1
|
Benseddik F, Pilliol V, Alou MT, Wasfy RM, Raoult D, Dubourg G. The oral microbiota and its relationship to dental calculus and caries. Arch Oral Biol 2024; 171:106161. [PMID: 39675254 DOI: 10.1016/j.archoralbio.2024.106161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES In this review, we provide an overview of the composition of the microbiota associated with these two dental pathologies, caries and tartar, highlighting the microbial profiles associated with each pathology. DESIGN This literature review was carried out by a manual search of two electronic databases, PubMed and Web of Science (WOS), using specific keywords to the two oral pathologies dental caries and calculus. RESULTS The oral microbial community is known for its complexity, and comprises hundreds of species of different micro-organisms. Many of them, under the influence of endogenous and exogenous factors, can play a role in the onset and development of oral pathologies. Analysis of the microbial profiles of caries and dental calculus revealed that Streptococcus mutans and Lactobacillus species are abundant in the oral microbiota associated with caries whereas their presence is less reported in dental calculus. However, the three pathogens known as the "red complex", namely Porphyromonas, Tannarella and Treponema, which are associated with the development of periodontal pathology, are strongly present in the dental calculus microbiome. CONCLUSION The microbiota composition associated with dental caries and calculus highlights specific microbial signatures for each of the two oral pathologies, underscoring their differences and microbiological complexity, while the possible relationship between the formation of dental calculus and the development of caries remains unclear.
Collapse
Affiliation(s)
- Fatma Benseddik
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Virginie Pilliol
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France; AP-HM, Marseille, France
| | - Maryam Tidjani Alou
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Reham Magdy Wasfy
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Grégory Dubourg
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France; AP-HM, Marseille, France.
| |
Collapse
|
2
|
Pagnussatti MEL, de Barros Santos HS, Parolo CCF, Hilgert JB, Arthur RA. Oral microbiota: Taxonomic composition and functional profile in caries-free and in caries-affected individuals - A systematic review. Arch Oral Biol 2024; 168:106070. [PMID: 39226678 DOI: 10.1016/j.archoralbio.2024.106070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To compare the oral microbiota among caries-free (CF) with caries-affected (CA) individuals, both at taxonomic and at functional levels. DESIGN This systematic review was conducted following PRISMA guidelines. A structured search was carried out in MEDLINE/PUBMED, Web of Science, EMBASE, LILACS, SciELO, Scopus and Google Scholar databases up to September, 2023. Observational studies, without any restriction on date of publication and using next-generation targeted or untargeted sequencing methods for identification of microbial communities were included. Qualitative synthesis was performed from all included studies. RESULTS 54 studies were included (43 cross-sectional; 11 cohort) comprising more than 3486 participants (at least 1666 CF and 1820 CA) whose saliva and/or dental plaque were used as clinical samples. Methodological quality was graded as "fair" for most of the studies. The abundance of 87 bacterial and 44 fungal genera were statistically different among CF and CA individuals. Atopobium spp., Capnocytophaga spp., Lactobacillus spp., Prevotella spp., Scardovia spp., Selenomonas spp. among others were frequently reported as being more abundant in CA individuals. Several functional patterns, such as lipids, carbohydrate, starch, sucrose, amino sugar metabolisms, among others, were identified as being specifically related to CF or to CA conditions. CONCLUSION In spite of the variability among the included studies and of the predominance of qualitative synthesis, groups of microorganisms as well as specific functional profiles coded by the assessed microbiota are differently abundant among caries-affected and caries-free individuals. These results need to be interpreted with caution considering the limitations inherent to each assessed primary study.
