1
|
Zhang Y, Fan X, Ge H, Yu Y, Li J, Zhou Z. The effect of salidroside on the bone and cartilage properties in broilers. Poult Sci 2024; 103:104274. [PMID: 39270480 PMCID: PMC11417263 DOI: 10.1016/j.psj.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Leg disorders frequently occur in fast-growing broiler chickens, constituting severe health and welfare problems. Although salidroside (SAL) promotes osteogenesis and inhibits apoptosis of chondrocytes in rats, it remains to be determined whether SAL can effectively improve bone growth in broilers. The present study was designed to investigate the effects of dietary SAL supplementation on bone and cartilage characteristics in broiler chickens. Ninety-six Arbor Acres broiler chickens were randomly divided into 4 groups: control, low-dose SAL, medium-dose SAL, and high-dose SAL groups. The broiler chickens were raised until 42 d of age, with samples of bone and cartilage collected for biomechanical testing and bone metabolism index detection. The results showed that SAL significantly increased the vertical external diameter, cross-sectional moment of inertia, and cross-sectional area of the femur and tibia. Additionally, SAL enhanced bone mineral density and strength, as evidenced by significant increases in stiffness, Young's modulus, ultimate load, and fracture work of the femur and tibia. Furthermore, SAL influenced the relative content of phosphate, carbonate, and amide I in cortical bone. Moreover, SAL upregulated the expression of osteogenic genes (Collagen-1, RUNX2, BMP2, and ALP) in a dose-dependent manner and maintained the homeostasis of the extracellular matrix (ECM) of chondrocytes. These results indicated that SAL promoted leg health in broilers by improving bone and cartilage quality and enhancing chondrocyte activity.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongfan Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaling Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianzeng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Lee BH, Yang Z, Ho T, Wang Y, Tamura N, Webb S, Bone S, Ho SP. Sulfur-species in Zinc-specific Condylar Zones of a Rat Temporomandibular Joint. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623079. [PMID: 39605645 PMCID: PMC11601290 DOI: 10.1101/2024.11.11.623079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In this study, we performed synchrotron-based micro-X-ray fluorescence (μ-XRF) imaging of elements Zn and S, and X-ray absorption near edge spectroscopy (XANES) coupled with μ-XRF for identification of Zn and S species in the condylar zones of a rat temporomandibular joint (TMJ). Histologic localization of Zn and hypoxia-inducible factor-1α (HIF-1α) were mapped using an optical microscope. These data were visually correlated with μ-XRF and XANES data to provide insights into plausible biological S-species in Z-enriched condylar zones of a rat TMJ. Furthermore, μ-XRF coupled with micro-X-ray diffraction (μ-XRD) was used to underline Z-incorporated biological apatite in the subchondral bone and bone of the rat TMJ. Results illustrated the potential dependence between biometal Zn and nonmetal S and their collective governance of cell and tissue functions in a zone-specific manner. Elemental Zn with organic and inorganic S-species at the cartilage-bone interface and transformation of plausible Zn-enriched mineralization kinetics of biological apatite from subchondral bone to condylar bone were ascertained using μ-XRF-XANES and μ-XRD. The coupled μ-XRF-XANES complementing with μ-XRD and immunohistology provided an informative view of S and Zn and their association with zone-specific biological pathways in situ. Understanding the spatial distributions of the main S-species with redox-inert Zn in regions of cartilage, bone, and the interface is essential for further unlocking questions surrounding formation and resorption-related biomineralization pathways as related to osteoarthritis or genetically inherited diseases. Using these complementary techniques with microspectroscopic spatial information provided insights into the associations between biometal Zn and nonmetal S and a window into detecting the plausible early-stage diagnostic biomarkers for humans with TMJ osteoarthritis.
