: 10.1111/odi.14273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To design an improved oral lichen planus (OLP) scoring system, which can be widely applied. SUBJECTS AND METHODS A new scoring system that took reticulation, hyperemia and ulceration (RHU) into account, named as RHU scoring system, was designed for OLP patients' management. The patients were also scored for the reticulation/erythema/ulcer (REU) scoring system, physician global assessment (PGA), numerical rating scale (NRS) and Oral Health Impact Profile-14 (OHIP-14). The reliability and validity analyses were utilized to assess the RHU scoring system. We further applied the RHU scoring system to examine the treatment outcomes of topical dexamethasone sodium phosphate and general hydroxychloroquine hydrochloride among OLP patients. RESULTS Forty-eight OLP patients from two medical centers were recruited. This new scoring system has reliability with an internal consistency index Cronbach α 0.49. The Pearson correlation of RHU score with PGA and REU score were 0.891 and 0.675 (p < 0.05) respectively, reflecting satisfactory standard validity. A 10% change in RHU score was used as the disease condition evaluation standard, reflecting satisfactory discriminating validity (t = -5.821, p < 0.001). During follow-ups, scores of all scales decreased at each re-visit. The drop between each visit of OHIP-14 fluctuated compared with the RHU system and NRS. CONCLUSIONS As a semi-quantitative score system, the RHU scoring system can reflect the severity of OLP patients with hyperemia and ulceration lesions more accurately and sensitively compared with other score systems, which provides the potential to be widely used.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yufeng Wang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chunlei Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guoyao Tang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Jin
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang XS, Sun Z, Liu LW, Du QZ, Liu ZS, Yang YJ, Xue P, Zhao HY. Potential Metabolic Biomarkers for Early Detection of Oral Lichen Planus, a Precancerous Lesion. Front Pharmacol 2020; 11:603899. [PMID: 33240093 PMCID: PMC7677577 DOI: 10.3389/fphar.2020.603899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Oral lichen planus (OLP) is a T-cell-mediated chronic inflammatory disorder and precancerous oral lesion with high incidence. The current diagnostic method of OLP is very limited and metabolomics may provide a new approach for quantitative evaluation. Methods: The Ultra-Performance Liquid Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap HRMS) was applied to analyze the change of metabolites in serum of patients with OLP. A total of 115 OLP patients and 124 healthy controls were assigned to either a training set (n = 160) or a test set (n = 79). The potential biomarkers and the change of serum metabolites were profiled and evaluated by multivariate analysis. Results: Totally, 23 differential metabolites were identified in the training set between OLP group and healthy group. Three prominent metabolites in receiver operating characteristic (ROC) were selected as a panel to distinguish OLP or healthy individuals in the test set, and the diagnostic accuracy was 86.1%. Conclusions: This study established a new method for the early detection of OLP by analyzing serum metabolomics using UHPLC-Q-Orbitrap HRMS, which will help in understanding the pathological processes of OLP and identifying precancerous lesions in oral cavity.
Collapse
Affiliation(s)
- Xiao-Shuang Wang
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Li-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Qiu-Zheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Jie Yang
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| | - Peng Xue
- Health Management Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Yu Zhao
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Yang FY, Saqib HSA, Chen JH, Ruan QQ, Vasseur L, He WY, You MS. Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of Plutella xylostella. Int J Mol Sci 2020; 21:E6283. [PMID: 32872681 PMCID: PMC7504026 DOI: 10.3390/ijms21176283] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/01/2023] Open
Abstract
Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch hosts. In the present study, using 16S-rDNA sequencing and mass spectrometry-based metabolomics, we analyzed the gut microbiota and metabolites of three populations of Plutella xylostella: one feeding on radish (PxR) and two feeding on peas (PxP; with PxP-1 and PxP-17 being the first and 17th generations after host shift from radish to peas, respectively). We found that the diversity of gut microbes in PxP-17 was significantly lower than those in PxR and PxP-1, which indicates a distinct change in gut microbiota after host shift. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the functions of energy metabolism, signal transduction, and xenobiotics biodegradation and metabolism were increased in PxP-17, suggesting their potential roles in host adaptation. Metabolic profiling showed a significant difference in the abundance of gut metabolites between PxR and PxP-17, and significant correlations of gut bacteria with gut metabolites. These findings shed light on the interaction among plants, herbivores, and symbionts, and advance our understanding of host adaptation associated with gut bacteria and metabolic activities in P. xylostella.