Collapse
Affiliation(s)
- Maria Eduarda Lisbôa Pagnussatti
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Heitor Sales de Barros Santos
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Clarissa Cavalcanti Fatturi Parolo
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Juliana Balbinot Hilgert
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil; National Council for Research and Development (CNPq).
| | - Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| |
Collapse
|
3
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu S, Wang S, Zhang N, Li P. The oral microbiome and oral and upper gastrointestinal diseases. J Oral Microbiol 2024; 16:2355823. [PMID: 38835339 PMCID: PMC11149586 DOI: 10.1080/20002297.2024.2355823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Background Microbiomes are essential components of the human body, and their populations are substantial. Under normal circumstances, microbiomes coexist harmoniously with the human body, but disturbances in this equilibrium can lead to various diseases. The oral microbiome is involved in the occurrence and development of many oral and gastrointestinal diseases. This review focuses on the relationship between oral microbiomes and oral and upper gastrointestinal diseases, and therapeutic strategies aiming to provide valuable insights for clinical prevention and treatment. Methods To identify relevant studies, we conducted searches in PubMed, Google Scholar, and Web of Science using keywords such as "oral microbiome," "oral flora, " "gastrointestinal disease, " without any date restrictions. Subsequently, the retrieved publications were subject to a narrative review. Results In this review, we found that oral microbiomes are closely related to oral and gastrointestinal diseases such as periodontitis, dental caries, reflux esophagitis, gastritis, and upper gastrointestinal tumors (mainly the malignant ones). Oral samples like saliva and buccal mucosa are not only easy to collect, but also display superior sample stability compared to gastrointestinal tissues. Consequently, analysis of the oral microbiome could potentially serve as an efficient preliminary screening method for high-risk groups before undergoing endoscopic examination. Besides, treatments based on the oral microbiomes could aid early diagnosis and treatment of these diseases. Conclusions Oral microbiomes are essential to oral and gastrointestinal diseases. Therapies centered on the oral microbiomes could facilitate the early detection and management of these conditions.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shidong Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
5
|
Cena JAD, Belmok A, Kyaw CM, Dame-Teixeira N. The Archaea domain: Exploring historical and contemporary perspectives with in silico primer coverage analysis for future research in Dentistry. Arch Oral Biol 2024; 161:105936. [PMID: 38422909 DOI: 10.1016/j.archoralbio.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.
Collapse
Affiliation(s)
| | - Aline Belmok
- Institute of Biology, University of Brasilia, Brazil
| | | | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, UK.
| |
Collapse
|
6
|
Guerra A. Human associated Archaea: a neglected microbiome worth investigating. World J Microbiol Biotechnol 2024; 40:60. [PMID: 38172371 DOI: 10.1007/s11274-023-03842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The majority of research in the field of human microbiota has predominantly focused on bacterial and fungal communities. Conversely, the human archaeome has received scant attention and remains poorly studied, despite its potential role in human diseases. Archaea have the capability to colonize various human body sites, including the gastrointestinal tract, skin, vagina, breast milk, colostrum, urinary tract, lungs, nasal and oral cavities. This colonization can occur through vertical transmission, facilitated by the transfer of breast milk or colostrum from mother to child, as well as through the consumption of dairy products, organic produce, salty foods, and fermented items. The involvement of these microorganisms in diseases, such as periodontitis, might be attributed to their production of toxic compounds and the detoxification of growth inhibitors for pathogens. However, the precise mechanisms through which these contributions occur remain incompletely understood, necessitating further studies to assess their impact on human health.
Collapse
|
7
|
Soza-Bolaños AI, Domínguez-Pérez RA, Ayala-Herrera JL, Pérez-Serrano RM, Soto-Barreras U, Espinosa-Cristóbal LF, Rivera-Albarrán CA, Zaldívar-Lelo de Larrea G. Presence of methanogenic archaea in necrotic root canals of patients with or without type 2 diabetes mellitus. AUST ENDOD J 2023; 49:641-647. [PMID: 37715368 DOI: 10.1111/aej.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Theoretically, a necrotic root canal fulfils all requirements as a niche for methanogens to inhabit. However, their presence in it and its implication in apical periodontitis (AP) is controversial. Therefore, to contribute to ending the controversy, this study aimed to detect and compare methanogens' presence in two distinct niches with supposedly different microenvironments; both were necrotic root canals associated with AP but one from patients with type 2 diabetes mellitus (T2DM) while the other from non-diabetic patients. A clinical examination was performed on 65 T2DM patients and 73 non-diabetic controls. Samples from necrotic root canals were obtained, and methanogens were identified. The presence of methanogens was three times higher (27.6%) in the T2DM group than in non-diabetic patients (8.2%). In addition, methanogens' presence was associated with a higher prevalence of periapical symptoms.