Collapse
Affiliation(s)
- Brandon H Lee
- Preventive and Restorative Dent. Sci., San Francisco, CA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA
| | - Zhiyuan Yang
- Preventive and Restorative Dent. Sci., San Francisco, CA
- School of Dentistry, University of Washington, Seattle, WA
| | - Tiffany Ho
- Preventive and Restorative Dent. Sci., San Francisco, CA
| | - Yongmei Wang
- Preventive and Restorative Dent. Sci., San Francisco, CA
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley Natl. Lab., Berkeley, CA
| | - Samuel Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA
| | - Sharon Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA
| | - Sunita P Ho
- Preventive and Restorative Dent. Sci., San Francisco, CA
- Urology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Zhang XA, Kong H. Mechanism of HIFs in osteoarthritis. Front Immunol 2023; 14:1168799. [PMID: 37020556 PMCID: PMC10067622 DOI: 10.3389/fimmu.2023.1168799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Osteoarthritis (OA) is a common disabling disease which has a high incidence rate in the elderly. Studies have found that many factors are involved in the pathogenesis of OA. Hypoxia-inducible factors (HIFs) are core regulators that induce hypoxia genes, repair the cellular oxygen environment, and play an important role in the treatment of OA. For example, HIF-1α can maintain the stability of the articular cartilage matrix, HIF-2α is able to cause chondrocyte apoptosis and intensify in-flammatory response, and HIF-3α may be the target gene of HIF-1α and HIF-2α, thereby playing a negative regulatory role. This review examines the mechanism of HIFs in cartilage extracellular matrix degradation, apoptosis, inflammatory reaction, autophagy and then further expounds on the roles of HIFs in OA, consequently providing theoretical support for the pathogenesis of OA and a new target for OA treatment.
Collapse
|
4
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
5
|
Zhang J, Hu Y, Wang Z, Wu X, Yang C, Yang H. Hypoxia-inducible factor expression is related to apoptosis and cartilage degradation in temporomandibular joint osteoarthritis. BMC Musculoskelet Disord 2022; 23:583. [PMID: 35710352 PMCID: PMC9202126 DOI: 10.1186/s12891-022-05544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It remains unclear etiology of cartilaginous tissues in osteoarthritis (OA) lesions. In this study, we hypothesized the accumulation of hypoxia-inducible factor (HIF) and activated apoptosis relate to condylar cartilage degeneration in vivo. METHODS Malocclusion stress was applied for 2 weeks, 4 weeks and 8 weeks to induce an OA-like lesion animal model in rats. Histological analysis was performed by H&E staining and Safranin O/fast green staining. The expression levels of protein in condylar cartilage were examined by immunostaining to evaluate cartilage degeneration. RESULTS We found apparent histological phenotypes associated with degeneration in the occlusion disorder (OD) stress group. The OD group at 4 weeks and 8 weeks had obviously reduced expression of Aggrecan (Acan) and type II collagen (Col II) in cartilage. In contrast, the OD groups had higher levels of ADAM metallopeptidase with thrombospondin type 5 (ADAMTS5) and matrix metallopeptidase 13 (MMP13) in the condylar cartilage than the control group. Moreover, the OD group cartilage had prominent degenerative changes with reduced levels of hypoxia inducible factor 1 alpha (HIF1α) and increased levels of hypoxia inducible factor 2 alpha (HIF2α) and the apoptosis factor Caspase3 in condylar cartilage at 8 weeks. CONCLUSION Thus, abnormal hypoxic conditions inducing Occlusion disorder stress results in cartilage degeneration. opposite expression patterns of HIF1α and HIF2α could be involved in the pathogenesis of condylar cartilage degeneration and chondrocyte apoptosis. HIF2α may provide a potential negative feedback mechanism for HIF1α during cartilage damage.
Collapse
Affiliation(s)
- Jun Zhang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China
| | - Yu Hu
- Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Kunming, China
| | - Zihan Wang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China
| | - Xuelian Wu
- Honghe Health Vocational Collage, Honghe, Yunnan Province, China
| | - Chun Yang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China.
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China.
