1
|
Kudsi SQ, Viero FT, Pereira LG, Trevisan G. Involvement of the Transient Receptor Channels in Preclinical Models of Musculoskeletal Pain. Curr Neuropharmacol 2024; 22:72-87. [PMID: 37694792 PMCID: PMC10716882 DOI: 10.2174/1570159x21666230908094159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation. OBJECTIVE In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models. METHODS This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles. RESULTS The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice. CONCLUSION Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Fernanda Tibolla Viero
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Leonardo Gomes Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| |
Collapse
|
2
|
Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 2023; 24:1. [PMID: 36597043 PMCID: PMC9809127 DOI: 10.1186/s10194-022-01535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Migraine is a major health burden worldwide with complex pathophysiology and multifarious underlying mechanisms. One poorly understood issue concerns the early steps in the generation of migraine pain. To elucidate the basic process of migraine pain further, it seems useful to consider key molecular players that may operate synergistically to evoke headache. While the neuropeptide CGRP is an important contributor, we propose that extracellular ATP (that generally plays a powerful nociceptive role) is also a major component of migraine headache, acting in concert with CGRP to stimulate trigeminal nociceptive neurons. The aim of the present focused review is to highlight the role of ATP activating its P2X3 membrane receptors selectively expressed by sensory neurons including their nerve fiber terminals in the meninges. Specifically, we present data on the homeostasis of ATP and related purines in the trigeminovascular system and in the CNS; the basic properties of ATP signalling at peripheral and central nerve terminals; the characteristics of P2X3 and related receptors in trigeminal neurons; the critical speed and persistence of P2X3 receptor activity; their cohabitation at the so-called meningeal neuro-immune synapse; the identity of certain endogenous agents cooperating with ATP to induce neuronal sensitization in the trigeminal sensory system; the role of P2X3 receptors in familial type migraine; the current state of P2X3 receptor antagonists and their pharmacological perspectives in migraine. It is proposed that the unique kinetic properties of P2X3 receptors activated by ATP offer an interesting translational value to stimulate future studies for innovative treatments of migraine pain.
Collapse
Affiliation(s)
- R. Giniatullin
- grid.9668.10000 0001 0726 2490A.I Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - A. Nistri
- grid.5970.b0000 0004 1762 9868Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
3
|
Yajima T, Sato T, Hosokawa H, Kondo T, Ichikawa H. Transient receptor potential melastatin-7 in the rat dorsal root ganglion. J Chem Neuroanat 2022; 125:102163. [PMID: 36122679 DOI: 10.1016/j.jchemneu.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Transient receptor potential melastatin-7 (TRPM7) is a selective cation permeable channel which plays important roles in cellular and developmental biology such as cell proliferation, survival, differentiation and migration. This channel is also known to be necessary for transmitter release in the peripheral nervous system. In this study, immunohistochemistry for TRPM7 was conducted in the rat lumbar dorsal root ganglion (DRG). METHODS Triple immunofluorescence methods were used to demonstrate distribution of TRPM7 and its relationship to other TRP channels in the DRG. Retrograde tracing and double immunofluorescence methods were also performed to know peripheral targets of DRG neurons containing TRPM7 and TRP vanilloid 1 (TRPV1). In addition, transection of the sciatic nerve was conducted to demonstrate an effect of the nerve injury on TRPM7expression in the DRG. RESULTS TRPM7-immunoreactivity was expressed by 53.9% of sensory neurons in the 4th lumbar DRG. TRPM7-immunoreactive (-IR) DRG neurons mostly had small (<600 µm²) and medium-sized (600-1200 µm²) cell bodies. By triple and double immunofluorescence methods, approximately 70% of TRPM7-IR DRG neurons contained TRPV1-immunoreactivity. Although the number of DRG neurons co-expressing TRPM7 and TRPM8 was small in the DRG, almost all of TRPM8-IR DRG neurons co-expressed TRPM7-immunoreactivity. By combination of retrograde tracing method and immunohistochemistry, TRPM7 was expressed by half of DRG neurons innervating the plantar skin (61.9%) and gastrocnemius muscle (51.2%), and 79.6% of DRG neurons innervating the periosteum. Co-expression of TRPM7 and TRPV1 among periosteum DRG neurons (75.7%) was more abundant than among cutaneous (53.2%) and muscular (40.4%) DRG neurons. DRG neurons which co-expressed these ion channels in the periosteum had smaller cell bodies compared to the skin and muscle. In addition, the sciatic nerve transection decreased the number of TRPM7-IR neurons in the DRG (approximately 60% reduction). The RT-qPCR analysis also demonstrated reduction of TRPM7 mRNA in the injured DRG. CONCLUSION The present study suggests that TRPM7 is mainly located in small nociceptors in the DRG. The content of TRPM7 in DRG neurons is probably different among their peripheral targets. TRPM7 in DRG neurons may be able to respond to noxious stimulation from their peripheral tissues. The nerve injury can decrease the level of TRPM7 mRNA and protein in DRG neurons.