Collapse
Affiliation(s)
- Ana I Soza-Bolaños
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
- Department of Endodontics, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Rubén A Domínguez-Pérez
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
- Department of Endodontics, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | - Rosa M Pérez-Serrano
- Laboratorio de Genética y Biología Molecular (GENBIOM), Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | - León F Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez, Ciudad Juarez, Mexico
| | - Claudia A Rivera-Albarrán
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Guadalupe Zaldívar-Lelo de Larrea
- Laboratorio de Genética y Biología Molecular (GENBIOM), Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| |
Collapse
|
8
|
Cena JA, Vasques Castro JAD, Belmok A, Sales LP, Alves de Oliveira L, Stefani CM, Dame-Teixeira N. Unraveling the Endodontic Archaeome: A Systematic Review with Meta-Analysis. J Endod 2023; 49:1432-1444.e4. [PMID: 37544428 DOI: 10.1016/j.joen.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION The controversial issue of whether the Archaea domain plays a role in endodontic infections is the focus of this systematic review with meta-analysis. The aim is to emphasize the significance of minority microbial domains in oral dysbiosis by evaluating the prevalence of archaea in root canals and its association with clinical parameters such as symptomatology and type of endodontic infection. METHODS The search strategy involved researching 6 databases and the gray literature. Publications were accepted in any year or language that identified archaea in samples from endodontic canals. A 2-step selection process narrowed the final choice to 16 articles. The methodological quality of the studies was evaluated using tools from the Joanna Briggs Institute, and the certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. RESULTS The results showed that archaea were present in 20% (95% [confidence interval] CI = 8%-32%) of individuals with endodontic samples analyzed. The samples were about twice as likely to be archaeal-positive if collected from individuals with primary vs. persistent/secondary infection (odds ratio = 2.33; 95% CI = 1.31-4.14; I2 = 0%), or individuals with self-reported vs. symptom-free infections (odds ratio = 2.67; 95% CI = 1.47-4.85; I2 = 0%). Methanogenic archaea were reported in 66% of the included studies. Representative members of phyla Thaumarchaeota and Crenarchaeota were also identified. CONCLUSIONS Archaea are present in about one-fifth of the infected root canals. Recognized biases in experimental approaches for researching archaea must be addressed to understand the prevalence and roles of archaea in endodontic infections, and to determine whether the decontamination process should include the elimination or neutralization of archaea from root canals (International Prospective Register of Systematic Reviews protocol = CRD42021264308).