| |
Collapse
|
6
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
7
|
Zhao Y, Xie L. An Update on Mesenchymal Stem Cell-Centered Therapies in Temporomandibular Joint Osteoarthritis. Stem Cells Int 2021; 2021:6619527. [PMID: 33868408 PMCID: PMC8035039 DOI: 10.1155/2021/6619527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease characterized by cartilage degeneration, disrupted subchondral bone remodeling, and synovitis, seriously affecting the quality of life of patients with chronic pain and functional disabilities. Current treatments for TMJOA are mainly symptomatic therapies without reliable long-term efficacy, due to the limited self-renewal capability of the condyle and the poorly elucidated pathogenesis of TMJOA. Recently, there has been increased interest in cellular therapies for osteoarthritis and TMJ regeneration. Mesenchymal stem cells (MSCs), self-renewing and multipotent progenitor cells, play a promising role in TMJOA treatment. Derived from a variety of tissues, MSCs exert therapeutic effects through diverse mechanisms, including chondrogenic differentiation; fibrocartilage regeneration; and trophic, immunomodulatory, and anti-inflammatory effects. Here, we provide an overview of the therapeutic roles of various tissue-specific MSCs in osteoarthritic TMJ or TMJ regenerative tissue engineering, with an additional focus on joint-resident stem cells and other cellular therapies, such as exosomes and adipose-derived stromal vascular fraction (SVF). Additionally, we summarized the updated pathogenesis of TMJOA to provide a better understanding of the pathological mechanisms of cellular therapies. Although limitations exist, MSC-centered therapies still provide novel, innovative approaches for TMJOA treatment.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chen L, Wang Y, Li S, Zhou W, Sun L. High expression of NDRG3 in osteoarthritis patients. ARTHROPLASTY 2021; 3:1. [PMID: 35236459 PMCID: PMC8796518 DOI: 10.1186/s42836-020-00064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA), as a common disease, seriously affects the quality of life of the victims, but its pathogenesis remains unclear. It has been confirmed that hypoxia-induced factor (HIF)-mediated hypoxia response plays an important role in the development and progression of OA. As a member of the N-myc downstream regulatory gene families, NDRG3 has been reported to independently regulate the hypoxic response of tumour cells, but the relationship between NDRG3 and OA development has not been reported so far. METHODS In this study, seven OA patients were admitted to Guizhou Provincial People's Hospital from January 2017 to December 2018. The OA group included 5 patients clinically diagnosed with hip/knee OA, which required arthroplasty. The normal group included 2 patients with no previous history of OA and rheumatoid arthritis, which required amputation due to trauma or tumour. The articular cartilage samples were collected to detect the expression of HIF-1α, HIF-2α and NDRG3 using immunohistochemical (IHC), haematoxylin and eosin (HE) and toluidine blue (TB) staining. RESULTS HE and TB staining indicated that the cartilage surface of the normal group was smooth and intact, with a columnar arrangement of hyaline chondrocytes, while the cartilage surface of the OA group was discontinuous, with cartilage missing and fibrous soft tissue growing into the defect site. HIF-1α staining was positive in both groups. Moreover, HIF-2α and NDRG3 staining was weakly positive in the normal group, but were uniformly and strongly positive in the OA group. The positively stained areas and integral optical density for NDRG3 were significantly greater in OA group than in the normal group (p < 0.05). CONCLUSIONS NDRG3 might be closely related to the development and progression of OA. However, the relationship between NDRG3 and OA, which is independent of the HIF pathway, warrants further research.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, 550000, Guiyang, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, 550000, Guiyang, Guizhou, China
- Department of Orthopedics, People's Hospital of Yunyan District, 550000, Guiyang, Guizhou, China
| | - Senlei Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, 550000, Guiyang, Guizhou, China
| | - Wei Zhou
- Department of Orthopedics, Guizhou Provincial People's Hospital, 550000, Guiyang, Guizhou, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, 550000, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Partial deficiency of HIF-1α in chondrocytes effected bone repair of mandibular condylar neck. Arch Oral Biol 2020; 122:105023. [PMID: 33348208 DOI: 10.1016/j.archoralbio.2020.105023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study aimed to explore the expression of hypoxia-inducible factor 1α (HIF-1α) in chondrocytes with the healing process after unilateral mandibular condylar neck osteotomy and to verify its effect on bone repair. METHODS Models of mandibular condylar neck osteotomy were established in mice. Transgenic mice with heterozygous deficiency in HIF-1α gene in chondrocytes were used. Radiographic evaluation, quantitative reverse transcription polymerase chain reaction and histomorphometric analyses were used to compare the difference in capacities of chondrogenesis, vasifaction, osteogenesis, and bone resorption. RESULTS HIF-1α was expressed in the chondrocytes of calluses. Decreased expression of HIF-1α in chondrocytes promoted the proliferation of chondrocytes and upregulated the expression of apoptosis markers. However, the density and thickness of newly formed trabecula in transgenic mice were reduced on post-osteotomy day 28, and some expression of angiogenic, osteogenic, and osteoclastogenic markers was impaired. CONCLUSIONS These results demonstrated the importance of HIF-1α to chondrocytes and bone repair during the healing process after osteotomy of the mandibular condylar neck. Decreased HIF-1α promoted the chondrocyte proliferation, and effected endochondral ossification.