Collapse
Affiliation(s)
- Fei-Ying Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Jun-Hui Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Qian-Qian Ruan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biological Sciences, Faculty/School, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wei-Yi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Min-Sheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
4
|
Yang XY, Li XZ, Zhang SN. Urinary metabolomic signatures in reticular oral lichen planus. Heliyon 2020; 6:e04041. [PMID: 32490246 PMCID: PMC7256305 DOI: 10.1016/j.heliyon.2020.e04041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease. Among all the clinical forms in OLP, reticular type has the highest incidence rate. Previous studies have applied metabolomics to investigate the metabolic changes of oral mucosa and blood samples from reticular OLP patients. Urinary metabolomic signatures is also useful in analyzing the pathological changes of the patients, which was a complement to the previous studies. Through these researches, we may have a more comprehensive understanding of the disease. Metabolic profiles of urinary samples from OLP patients and control subjects were analyzed by liquid chromatography (LC)-mass spectrometry (MS) system. Differentially expressed metabolites were identified via OSI/SMMS software for the pathology analysis. Totally, 30 differentially expressed metabolites were identified. Pathological network showed that these metabolites participated in 8 pathological processes, that is, DNA damage and repair disorder, apoptosis process, inflammatory lesion, oxidative stress injury, carbohydrate metabolism disorder, mood dysfunction, abnormal energy expenditure, and other pathological process. These findings demonstrated that the analysis of human urine metabolome might be conducive to the achievement of the objectives of this study.
Collapse
Affiliation(s)
- Xu-yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Xu-zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian new area 550025, PR China
| | - Shuai-nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian new area 550025, PR China
| |
Collapse
|
5
|
Cruz AF, Vitório JG, Duarte‐Andrade FF, Diniz MG, Canuto GAB, Toledo JS, Fonseca FP, Fernandes AP, André LC, Gomes CC, Gomez RS. Reticular and erosive oral lichen planus have a distinct metabolomic profile: A preliminary study using gas chromatography‐mass spectrometry. J Oral Pathol Med 2019; 48:400-405. [DOI: 10.1111/jop.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Aline Fernanda Cruz
- Department of Oral Surgery and PathologySchool of DentistryUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and PathologySchool of DentistryUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Filipe Fideles Duarte‐Andrade
- Department of Oral Surgery and PathologySchool of DentistryUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Marina Gonçalves Diniz
- Department of Oral Surgery and PathologySchool of DentistryUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | | | - Juliano Simões Toledo
- Department of Clinical and Toxicological AnalysisFaculty of PharmacyUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and PathologySchool of DentistryUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological AnalysisFaculty of PharmacyUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Leiliane Coelho André
- Department of Clinical and Toxicological AnalysisFaculty of PharmacyUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Carolina Cavaliéri Gomes
- Department of PathologyBiological Sciences InstituteUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and PathologySchool of DentistryUniversidade Federal de Minas Gerais (UFMG) Belo Horizonte Brazil
| |
Collapse
|
6
|