Collapse
Affiliation(s)
- Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Teruyoshi Kondo
- Department of Animal Pharmaceutical Sciences, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients. Runx1 directly upregulates the transcriptional activity of P2X3R gene promoter Upregulation of Runx1-mediated P2X3R gene transcription underlies bone cancer pain Involvement of GDNF-Ret-ERK signaling in Runx1-mediated P2X3R gene transcription
Collapse
|
5
|
Distribution and possible function of galanin about headache and immune system in the rat dura mater. Sci Rep 2022; 12:5206. [PMID: 35338230 PMCID: PMC8956595 DOI: 10.1038/s41598-022-09325-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Galanin (GAL) is a nociceptive transmitter or modulator in the trigeminal sensory system. In this study, GAL expression was investigated in the rat dura mater to demonstrate its possible function in headache using immunohistochemical techniques. The cerebral falx and cerebellar dura mater received abundant blood and nerve supply, and were significantly thicker compared to other portions in the cerebral dura mater. GAL-immunoreactivity was expressed by cell and nerve fiber profiles. Presumed macrophages and dendritic cells contained GAL-immunoreactivity, and co-expressed with CD11b-immunoreactivity. Many isolated and perivascular nerve fibers also showed GAL-immunoreactivity. In addition, GAL-immunoreactive nerve fibers were present in the vicinity of macrophages and dendritic cells with either GAL- or ED1-immunoreactivity. GAL-immunoreactive cells and nerve fibers were common in the cerebral falx and cerebellar dura mater and infrequent in other portions. And, GAL-immunoreactive nerve fibers usually co-expressed calcitonin gene-related peptide (CGRP)-immunoreactivity. In the trigeminal ganglion, a substantial proportion of sensory neurons innervating the dura mater contained GAL-immunoreactivity (mean ± SD, 3.4 ± 2.2%), and co-expressed CGRP-immunoreactivity (2.7 ± 2.1%). The present study may suggest that GAL is associated with nociceptive transduction or modulation in the dura mater. GAL also possibly plays a role in the immune mechanism of the dura mater.
Collapse
|
6
|
Sato T, Yajima T, Kokubun S, Tachiya D, Ichikawa H. Distribution of neuronal cells which contain dopamine β-hydroxylase, tyrosine hydroxylase, neuropeptide Y and vasoactive intestinal polypeptide in the human internal carotid nerve. Anat Rec (Hoboken) 2021; 305:1277-1286. [PMID: 34486238 DOI: 10.1002/ar.24755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022]
Abstract
The human internal carotid nerve (ICN) occasionally has a swelling beneath the external opening of the carotid canal. In this study, the presence and distribution of neuronal cells were investigated in the bilateral ICNs of nine human cadavers. Among 44.4% of the cadavers, swellings were detected in the ICN. Their diameters ranged from 1.7 to 3.6 mm (average ± SD = 2.6 ± 0.7 mm). Thirty-eight percent of these swellings were large (diameter > 3 mm) and showed an oval shape. The large swelling contained many neuronal cells. However, the ICNs with or without a swelling <3 mm diameter were mostly free from neuronal cells (93.3%). Only in one human cadaver, the right ICN without a swelling had a small number of neuronal cells. By the present immunohistochemical method, ICN neurons contained catecholamine-synthesizing enzymes and neuropeptides. Dopamine-beta hydroxylase- and tyrosine hydroxylase-immunoreactivity were mostly expressed by ICN neurons. More than half of them also contained neuropeptide Y-immunoreactivity. However, vasoactive intestinal polypeptide-immunoreactive ICN neurons were relatively infrequent. Substance P- and calcitonin gene-related peptide-immunoreactive ICN neurons could not be detected. By the cell size analysis, neuropeptide Y-immunoreactive neurons were significantly smaller than neuropeptide Y-immunonegative neurons in the ICN. The present study suggests that ICN neurons have a sympathetic function in the human.