Collapse
Affiliation(s)
- Jessica Alves Cena
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Aline Belmok
- Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Loise Pedrosa Sales
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil; Oral Biology Division, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Mohammadpour H, Cardin M, Carraro L, Fasolato L, Cardazzo B. Characterization of the archaeal community in foods: The neglected part of the food microbiota. Int J Food Microbiol 2023; 401:110275. [PMID: 37295268 DOI: 10.1016/j.ijfoodmicro.2023.110275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/30/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Despite the large number of studies conducted on archaea associated with extreme environments, the archaeal community composition in food products is still poorly known. Here, we investigated a new insight into exploring the archaeal community in several food matrices, with a particular focus on determining whether living archaea were present. A total of 71 samples of milk, cheese and its derived brine, honey, hamburger, clam, and trout were analyzed by high-throughput 16S rRNA sequencing. Archaea were detected in all the samples, ranging from 0.62 % of microbial communities in trout to 37.71 % in brine. Methanogens dominated 47.28 % of the archaeal communities, except for brine, which was dominated by halophilic taxa affiliated with the genus Haloquadratum (52.45 %). Clams were found to be a food with high richness and diversity of archaea and were targeted for culturing living archaea under different incubation time and temperature conditions. A subset of 16 communities derived from culture-dependent and culture-independent communities were assessed. Among the homogenates and living archaeal communities, the predominant taxa were distributed in the genera Nitrosopumilus (47.61 %) and Halorussus (78.78 %), respectively. A comparison of the 28 total taxa obtained by culture-dependent and culture-independent methods enabled their categorization into different groups, including detectable (8 out of 28), cultivable (8 out of 28), and detectable-cultivable (12 out of 28) taxa. Furthermore, using the culture method, the majority (14 out of 20) of living taxa grew at lower temperatures of 22 and 4 °C during long-term incubation, and few taxa (2 out of 20) were found at 37 °C during the initial days of incubation. Our results demonstrated the distribution of archaea in all analyzed food matrices, which opens new perspectives to expand our knowledge on archaea in foods and their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Hooriyeh Mohammadpour
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| | - Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy.
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| |
Collapse
|
10
|
Girija AS, Ganesh PS. Functional biomes beyond the bacteriome in the oral ecosystem. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:217-226. [PMID: 35814739 PMCID: PMC9260289 DOI: 10.1016/j.jdsr.2022.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selective constraint and pressures upon the host tissues often signifies a beneficial microbiome in any species. In the context of oral microbiome this displays a healthy microbial cosmos resisting the colonization and helps in rendering protection. This review highlights the endeavors of the oral microbiome beyond the bacteriome encompassing virome, mycobiome, protozoa and archaeomes in maintaining the oral homeostasis in health and disease. Scientific data based on the peer-reviewed publications on the microbial communities of the oral microbiome were selected and collated from the scientific database collection sites of web of science (WOS), pubmed central, Inspec etc., from 2010 to 2021 using the search key words like oral microbiome, oral microbiota, oral virome, oral bacteriome, oral mycobiome and oral archaeome. Data excluded were from conference proceedings, abstracts and book chapters. The oral homeostasis in both the health and disease conditions, mostly is balanced by the unrevealed virome, mycobiome, oral protozoa and archaeome. The review documents the need to comprehend the diversity that prevails among the kingdoms in order to determine the specific role played by each domain. Oral microbiome is also a novel research arena to develop drug and targeted therapies to treat various oro-dental infections.
Collapse
|
11
|
Zhang JS, Chu CH, Yu OY. Oral Microbiome and Dental Caries Development. Dent J (Basel) 2022; 10:184. [PMID: 36285994 PMCID: PMC9601200 DOI: 10.3390/dj10100184] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Dental caries remains the most prevalent oral disease worldwide. The development of dental caries is highly associated with the microbiota in the oral cavity. Microbiological research of dental caries has been conducted for over a century, with conventional culture-based methods and targeted molecular methods being used in order to identify the microorganisms related to dental caries. These methods' major limitation is that they can identify only part of the culturable microorganisms in the oral cavity. Introducing sequencing-based technology and bioinformatics analysis has boosted oral microbiome research and greatly expanded the understanding of complex oral microbiology. With the continuing revolution of molecular technologies and the accumulated sequence data of the oral microbiome, researchers have realized that microbial composition alone may be insufficient to uncover the relationship between caries and the microbiome. Most updated evidence has coupled metagenomics with transcriptomics and metabolomics techniques in order to comprehensively understand the microbial contribution to dental caries. Therefore, the objective of this article is to give an overview of the research of the oral microbiome and the development of dental caries. This article reviews the classical concepts of the microbiological aspect of dental caries and updates the knowledge of caries microbiology with the results of current studies on the oral microbiome. This paper also provides an update on the caries etiological theory, the microorganisms related to caries development, and the shifts in the microbiome in dental caries development.