Collapse
|
10
|
Tang Y, Hong C, Cai Y, Zhu J, Hu X, Tian Y, Song X, Song Z, Jiang R, Kang F. HIF-1α Mediates Osteoclast-Induced Mandibular Condyle Growth via AMPK Signaling. J Dent Res 2020; 99:1377-1386. [PMID: 32600097 DOI: 10.1177/0022034520935788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the mandibular condylar growth, the absorption of calcified cartilage matrix induced by osteoclasts is crucial for the continuous endochondral osteogenesis. Meanwhile, recent studies showed that subchondral bone resided within the low-oxygen microenvironment, and our previous study revealed that hypoxia-inducible transcription factor 1α (HIF-1α) promoted osteoclastogenesis under hypoxia. However, whether HIF-1α regulates the function of osteoclasts in the mandibular condyle cartilage remains elusive. Our study indicated that severe deformity of the mandibular condyle was displayed in 10-wk-old osteoclast-specific HIF-1α conditional knockout (CKO) mice, accompanied by shortened length of condylar process and disorganized fibrocartilage. In 1-, 2-, and 4-wk-old CKO mice, the size of the hypertrophic layer and chondrocytic layer was significantly thickened. In the chondrocytic layer, chondrocytes were atrophied, showing a form of apoptosis in 4-wk-old CKO mice. Furthermore, an increase in the thickness of the fibrous and proliferating layer was observed in 10-wk-old CKO mice, as well as a significant decrease in that of the chondrocytic and hypertrophic chondrocyte layers. Interestingly, the articular surface of the condylar process abnormally presented a horizontal concave shape, and a disk-like acellular connective tissue appeared. In addition, genetic ablation of HIF-1α blunted cartilage matrix loss by subchondral osteoclast deficiency, resulting in a high subchondral bone mass phenotype, accompanied with a decreased number of blood vessels, alkaline phosphatase staining, and vascular endothelial growth factor (VEGF) expression. Mechanistically, the number of osteoclasts in the center of the condyle in CKO mice was significantly reduced by attenuated expression of adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling. These findings reveal a novel influence of HIF-1α function in osteoclasts on maintenance of osteoclast-induced resorption of calcified cartilage matrix via AMPK signaling, as well as subchondral bone formation through VEGF-dependent angiogenesis in bone marrow.
Collapse
Affiliation(s)
- Y. Tang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - C. Hong
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Y. Cai
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - J. Zhu
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X. Hu
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Y. Tian
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X. Song
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Z. Song
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - R. Jiang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - F. Kang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
11
|
Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Ann Biomed Eng 2020; 48:2158-2170. [PMID: 32514932 DOI: 10.1007/s10439-020-02540-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023]
Abstract
Loading is indispensable for the growth, development, and maintenance of joint tissues, including mandibular condylar cartilage, but excessive loading or reduced host adaptive capacity can considerably damage the temporomandibular joint (TMJ), leading to temporomandibular joint osteoarthritis (TMJ-OA). TMJ-OA, associated with other pathological conditions and aging processes, is a highly degenerative disease affecting the articular cartilage. Many treatment modalities for TMJ-OA have been developed. Traditional clinical treatment includes mainly nonsurgical options, such as occlusal splints. However, non-invasive therapy does not achieve joint tissue repair and regeneration. Growing evidence suggests that low-intensity pulsed ultrasound (LIPUS) accelerates bone fracture healing and regeneration, as well as having extraordinary effects in terms of soft tissue repair and regeneration. The latter have received much attention, and various studies have been performed to evaluate the potential role of LIPUS in tissue regeneration including that applied to articular cartilage. The present article provides an overview of the status of LIPUS stimulation used to prevent the onset and progression of TMJ-OA and enhance the tissue regeneration of mandibular condylar cartilage. The etiology and management of TMJ-OA are explained briefly, animal models of TMJ-OA are described, and the effectiveness of LIPUS on cell metabolism and tissue regeneration in the TMJ is discussed.