Collapse
Affiliation(s)
- Tadasu Sato
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takehiro Yajima
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Souichi Kokubun
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Daisuke Tachiya
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hiroyuki Ichikawa
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Lindquist KA, Belugin S, Hovhannisyan AH, Corey TM, Salmon A, Akopian AN. Identification of Trigeminal Sensory Neuronal Types Innervating Masseter Muscle. eNeuro 2021; 8:ENEURO.0176-21.2021. [PMID: 34580157 PMCID: PMC8513531 DOI: 10.1523/eneuro.0176-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding masseter muscle (MM) innervation is critical for the study of cell-specific mechanisms of pain induced by temporomandibular disorder (TMDs) or after facial surgery. Here, we identified trigeminal (TG) sensory neuronal subtypes (MM TG neurons) innervating MM fibers, masseteric fascia, tendons, and adjusted tissues. A combination of patch clamp electrophysiology and immunohistochemistry (IHC) on TG neurons back-traced from reporter mouse MM found nine distinct subtypes of MM TG neurons. Of these neurons, 24% belonged to non-peptidergic IB-4+/TRPA1- or IB-4+/TRPA1+ groups, while two TRPV1+ small-sized neuronal groups were classified as peptidergic/CGRP+ One small-sized CGRP+ neuronal group had a unique electrophysiological profile and were recorded from Nav1.8- or trkC+ neurons. The remaining CGRP+ neurons were medium-sized, could be divided into Nav1.8-/trkC- and Nav1.8low/trkC+ clusters, and showed large 5HT-induced current. The final two MM TG neuronal groups were trkC+ and had no Nav1.8 and CGRP. Among MM TG neurons, TRPV1+/CGRP- (somatostatin+), tyrosine hydroxylase (TH)+ (C-LTMR), TRPM8+, MrgprA3+, or trkB+ (Aδ-LTMR) subtypes have not been detected. Masseteric muscle fibers, tendons and masseteric fascia in mice and the common marmoset, a new world monkey, were exclusively innervated by either CGRP+/NFH+ or CGRP-/NFH+ medium-to-large neurons, which we found using a Nav1.8-YFP reporter, and labeling with CGRP, TRPV1, neurofilament heavy chain (NFH) and pgp9.5 antibodies. These nerves were mainly distributed in tendon and at junctions of deep-middle-superficial parts of MM. Overall, the data presented here demonstrates that MM is innervated by a distinct subset of TG neurons, which have unique characteristics and innervation patterns.