Collapse
Affiliation(s)
| | | | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
13
|
Abstract
Trillions of microorganisms, including bacteria, archaea, fungi, and viruses, live in or on the human body. Microbe-microbe and microbe-host interactions are often influenced by diffusible and microbe-associated small molecules. Over the past few years, it has become evident that these interactions have a substantial impact on human health and disease. In this Perspective, we summarize the research involving the discovery of methanogenic and non-methanogenic archaea associated with the human body. In particular, we emphasize the importance of some archaeal metabolites in mediating intra- and interspecies interactions in the ecological environment of the human body. A deep understanding of the archaeal metabolites as well as their biological functions may reveal in more detail whether and how archaea are involved in maintaining human health and/or causing certain diseases.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
14
|
Mohammadzadeh R, Mahnert A, Duller S, Moissl-Eichinger C. Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease. Curr Opin Microbiol 2022; 67:102146. [PMID: 35427870 DOI: 10.1016/j.mib.2022.102146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Since the introduction of Archaea as new domain of life more than 40 years ago, they are no longer regarded as eccentric inhabitants of extreme ecosystems. These microorganisms are widespread in various moderate ecosystems, including eukaryotic hosts such as humans. Indeed, members of the archaeal community are now recognized as paramount constituents of human microbiome, while their definite role in disease or health is not fully elucidated and no archaeal pathogen has been reported. Here, we present a brief overview of archaea residing in and on the human body, with a specific focus on common lineages including Methanobrevibacter, Methanosphaeraand Methanomassilococcales.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, 8010 Graz, Austria.
| |
Collapse
|
15
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
16
|
First Detection of Methanogens in Orthopedic Prosthesis Infection: A Four-Case Founding Series. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Orthopedic prosthesis infection must be medically managed after appropriate microbiological documentation. While bacteria and fungi are acknowledged to be causative opportunistic pathogens in this situation, the potential role of methanogens in orthopedic prosthesis infections is still unknown. In a retrospective study, a total of 100 joint and bone samples collected from 25 patients were screened by specific PCR assays for the detection of methanogens. PCR-positive samples were observed by autofluorescence, electron microscopy and tentatively cultured under specific culture conditions. Methanogens were detected by quantitative PCR in 4/100 samples, in the presence of negative controls. Sequencing identified Methanobrevibacter oralis in two cases, Methanobrevibacter smithii in one case and Methanobrevibacter wolinii in one case. Microscopic methods confirmed molecular findings and bacterial culture yielded two strains of Staphylococcus aureus, one strain of Staphylococcus epidermidis and one strain of Proteus mirabilis. These unprecedented data highlight the presence of methanogens in joint and bone samples of patients also diagnosed with bacterial orthopedic prosthesis infection, questioning the role of methanogens as additional opportunistic co-pathogens in this situation.