Collapse
|
12
|
Sperry MM, Yu YH, Kartha S, Ghimire P, Welch RL, Winkelstein BA, Granquist EJ. Intra-articular etanercept attenuates pain and hypoxia from TMJ loading in the rat. J Orthop Res 2020; 38:1316-1326. [PMID: 31903618 PMCID: PMC9118642 DOI: 10.1002/jor.24581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/28/2019] [Indexed: 02/04/2023]
Abstract
Mechanical overloading of the temporomandibular joint (TMJ) and biochemical changes, like inflammation and hypoxia, contribute to cartilage degeneration and pain associated with osteoarthritis (OA). Yet, how overloading contributes to early dysregulation of chondrocytes is not understood, limiting the development of diagnostics and treatments for TMJ OA. Hypoxia-inducible factors (HIF)-1α/2α in chondrocytes were evaluated at Days 8 and 15 in a rat TMJ pain model induced by jaw loading (1 h/day for 7 days) using immunohistochemistry and compared between cases that induce persistent (3.5 N), acute (2 N), or no (0 N) sensitivity. Hypoxia was measured on Day 8 by immunolabeling of the tracer EF5 and 18 F-EF5 PET imaging. To assess the role of tumor necrosis factor (TNF) in painful TMJ loading, intra-articular etanercept was given before loading. Orofacial sensitivity was evaluated during and after loading. Facial grimace, TNF-α, HIF-2α, and hypoxia levels in the TMJ were measured after loading. HIF-2α was elevated (P = .03) after 3.5 N loading at Day 8, but HIF-1α was unchanged. EF5 uptake increased on Day 8 in the 3.5 N group (P < .048) by tissue assay and 18 F-EF5 PET. At Day 8, both HIF-2α (P = .01) and EF5 uptake (P = .005) were correlated with loading magnitude. Etanercept attenuated sensitivity (P < .01) and the facial grimace on Day 7 (P = .01). It also reduced (P < .01) HIF-2α and EF5 uptake on Day 8; but TNF-α levels were not different from controls at that time. Findings suggest that TMJ loading that induces persistent sensitivity upregulates the catabolic factor HIF-2α and reduces oxygen levels in the cartilage, which may be TNF-driven.
Collapse
Affiliation(s)
| | - Ya-Hsin Yu
- Department of Endodontics, University of Pennsylvania School of Dental Medicine
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania
| | | | | | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania
- Department of Neurosurgery, University of Pennsylvania
| | - Eric J. Granquist
- Oral & Maxillofacial Surgery, University of Pennsylvania School of Medicine
| |
Collapse
|
13
|
Zorina OA, Petrukhina NB, Tupicin AA, Prohodnaya VA, Maksyukov SY. [Diagnostic and prognostic significance of the hypoxia-dependent transcriptional mediator for the development of a carious lesion]. STOMATOLOGII︠A︡ 2020; 98:7-12. [PMID: 31922502 DOI: 10.17116/stomat2019980617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study diagnostic informational content of change of concentration a hypoxia-inducible factor (HIF-1α) in gingival liquid of patients for assessment of risk of development of carious process. MATERIAL AND METHODS 75 patients with the diagnosis dentine caries entered the research: group 1 (n=30) involved patients with primary caries while group 2 (n=45) consisted of patients with caries recurrence in 12 months after treatment. RESULTS In all patients HIF-1α was determined in gingival liquid before treatment by the IFA method. Logistic regression and the ROC analysis were used for the statistical analysis. In group 2 the level of HIF-1α was two-fold higher than in group 1 (p<0.001) and 82% higher than in healthy individuals (p<0.001). The increased initial HIF-1α level of 98 pg/ml was associated with high risk of caries recurrence in 12 months after treatment with diagnostic sensitivity of 88.4% and diagnostic specificity of 78.1% with chances of development increased by 4 times (p<0.0001). The change of HIF-1α in gingival liquid from 80 pg/ml to 170 pg/ml increased the risk of caries recurrence 12 months from 13% up to 94%. CONCLUSION The initial content in gingival liquid a hypoxia-inducible factor-1α higher than 98 pg/ml allows triage of patients with high risk of caries recurrence requiring dental monitoring for personification of preventive measures.