Abdelgaffar H, Tague ED, Castro Gonzalez HF, Campagna SR, Jurat-Fuentes JL. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:1-9. [PMID: 30630033 DOI: 10.1016/j.ibmb.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Populations of the fall armyworm (Spodoptera frugiperda) have developed resistance to transgenic corn producing the Cry1F insecticidal protein from the bacterium Bacillus thuringiensis (Bt). Resistance in S. frugiperda from Puerto Rico is genetically linked to a mutation in an ATP Binding Cassette subfamily C2 gene (SfABCC2) that results in a truncated, non-functional Cry1F toxin receptor protein. Since ABCC2 proteins are involved in active export of xenobiotics and other metabolites from the cell, we hypothesized that Cry1F-resistant fall armyworm with a non-functional SfABCC2 protein would display altered gut metabolome composition when compared to susceptible insects. Mass spectrometry and multivariate statistical analyses identified 126 unique metabolites from larval guts, of which 7 were found to display statistically significant altered levels between midguts from susceptible and Cry1F-resistant S. frugiperda larvae when feeding on meridic diet. Among these 7 differentially present metabolites, 6 were found to significantly accumulate (1.3-3.5-fold) in midguts from Cry1F-resistant larvae, including nucleosides, asparagine, and carbohydrates such as trehalose 6-phosphate and sedoheptulose 1/7-phosphate. In contrast, metabolomic comparisons of larvae fed on non-transgenic corn identified 5 metabolites with statistically significant altered levels and only 2 of them, 2-isopropylmalate and 3-phosphoserine, that significantly accumulated (2.3- and 3.5-fold, respectively) in midguts from Cry1F-resistant compared to susceptible larvae. These results identify a short list of candidate metabolites that may be transported by SfABCC2 and that may have the potential to be used as resistance markers.
Collapse
Affiliation(s)
- Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, 37996, USA
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA
| | - Hector F Castro Gonzalez
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA; Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA; Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, 37996, USA
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
7
|
Li XZ, Zhang SN, Yang XY. Serum-based metabolomics characterization of patients with reticular oral lichen planus. Arch Oral Biol 2019; 99:183-189. [PMID: 30731368 DOI: 10.1016/j.archoralbio.2019.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/23/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Oral lichen planus (OLP) is a chronic inflammatory mucosal lesion and systemic disease. In OLP, reticular type is the most common presentation of the disease. However, little is known about it. The aim of this study was to analyze the pathogenesis of reticular OLP and its possible associations with the pathological changes in other organ systems through serum-based metabolomics. METHODS Blood samples were obtained from 16 reticular OLP patients and 24 control subjects. Liquid chromatography (LC)-mass spectrometry (MS) system was used to identify differentially expressed metabolites. The pathways analysis was performed by MetaboAnalyst. Pathological network was constructed by Cytoscape software. RESULTS Totally, 31 modulated metabolites were identified, whose dysregulations affected 25 metabolic pathways and 7 pathological processes in the disease. Through an impact-value screen (impact-value>0.1), 6 pathways were selected as the significantly dysregulated pathways. Pathological network showed that these metabolites participated in 7 pathological processes, that is, apoptosis process, DNA damage and repair disorder, oxidative stress injury, carbohydrate metabolism disorder, mood dysfunction, inflammatory lesion, and other pathological process. CONCLUSION The study demonstrated that reticular OLP could cause the dysregulations of the metabolites in serum, which might be also further linked to other organ and systemic diseases through the blood system, such as diabetes, sleep disorders, and depression, etc.