Collapse
|
17
|
Dame-Teixeira N, de Lima AKA, Do T, Stefani CM. Meta-Analysis Using NGS Data: The Veillonella Species in Dental Caries. FRONTIERS IN ORAL HEALTH 2022; 2:770917. [PMID: 35048071 PMCID: PMC8757819 DOI: 10.3389/froh.2021.770917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 02/01/2023] Open
Abstract
Objectives: In light of recent technological advances in Next-generation sequencing (NGS) and the accumulation of large, publicly available oral microbiome datasets, the need for meta-analysing data on caries microbiome is becoming feasible and essential. A consensus on the identification of enriched organisms in cariogenic dysbiotic biofilms would be reached. For example, members of the Veillonella genus have been detected in caries biofilms, and may have an underestimated contribution to the dysbiotic process. Hence, we aimed to determine the abundance of Veillonella species in dental caries in studies using NGS data. Materials and Methods: Analysis was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (registered at PROSPERO: CRD42020204150). Studies investigating microbial composition in saliva, dental biofilm, or carious dentin were included. Six databases and grey literature were searched. Two independent reviewers selected the papers and assessed the methodological quality. Results: Searches retrieved 1,323 titles, from which 38 studies were included in a qualitative synthesis, comprising a total of 1,374 caries and 745 caries-free individuals. Most studies analysed 16S rRNA amplicons, and only 5 studies used shotgun metagenomics and metatranscriptomics. A geographical bias was observed. The methodological quality was downrated in 81.5% of the studies due to the lack of criteria for defining cases and standard criteria used for measurement of the condition in a reliable way. Six studies on early childhood caries (ECC) were meta-analysed, confirming a significant enrichment of Veillonella spp. in caries-associated biofilms (but not saliva) when compared to caries-free controls [mean difference: 2.22 (0.54–3.90); p = 0.01]. Conclusions:Veillonella spp. is more abundant in individuals suffering with ECC when compared to caries-free controls (very low evidence certainty), and should be considered for further studies to observe their metabolism in dental caries. There is an urgent need for a consensus in methodologies used to allow for more rigorous comparison between NGS studies, particularly including clinical data and details of caries diagnosis, as they are currently scarce. Inconsistent reporting on the NGS data affected the cross-study comparison and the biological connexions of the relative abundances on caries microbiome.
Collapse
Affiliation(s)
- Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil.,Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | | | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
18
|
Meta-analyses on the Periodontal Archaeome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:69-93. [DOI: 10.1007/978-3-030-96881-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Adler CJ, Cao KAL, Hughes T, Kumar P, Austin C. How does the early life environment influence the oral microbiome and determine oral health outcomes in childhood? Bioessays 2021; 43:e2000314. [PMID: 34151446 PMCID: PMC9084494 DOI: 10.1002/bies.202000314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022]
Abstract
The first 1000 days of life, from conception to 2 years, are a critical window for the influence of environmental exposures on the assembly of the oral microbiome, which is the precursor to dental caries (decay), one of the most prevalent microbially induced disorders worldwide. While it is known that the human microbiome is susceptible to environmental exposures, there is limited understanding of the impact of prenatal and early childhood exposures on the oral microbiome trajectory and oral health. A barrier has been the lack of technology to directly measure the foetal "exposome", which includes nutritional and toxic exposures crossing the placenta. Another barrier has been the lack of statistical methods to account for the high dimensional data generated by-omic assays. Through identifying which early life exposures influence the oral microbiome and modify oral health, these findings can be translated into interventions to reduce dental decay prevalence.
Collapse
Affiliation(s)
- Christina Jane Adler
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Piyush Kumar
- Department of Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
20
|
de Cena JA, Zhang J, Deng D, Damé-Teixeira N, Do T. Low-Abundant Microorganisms: The Human Microbiome's Dark Matter, a Scoping Review. Front Cell Infect Microbiol 2021; 11:689197. [PMID: 34136418 PMCID: PMC8201079 DOI: 10.3389/fcimb.2021.689197] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Research on the human microbiome has mainly been restricted to the identification of most abundant microbiota associated with health or disease. Their abundance may reflect their capacity to exploit their niche, however, metabolic functions exerted by low-abundant microrganisms can impact the dysbiotic signature of local microbial habitats. This scoping review aims to map the literature regarding the management of low-abundant microorganisms in studies investigating human microbiome samples. A systematic literature search was performed in 5 electronic databases, as well as grey literature. We selected clinical microbiome studies targeting human participants of any age, from any body site. We also included studies with secondary data which originated from human biofilm samples. All of the papers used next-generation sequencing (NGS) techniques in their methodology. A total of 826 manuscripts were retrieved, of which 42 were included in this review and 22 reported low-abundant bacteria (LB) in samples taken from 7 body sites (breast, gut, oral cavity, skin, stomach, upper respiratory tract (URT), and vagina). Four studies reported microbes at abundance levels between 5 and 20%, 8 studies reported between 1 and 5%, and 18 studies reported below 1%. Fifteen papers mentioned fungi and/or archaea, and from those only 4 (fungi) and 2 (archaea) produced data regarding the abundance of these domains. While most studies were directed towards describing the taxonomy, diversity and abundance of the highly abundant species, low-abundant species have largely been overlooked. Indeed, most studies select a cut-off value at <1% for low-abundant organisms to be excluded in their analyses. This practice may compromise the true diversity and influence of all members of the human microbiota. Despite their low abundance and signature in biofilms, they may generate important markers contributing to dysbiosis, in a sort of ‘butterfly effect’. A detailed snapshot of the physiological, biological mechanisms at play, including virulence determinants in the context of a dysbiotic community, may help better understand the health-disease transition.