Collapse
Affiliation(s)
- Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Sergei Belugin
- Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Anahit H Hovhannisyan
- Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Tatiana M Corey
- Laboratory Animal Resources Departments, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Adam Salmon
- Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center San Antonio, TX 78229
| | - Armen N Akopian
- Integrated Biomedical Sciences (IBMS) Program, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
8
|
Sato T, Yajima T, Saijyo S, Shimazaki K, Nishitani T, Hoshika T, Nishitani Y, Ichikawa H, Mizoguchi I, Fukunaga T. Distribution of alpha-synuclein in the rat cranial sensory ganglia, and oro-cervical regions. Ann Anat 2021; 238:151776. [PMID: 34082081 DOI: 10.1016/j.aanat.2021.151776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alpha-synuclein (Syn), an unfolded soluble cytosolic protein, is known as a disease-associated protein in the brain. However, little is known about distribution of this protein in the peripheral nervous system. In this study, expression of Syn was investigated in the sensory ganglia of the cranial nerves V, IX and X. METHODS To analyze distribution of Syn and its co-expression with calcitonin gene-related peptide (CGRP) or the transient receptor potential cation channel subfamily V member 1 (TRPV1), immunohistochemical techniques were used in the rat cranial sensory ganglia and their peripheral tissues. RESULTS Syn-immunoreactive (-ir) neurons were abundant in the sensory ganglia of the petrosal (56.7%), jugular (28.3%) and nodose ganglia (82.5%). These neurons had small to medium-sized cell bodies (petrosal, mean ± S.D. = 667.4 ± 310.8 μ m2; jugular, 625.1 ± 318.4 μ m2; nodose, 708.3 ± 248.3 μ m2), and were distributed throughout the ganglia. However, the trigeminal ganglion was mostly free of Syn-ir neurons. By double and triple immunofluorescence staining, Syn-ir neurons co-expressed CGRP and TRPV1 in the petrosal and jugular ganglia. Syn-immunoreactivity was expressed by nerve fibers in the epithelium and taste bud of oral and cervical viscerae. These nerve fibers were abundant in the naso-pharynx, epiglottis and laryngeal vestibule. Some taste bud cells were also immunoreactive for Syn. In addition, Syn-ir nerve fibers were detected in the vicinity of macrophages, dendritic cells and Langerhans cells. CONCLUSIONS Syn was abundant in the visceral sensory neurons but not in somatic sensory neurons. This protein may play a role in nociceptive and chemosensory transduction in the glossopharyngeal and vagal sensory ganglia. It is possible that Syn has a function about the immune mechanism of the upper air way.
Collapse
Affiliation(s)
- Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Shiori Saijyo
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Kenichiro Shimazaki
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tomiko Nishitani
- Department of Restorative Dentistry and Endodontology, Research Field in Dentistry, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima 890-8544, Japan
| | - Tomohiro Hoshika
- Department of Restorative Dentistry and Endodontology, Research Field in Dentistry, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry and Endodontology, Research Field in Dentistry, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima 890-8544, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Kashiwadani H, Higa Y, Sugimura M, Kuwaki T. Linalool odor-induced analgesia is triggered by TRPA1-independent pathway in mice. Behav Brain Funct 2021; 17:3. [PMID: 33902628 PMCID: PMC8077846 DOI: 10.1186/s12993-021-00176-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
We had recently reported that linalool odor exposure induced significant analgesic effects in mice and that the effects were disappeared in olfactory-deprived mice in which the olfactory epithelium was damaged, thus indicating that the effects were triggered by chemical senses evoked by linalool odor exposure. However, the peripheral neuronal mechanisms, including linalool receptors that contribute toward triggering the linalool odor-induced analgesia, still remain unexplored. In vitro studies have shown that the transient receptor potential ankyrin 1 (TRPA1) responded to linalool, thus raising the possibility that TRPA1 expressed on the trigeminal nerve terminal detects linalool odor inhaled into the nostril and triggers the analgesic effects. To address this hypothesis, we measured the behavioral pain threshold for noxious mechanical stimulation in TRPA1-deficient mice. In contrast to our expectation, we found a significant increase in the threshold after linalool odor exposure in TRPA1-deficient mice, indicating the analgesic effects of linalool odor even in TRPA1-deficient mice. Furthermore, intranasal application of TRPA1 selective antagonist did not alter the analgesic effect of linalool odor. These results showed that the linalool odor-induced analgesia was triggered by a TRPA1-independent pathway in mice.
Collapse
Affiliation(s)
- Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yurina Higa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
10
|
Kawashima M, Yajima T, Tachiya D, Kokubun S, Ichikawa H, Sato T. Parasympathetic neurons in the human submandibular ganglion. Tissue Cell 2021; 70:101496. [PMID: 33517097 DOI: 10.1016/j.tice.2021.101496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
The submandibular ganglion (SMG) contains parasympathetic neurons which innervate the submandibular gland. In this study, immunohistochemistry for vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), choline acetyltransferase (ChAT), dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), and the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2) was performed on the human SMG. In the SMG, 17.5 % and 8.9 % of parasympathetic neurons were immunoreactive for VIP and TRPV2, respectively. SMG neurons mostly contained ChAT- and DBH-immunoreactivity. In addition, subpopulations of SMG neurons were surrounded by VIP (69.6 %)-, TRPV2 (54.4 %)- and DBH (9.5 %)-immunoreactive (-ir) nerve fibers. SMG neurons with pericellular VIP- and TRPV2-ir nerve fibers were significantly larger than VIP- and TRPV2-ir SMG neurons, respectively. Other neurochemical substances were rare in the SMG. In the human submandibular gland, TRPV1- and TRPV2-ir nerve fiber profiles were seen around blood vessels. Double fluorescence method also demonstrated that TRPV2-ir nerve fiber profiles were located around myoepithelial and acinar cells in the submandibular gland. VIP and TRPV2 are probably expressed by both pre- and post-ganglionic neurons innervating the submandibular and sublingual glands. VIP, DBH and TRPV2 may have functions about regulation of salivary components in the salivary glands and neuronal activity in the SMG.