Collapse
Affiliation(s)
- Xu-Zhao Li
- Pharmacy School, Guiyang University of Chinese Medicine, Guiyang 550025, PR China
| | - Shuai-Nan Zhang
- Pharmacy School, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Xu-Yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| |
Collapse
|
8
|
Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 2019; 9:37245-37257. [PMID: 35542267 PMCID: PMC9075731 DOI: 10.1039/c9ra06697g] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases. Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.![]()
Collapse
Affiliation(s)
- Qiang Yang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Jian-hua Miao
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Hui Sun
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ying Han
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Guang-li Yan
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Fang-fang Wu
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|
9
|
Yang XY, Li XZ, Zhang SN. Metabolomics analysis of oral mucosa reveals profile perturbation in reticular oral lichen planus. Clin Chim Acta 2018; 487:28-32. [PMID: 30218656 DOI: 10.1016/j.cca.2018.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/06/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory mucosal disorder and potentially oral premalignant lesion affecting the stratified squamous epithelia. In OLP, reticular type is the most common clinical form of the disease. However, little is known about it. Metabolomics analysis may help to investigate the disease pathogenesis and to improve clinical treatment. METHODS Liquid chromatography (LC)-mass spectrometry (MS) system, XCMS software, SIMCA software, and OSI / SMMS software were integrated to identify differentially expressed metabolites for the pathways and pathology analysis. RESULTS Totally, 21 modulated metabolites were identified, whose dysregulations affected 30 metabolic pathways. Through an impact-value screen (impact-value>0.1), 8 pathways were selected as the significantly dysregulated pathways. Pathological network showed that these metabolites participated in 5 pathological processes, that is, inflammatory lesion, DNA damage and repair disorder, apoptosis process, oxidative stress injury, and abnormal energy expenditure. CONCLUSION The study revealed the metabolic perturbation of oral mucosa in reticular OLP, which may provide an important reference for the understanding of the pathogenesis of the disease and the discovery of therapeutic targets.
Collapse
Affiliation(s)
- Xu-Yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Xu-Zhao Li
- Pharmacy School, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Shuai-Nan Zhang
- Pharmacy School, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| |
Collapse
|
10
|
Bazurto JV, Dearth SP, Tague ED, Campagna SR, Downs DM. Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. MICROBIAL CELL 2017; 5:74-87. [PMID: 29417056 PMCID: PMC5798407 DOI: 10.15698/mic2018.02.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. When purH is eliminated in an otherwise wild-type strain, AICAR accumulates and indirectly inhibits synthesis of the essential coenzyme thiamine pyrophosphate (TPP). In this study, untargeted metabolomics approaches were used to i) corroborate previously defined metabolite changes, ii) define the global consequences of AICAR accumulation and iii) investigate the metabolic effects of mutations that restore thiamine prototrophy to a purH mutant. The data showed that AICAR accumulation led to an increase in the global regulator cyclic AMP (cAMP) and that disrupting central carbon metabolism could decrease AICAR and/or cAMP to restore thiamine synthesis. A mutant (icc) blocked in cAMP degradation that accumulated cAMP but had wild-type levels of AICAR was used to identify changes in the purH metabolome that were a direct result of elevated cAMP. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.
Collapse
Affiliation(s)
| | - Stephen P Dearth
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
11
|
Yang XY, Zhang SN, Li XZ, Wang Y, Yin XD. Analysis of human serum metabolome for potential biomarkers identification of erosive oral lichen planus. Clin Chim Acta 2017; 468:46-50. [PMID: 28215546 DOI: 10.1016/j.cca.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/13/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic auto-inflammatory mucositis and potentially oral premalignant lesion. Erosive OLP patients display the higher canceration rate as compared to the patients with non-erosive OLP. Identification of the potential biomarkers associated with erosive OLP may help to investigate the disease pathogenesis and to improve clinical treatment. METHODS Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) combined with pattern recognition approaches were integrated to acquire differentially expressed metabolites for the pathways analysis and elucidate mechanisms of disease. RESULTS Totally, 10 modulated metabolites were characterized as the potential biomarkers of erosive OLP, whose dysregulations could affect multiple metabolic pathways and pathological processes in the disease. CONCLUSION These findings indicated that the analysis of human serum metabolome might be conducive to the achievement of the objectives of this study.
Collapse
Affiliation(s)
- Xu-Yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Shuai-Nan Zhang
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Xu-Zhao Li
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Yu Wang
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Xiao-Dong Yin
- School of Stomatology, Harbin Medical University, Harbin 151000, PR China
| |
Collapse
|