Collapse
Affiliation(s)
- Jéssica Alves de Cena
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasilia, Brazil
| | - Jianying Zhang
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands.,Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Dongmei Deng
- Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Nailê Damé-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasilia, Brazil.,Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
22
|
Abstract
The human oral cavity is one of the first environments where microbes have been discovered and studied since the dawn of microbiology. Nevertheless, approximately 200 types of bacteria from the oral microbiota have remained uncultured in the laboratory. Some are associated with a healthy oral microbial community, while others are linked to oral diseases, from dental caries to gum disease. Single-cell genomics has enabled inferences on the physiology, virulence, and evolution of such uncultured microorganisms and has further enabled isolation and cultivation of several novel oral bacteria, including the discovery of novel interspecies interactions. This review summarizes some of the more recent advances in this field, which is rapidly moving toward physiologic characterization of single cells and ultimately cultivation of the yet uncultured. A combination of traditional microbiological approaches with genomic-based physiologic predictions and isolation strategies may lead to the oral microbiome being the first complex microbial community to have all its members cultivable in the laboratory. Studying the biology of the individual microbes when in association with other members of the community, in controlled laboratory conditions and in vivo, should lead to a better understanding of oral dysbiosis and its prevention and reversion.
Collapse
Affiliation(s)
- M Balachandran
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - K L Cross
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - M Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
23
|
Abstract
The Archaea domain was recognized as a separate phylogenetic lineage in the tree of life nearly 3 decades ago. It is now known as part of the human microbiome; however, given that its roles in oral sites are still poorly understood, this review aimed to establish the current level of evidence regarding archaea in the oral cavity to guide future research, providing insights on the present knowledge about the human oral archaeome. A scoping review was conducted with the PRISMA Extension for Scoping Reviews checklist. Five electronic databases were searched, as well as gray literature. Two independent reviewers performed the selection and characterization of the studies. Clinical studies were included when the target population consisted of humans of any age who were donors of samples from the oral cavity. A qualitative analysis was performed, based on the type of oral site and by considering the methods employed for archaeal identification and taxonomy, including the DNA extraction protocols, primers, and probes used. Fifty articles were included in the final scoping review, published from 1987 to 2019. Most studies sampled periodontal sites. Methanogens were the most abundant archaea in those sites, and their presence could be associated with other periodontal pathogens. No consistent relationship with different disease conditions was observed in studies that evaluated the microbiota surviving in endodontic sites. Few articles analyzed the presence of archaea in dental caries, saliva, or tongue microbiota, as well as in archaeologic samples, also showing a relationship with healthy microbiota. Archaea have been detected in different oral niches of individuals from diverse geographic locations and clinical conditions, suggesting potential roles in oral diseases. Methodological limitations may hamper our current knowledge about archaeal diversity and prevalence in oral samples, and future research with diversified methodological approaches may lead to a better comprehension of the human oral archaeome.
Collapse
Affiliation(s)
- A Belmok
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - J A de Cena
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| | - C M Kyaw
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - N Damé-Teixeira
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|