Collapse
Affiliation(s)
- O A Zorina
- Central Research Institute of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - N B Petrukhina
- Central Research Institute of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Tupicin
- Central Research Institute of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - V A Prohodnaya
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - S Yu Maksyukov
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| |
Collapse
|
14
|
Yao H, Xu JK, Zheng NY, Wang JL, Mok SW, Lee YW, Shi L, Wang JY, Yue J, Yung SH, Hu PJ, Ruan YC, Zhang YF, Ho KW, Qin L. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats. Osteoarthritis Cartilage 2019; 27:1811-1821. [PMID: 31536815 DOI: 10.1016/j.joca.2019.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the effects of Mg2+ on the expression of osteoarthritic markers in human cartilage and synovium tissue explants. To investigate the therapeutic effect of intra-articular injection of Mg2+ in an established rat OA (Osteoarthritis) model of anterior cruciate ligament transection with partial medial meniscectomy (ACLT + PMM). DESIGN Human cartilage and synovium explants were collected from total knee replacement surgeries and incubated with MgCl2 (20 mmol/L) in vitro. A rat OA model was established by ACLT + PMM surgery in 450-500 g male Sprague Dawley (SD) rats. To select the optimal dose, intra-articular injections of MgCl2 (0.05, 0.5, 5 mol/L) were performed at 4 weeks after the surgery every 3 days for 2 weeks. The effect of optimized MgCl2 was further determined by histology, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS The expressions of osteoarthritic markers in human cartilage and synovium explants were inhibited by Mg2+in vitro. Immunohistochemical analysis further suggested the inhibitory effects of Mg2+ on the expression of MMP-13 and IL-6 in the human tissue explants. Cartilage degeneration and synovitis in ACLT + PMM rats were significantly improved by intra-articular injections of Mg2+ (0.5 mol/L). Immunohistochemical analysis also showed the regulatory effects of Mg2+ on osteoarthritic markers in both cartilage and synovium in rats, consistent with in vitro results. CONCLUSION Intra-articular injections of Mg2+ at 0.5 mol/L attenuate the progression of OA in the ACLT + PMM rat model. Such effect was at least in part explained by the promotion of cartilage matrix synthesis and the suppression of synovial inflammation.
Collapse
Affiliation(s)
- H Yao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J K Xu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - N Y Zheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J L Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - S W Mok
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Y W Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - L Shi
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J Y Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - J Yue
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - S H Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - P J Hu
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, PR China.
| | - Y C Ruan
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, PR China.
| | - Y F Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China.
| | - K W Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - L Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
15
|
Zorina OA, Petrukhina NB, Tupitsin AA, Prokhodnaya VA, Maksyukov SY. [Diagnostic and prognostic significance of the hypoxia-dependent factor-1α for the development of a carious lesion]. STOMATOLOGII︠A︡ 2019; 98:15-19. [PMID: 31513142 DOI: 10.17116/stomat20199804115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The research objective was to study the diagnostic value of a hypoxia-dependent factor (HIF-1α) in gingival fluid for assessment of carious process risk. 75 patients with dentine caries entered were enrolled in the study: group 1 (n=30) - primary caries, group 2 (n=45) - secondary recurrent disease (12 months after treatment). HIF-1α was assessed in in gingival liquid of all patients before treatment by the IFA method. Statistical analysis included logistic regression and the ROC analysis. In the 2nd group of patients HIF-1α value was two-fold higher than in group 1 (p<0.001) and by 82% in healthy controls (p<0.001). The ROC analysis revealed that the initial HIF-1α level higher than 98 pg/ml was associated with high risk of caries relapse in 12 months after treatment (with diagnostic sensitivity of 88.4% and specificity of 78.1%), and chances of disease development are increased by 4 times (p<0.0001). Logistic regressions created a mathematical model for calculation of caries relapse prognosis. Pearson's χ2=50.3 (p<0.0001) indicated the statistical importance of dependence between the risk and the size of a predictor. HIF-1α concentration change in gingival liquid from 80 pg/ml to 170 pg/ml correlates with the 12 months recurrent disease risk growth from 13 up to 94%. Thus, the initial gingival fluid content of HIF-1α higher than 98 pg/ml indicates high risk for caries relapse and demands personification of preventive measures of the disease progression.