Collapse
Affiliation(s)
- Mutsuko Kawashima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
11
|
Tariba Knežević P, Vukman R, Uhač M, Illeš D, Kovačević Pavičić D, Simonić-Kocijan S. P 2Y 2 Receptors Mediate Masseter Muscle Mechanical Hypersensitivity in Rats. J Pain Res 2020; 13:1323-1333. [PMID: 32581574 PMCID: PMC7280063 DOI: 10.2147/jpr.s239831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/07/2020] [Indexed: 01/18/2023] Open
Abstract
Purpose P2Y2 receptors (P2Y2Rs) are among the various receptors that play an important role in nociception. The goal of this research was to investigate possible P2Y2R expression changes in the trigeminal ganglion (TRG) in bilateral masseter muscle (MM) hypersensitivity following unilateral MM inflammation. The impact of unilateral intramasseteric administration of P2Y2R antagonist on bilateral MM hypersensitivity was also explored. Materials and Methods Bilateral MM hypersensitivity was provoked by unilateral intramasseteric injection of complete Freund’s adjuvant (CFA). The head withdrawal threshold (HWT) was assessed bilaterally 4 days later. Bilateral TRG and MM isolation were followed, and quantitative real-time polymerase chain reaction (qRT-PCR) and histopathological analysis were carried out on these tissues, respectively. The involvement of P2Y2Rs in nocifensive behavior was evaluated by administering two doses of P2Y2R antagonist AR-C118925 (0.2 or 1 mg/100 μL) in inflamed MM 4 days post-CFA administration. Bilateral HWT was assessed at different time points following antagonist injection. Results qRT-PCR analysis demonstrated P2Y2R up-regulation in TRG ipsilateral to the site of CFA administration. Compared to the controls, both doses of AR-C118925 injected ipsilateral to the TRG increased the bilateral HWT at 30, 60, 90, and 120 minutes after antagonist administration. Conclusion The findings suggest that P2Y2Rs may affect MM inflammatory hypersensitivity owing to its up-regulation in the TRG in MM inflammatory pain states.
Collapse
Affiliation(s)
- Petra Tariba Knežević
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Robert Vukman
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Mia Uhač
- Department of Orthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Davor Illeš
- Department of Removable Prosthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Kovačević Pavičić
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Sunčana Simonić-Kocijan
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| |
Collapse
|
12
|
Atsumi K, Yajima T, Tachiya D, Kokubun S, Shoji N, Sasano T, Ichikawa H, Sato T. Sensory neurons in the human jugular ganglion. Tissue Cell 2020; 64:101344. [PMID: 32473709 DOI: 10.1016/j.tice.2020.101344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The jugular ganglion (JG) contains sensory neurons of the vagus nerve which innervate somatic and visceral structures in cranial and cervical regions. In this study, the number of sensory neurons in the human JG was investigated. And, the morphology of sensory neurons in the human JG and nodose ganglion (NG) was compared. The estimated number of JG neurons was 2721.8-9301.1 (average number of sensory neurons ± S.D. = 7975.1 ± 3312.8). There was no significant difference in sizes of the neuronal cell body and nucleus within the JG (cell body, 1128.8 ± 99.7 μ m2; nucleus, 127.7 ± 20.8 μ m2) and NG (cell body, 963.8 ± 225.7 μ m2; nucleus, 123.2 ± 32.3 μ m2). These findings indicate that most of sensory neurons show the similar morphology in the JG and NG. Our immunohistochemical method also demonstrated the distribution of ion channels, neurotransmitter agents and calcium-binding proteins in the human JG. Numerous JG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1 (TRPV1, mean ± SD = 19.9 ± 11.5 %) and calcitonin gene-related peptide (CGRP, 28.4 ± 6.7 %). A moderate number of JG neurons contained TRPV2 (12.0 ± 4.7 %), substance P (SP, 15.7 ± 6.9 %) and secreted protein, acidic and rich in cysteine-like 1 (SPARCL1, 14.6 ± 7.4 %). A few JG neurons had vesicular glutamate transporter 2 (VGLUT2, 5.6 ± 2.9 %) and parvalbumin (PV, 2.3 ± 1.4 %). SP- and TRPV2-containing JG neurons had mainly small and medium-sized cell bodies, respectively. TRPV1- and VGLUT2- containing JG neurons were small to medium-sized. CGRP- and SPARCL1-containing JG neurons were of various cell body sizes. Sensory neurons in the human JG were mostly free of vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH) and neuropeptide Y (NPY). In the external auditory canal skin, subepithelial nerve fibers contained TRPV1, TRPV2, SP, CGRP and VGLUT2. Perivascular nerve fibers also had TRPV1, TRPV2, SP, CGRP, VIP, NPY and TH. However, PV- and SPARCL1-containing nerve endings could not be seen in the external auditory canal. It is likely that sensory neurons in the human JG can transduce nociceptive and mechanoreceptive information from the external auditory canal. Theses neurons may be also associated with neurogenic inflammation in the external auditory canal and ear-cough reflex through the vagus nerve.
Collapse
Affiliation(s)
- Keiichiro Atsumi
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Noriaki Shoji
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takashi Sasano
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
13
|
Transient receptor potential melastatin-3 in the rat sensory ganglia of the trigeminal, glossopharyngeal and vagus nerves. J Chem Neuroanat 2019; 96:116-125. [PMID: 30639448 DOI: 10.1016/j.jchemneu.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Transient receptor potential melastatin-3 (TRPM3) is a nonselective cation channel, has permeability of Ca2+, and probably participates in thermosensitive nociception. In this study, immunohistochemistry for TRPM3 was conducted in the rat trigeminal, glossopharyngeal and vagal sensory ganglia. TRPM3-immunoreactivity was expressed by half of sensory neurons in the trigeminal (TG), petrosal (PG) and jugular ganglia (JG), and by about 80% of sensory neurons in the nodose ganglion (NG). They mostly had small to medium-sized cell bodies. A trichrome immunofluorescence method showed co-existence of TRPM3 with TRP vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP). Approximately 70% of TRPM3-immunoreactive (-IR) neurons contained TRPV1-immunoreactivity in all the examined ganglia. More than 40% of TRPM3-IR neurons exhibited CGRP-immunoreactivity in the TG, PG and JG. Only a few sensory neurons co-expressed TRPM3- and CGRP-immunoreactivity in the NG. In addition, more than 40% of TRPM3-IR neurons bound to isolectin B4 in all the examined ganglia. By combination of retrograde tracing method and immunohistochemistry, half of TG neurons innervating the facial skin and incisive papilla expressed TRPM3-immunoreactivity whereas approximately 20% of those innervating the tooth pulp contained TRPM3-immunoreactivity. Co-expression of TRPM3-immunoreactivity with TRPV1- or CGRP-immunoreactivity was common among cutaneous and papillary TG neurons but not among pulpal TG neurons. More than 60% of PG and JG neurons innervating the external ear canal skin and circumvallate papilla contained TRPM3-immunoreactivity. Co-expression of TRPM3 with TRPV1 or CGRP was common among PG and JG neurons innervating the external ear canal skin. However, a smaller number of TRPM3-IR neurons co-expressing TRPV1- or CGRP-immunoreactivity innervate the circumvallate papilla in the PG. The present study suggests that expression of TRPM3 and its co-existence with TRPV1 and CGRP in sensory neurons depend on the variety of their peripheral targets in the trigeminal, glossopharyngeal and vagal nervous systems.
Collapse
|