Collapse
Affiliation(s)
- O A Zorina
- Central Research Institute of Dental and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia; I.M. Sechenov First Moscow State Medical University Moscow, Russia
| | - N B Petrukhina
- Central Research Institute of Dental and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia; I.M. Sechenov First Moscow State Medical University Moscow, Russia
| | - A A Tupitsin
- Central Research Institute of Dental and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - V A Prokhodnaya
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - S Yu Maksyukov
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| |
Collapse
|
16
|
Lee Y, Hong IK, Chun Y. Prediction of painful temporomandibular joint osteoarthritis in juvenile patients using bone scintigraphy. Clin Exp Dent Res 2019; 5:225-235. [PMID: 31249703 PMCID: PMC6585587 DOI: 10.1002/cre2.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 11/28/2022] Open
Abstract
The study aims to evaluate whether bone scintigraphy is effective in diagnosing temporomandibular joint (TMJ) osteoarthritis (OA) in juvenile patients. A retrospective study was conducted with 356 consecutive patients with TMJ-OA who were clinically assessed according to the Research Diagnostic Criteria for Temporomandibular Disorders. Patients were assigned to three groups based on their ages: Group 1: aged 12-16 years; Group 2: aged 17-19 years; and Group 3: aged 20 years. Additionally, we performed qualitative and quantitative analyses of bone scintigraphy images for the TMJ uptake ratio of the involved joint. The diagnostic rate of TMJ-OA (n = 356, 100%), and the overall presence of subjective pain (n = 282, 77.3%) was closest to the results of bone scintigraphy (n = 333, 91.2%). In addition, reported TMJ pain was significantly associated only with the results of bone scintigraphy and not with the results of panoramic radiography or cone beam computed tomography (CBCT) in all age groups. With CBCT as the reference standard, the optimal cutoff values of the uptake ratio for the diagnosis of TMJ-OA were 2.171 and 2.017 in Groups 1 and 2, respectively (P value < 0.05). Our results suggest that bone scintigraphy can be considered a useful modality for diagnosing TMJ-OA in juvenile patients.
Collapse
Affiliation(s)
- Yeon‐Hee Lee
- Department of Orofacial Pain and Oral MedicineKyung Hee University Dental HospitalSeoulSouth Korea
| | - Il Ki Hong
- Department of Nuclear MedicineKyung Hee University College of Medicine, Kyung Hee University HospitalSeoulSouth Korea
| | - Yang‐Hyun Chun
- Department of Orofacial Pain and Oral MedicineKyung Hee University Dental HospitalSeoulSouth Korea
| |
Collapse
|
17
|
Sperry MM, Kartha S, Winkelstein BA, Granquist EJ. Experimental Methods to Inform Diagnostic Approaches for Painful TMJ Osteoarthritis. J Dent Res 2019; 98:388-397. [PMID: 30819041 DOI: 10.1177/0022034519828731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis (OA) is a degenerative disease of the joint that can produce persistent orofacial pain as well as functional and structural changes to its bone, cartilage, and ligaments. Despite advances in the clinical utility and reliability of the Diagnostic Criteria for Temporomandibular Disorders, clinical tools inadequately predict which patients will develop chronic TMJ pain and degeneration, limiting clinical management. The challenges of managing and treating TMJ OA are due, in part, to a limited understanding of the mechanisms contributing to the development and maintenance of TMJ pain. OA is initiated by multiple factors, including injury, aging, abnormal joint mechanics, and atypical joint shape, which can produce microtrauma, remodeling of joint tissues, and synovial inflammation. TMJ microtrauma and remodeling can increase expression of cytokines, chemokines, and catabolic factors that damage synovial tissues and can activate free nerve endings in the joint. Although studies have separately investigated inflammation-driven orofacial pain, acute activity of the trigeminal nerve, or TMJ tissue degeneration and/or damage, the temporal mechanistic factors leading to chronic TMJ pain are undefined. Limited understanding of the interaction between degeneration, intra-articular chemical factors, and pain has further restricted the development of targeted, disease-modifying drugs to help patients avoid long-term pain and invasive procedures, like TMJ replacement. A range of animal models captures features of intra-articular inflammation, joint overloading, and tissue damage. Although those models traditionally measure peripheral sensitivity as a surrogate for pain, recent studies recognize the brain's role in integrating, modulating, and interpreting nociceptive inputs in the TMJ, particularly in light of psychosocial influences on TMJ pain. The articular and neural contributors to TMJ pain, imaging modalities with clinical potential to identify TMJ OA early, and future directions for clinical management of TMJ OA are reviewed in the context of evidence in the field.
Collapse
Affiliation(s)
- M M Sperry
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - S Kartha
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - B A Winkelstein
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - E J Granquist
- 3 Oral & Maxillofacial Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model. Sci Rep 2018; 8:13894. [PMID: 30224708 PMCID: PMC6141616 DOI: 10.1038/s41598-018-32297-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Although pre-clinical models of pain are useful for defining relationships between biological mechanisms and pain, common methods testing peripheral sensitivity do not translate to the human pain experience. Facial grimace scales evaluate affective pain levels in rodent models by capturing and scoring spontaneous facial expression. But, the Rat Grimace Scale (RGS) has not assessed the common disorder of temporomandibular joint (TMJ) pain. A rat model of TMJ pain induced by jaw loading (1 hr/day for 7 days) was used to investigate the time course of RGS scores and compare them between different loading magnitudes with distinct peripheral sensitivity profiles (0N–no sensitivity, 2N–acute sensitivity, 3.5N–persistent sensitivity). In the 3.5N group, RGS is elevated over baseline during the loading period and one day after loading and is correlated with peripheral sensitivity (ρ = −0.48, p = 0.002). However, RGS is not elevated later when that group exhibits peripheral sensitivity and moderate TMJ condylar cartilage degeneration. Acutely, RGS is elevated in the 3.5N loading group over the other loading groups (p < 0.001). These findings suggest that RGS is an effective tool for detecting spontaneous TMJ pain and that spontaneous pain is detectable in rats that develop persistent TMJ sensitivity, but not in rats with acute resolving sensitivity.
Collapse
|
19
|
Trabecular structural changes in the mandibular condyle caused by degenerative osteoarthritis: a comparative study by cone-beam computed tomography imaging. Oral Radiol 2018; 35:51-58. [DOI: 10.1007/s11282-018-0324-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/27/2018] [Indexed: 10/17/2022]
|
20
|
Feng Y, Ke J, Cao P, Deng M, Li J, Cai H, Meng Q, Li Y, Long X. HMGB1-induced angiogenesis in perforated disc cells of human temporomandibular joint. J Cell Mol Med 2017; 22:1283-1291. [PMID: 29083089 PMCID: PMC5783830 DOI: 10.1111/jcmm.13410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022] Open
Abstract
High mobility group 1 protein (HMGB1), a highly conserved nuclear DNA‐binding protein and inflammatory mediator, has been recently found to be involved in angiogenesis. Our previous study has demonstrated the elevation of HMGB1 in the tissue of perforated disc of temporomandibular joint (TMJ). Here, we investigated a novel mediator of HMGB1 in regulating hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) to mediate angiogenesis in perforated disc cells of TMJ. HMGB1 increased the expression of HIF‐1α and VEGF in a dose‐ and time‐dependent manner in these cells. Moreover, immunofluorescence assay exhibits that the HIF‐1α were activated by HMGB1. In addition, HMGB1 activated extracellular signal‐related kinase 1/2 (Erk1/2), Jun N‐terminal kinase (JNK), but not P38 in these cells. Furthermore, both U0126 (ErK inhibitor) and SP600125 (JNK inhibitor) significantly suppressed the enhanced production of HIF‐1α and VEGF induced by HMGB1. Tube formation of human umbilical vein endothelial cells (HUVECs) was significantly increased by exposure to conditioned medium derived from HMGB1‐stimulated perforated disc cells, while attenuated with pre‐treatment of inhibitors for VEGF, HIF‐1α, Erk and JNK, individually. Therefore, abundance of HMGB1 mediates activation of HIF‐1α in disc cells via Erk and JNK pathway and then, initiates VEGF secretion, thereby leading to disc angiogenesis and accelerating degenerative change of the perforated disc.
Collapse
Affiliation(s)
- Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Pinyin Cao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Mohong Deng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Hengxing Cai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qinggong Meng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yingjie Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|