1
|
Ponne S, Chinnadurai RK, Kumar R, Mohanty AK, Nogueira Brilhante RS, Trang Nhung TT, Baluchamy S. PWWP2A/B: Prominent players in the proteomic landscape. Gene 2025; 942:149245. [PMID: 39809369 DOI: 10.1016/j.gene.2025.149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain. While their precise functions remain to be fully elucidated, PWWP2A and PWWP2B have been implicated in essential processes such as embryonic development, mitotic regulation, adipose thermogenesis, transcriptional control, and DNA damage response. Their involvement in disease pathology is an emerging area of research, with PWWP2B downregulation linked to recurrent gastric cancer, promoting cell proliferation and migration. Literature reveals that the circular RNA, cPWWP2A sequesters miR-203, miR-223, and miR-27, to modulate TGF-β signalling by inhibiting key regulators like SMAD3 and SP3. Additionally, PWWP2A/B proteins may interact with P4HA3, a regulator of the TGF-β/SMAD signalling pathway that influences tumour invasiveness, though the precise nature of this interaction is not yet fully understood. The PWWP2-miRNA-TGF-β axis, particularly the PWWP2-P4HA3 association, provides valuable insights into therapeutic strategies, especially under adverse conditions where this pathway is differentially regulated. Overall, given their essential roles in fundamental cellular processes and their involvement in disease mechanisms, PWWP2A and PWWP2B proteins could be ideal targets for therapeutic intervention. Thus, these proteins occupy a prominent position in the human proteome and epigenetic landscape.
Collapse
Affiliation(s)
- Saravanaraman Ponne
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry 607403, India.
| | - Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry 607402, India
| | - Rajender Kumar
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | - Aman Kumar Mohanty
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry 607402, India
| | - Raimunda Sâmia Nogueira Brilhante
- Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | | | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry 605014, India
| |
Collapse
|
2
|
Xu M, Shi R, Yang J, Chen H, Liu S, Yu S, Li S, He W, Sy MS, Lu M, Zhang H, Li C. Collagen prolyl 4-hydroxylase subunit α member-induced head and neck squamous cell carcinoma aggressiveness is antagonized by LLGL2 via reduced expression of occludin. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1833-1847. [PMID: 39394821 PMCID: PMC11693864 DOI: 10.3724/abbs.2024140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/22/2024] [Indexed: 10/14/2024] Open
Abstract
There are three isoforms of human collagen prolyl 4-hydroxylases (C-P4Hs), each of which has been reported to play an important role in regulating the progression of a variety of human cancers. By analyzing TGCA datasets on human head and neck squamous cell carcinoma (HNSC), we find that a higher expression of all three C-P4HAs (the α subunit of C-P4Hs) is a superior prognostic indicator than a higher expression of two or a single C-P4HA. Unexpectedly, some patients with higher levels of three C-P4HAs survive longer than patients whose tumors have lower expression of C-P4HAs. Therefore, there may be molecule(s) that can negate the deleterious effects of overexpressing C-P4HAs during cancer progression. By constructing a functional protein interaction network of C-P4HAs and analyzing molecules whose expressions are correlated significantly with that of C-P4HAs, we identify scribble cell polarity complex component 2 (LLGL2) as a factor that antagonizes the effects of overexpressed C-P4HAs on HNSC. Silencing of LLGL2 in the human oral squamous cell line Cal-27 upregulates the expression of occludin and increases cancer cell invasion and migration. In contrast, knocking down C-P4HA alone inhibits cell migration and invasion. Furthermore, simultaneously downregulating three C-P4HAs has more pronounced effects on inhibiting cell migration and invasion. Accordingly, high LLGL2 expression is also a marker indicating improved prognosis in patients with HNSC. These results suggest that the interplay between LLGL2 and C-P4HAs may be targeted to mitigate HNSC tumorigenesis and progression.
Collapse
Affiliation(s)
- Miao Xu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular PathologyCancer Research InstituteSchool of Basic Medical SciencesUniversity of South ChinaHengyang421001China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Run Shi
- School of MedicinePingdingshan UniversityPingdingshan467000China
| | - Jie Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Heng Chen
- Guangzhou Institute of Cancer Researchthe Affiliated Cancer HospitalGuangzhou Medical UniversityGuangzhou510095China
| | - Shihua Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shupei Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Sasa Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Wenqiang He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Man-Sun Sy
- Department of PathologySchool of MedicineCase Western Reserve UniversityClevelandOhio44106USA
| | - Mingjian Lu
- Department of Interventional RadiologyAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou510095China
| | - Huixia Zhang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chaoyang Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular PathologyCancer Research InstituteSchool of Basic Medical SciencesUniversity of South ChinaHengyang421001China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
- Guangzhou Institute of Cancer Researchthe Affiliated Cancer HospitalGuangzhou Medical UniversityGuangzhou510095China
| |
Collapse
|
3
|
Yu Y, Luo K, Liu M, Chen L, Gao X, Zhang L, Li X, Zhang H. Comprehensive analysis reveals that P4HA3 is a prognostic and diagnostic gastric cancer biomarker that can predict immunotherapy efficacy. Sci Rep 2024; 14:22959. [PMID: 39362976 PMCID: PMC11450148 DOI: 10.1038/s41598-024-73784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Gastric cancer (GC) is one of the most challenging malignant tumors worldwide, primarily because of its high incidence and mortality rates. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) has been established as a pivotal factor for facilitating cell proliferation, invasion, and metastasis across multiple human tumors. Nevertheless, the precise role of P4HA3in GC has not been fully elucidated. In this study, we used data from The Cancer Genome Atlas (TCGA) to examine the role of P4HA3 as a potential biomarker for predicting immunotherapy response in patients with GC. Our comprehensive analysis of data from the TCGA, TIMER, and other databases revealed a significant association between elevated P4HA3 expression in GC and adverse prognostic outcomes. Furthermore, we confirmed that P4HA3 expression was strongly correlated with immune infiltrating cells, immune infiltration markers, the tumor mutational burden (TMB), microsatellite instability (MSI), the immune score, the stromal score, and immune checkpoints, thus highlighting P4HA3 as a crucial and dependable therapeutic target within the context of immune-based antitumor strategies. Our findings suggest that P4HA3 may function as an immune-related biomarker in the pathogenesis and treatment of GC, indicating that P4HA3 is a promising prognostic and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Yuanhang Yu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China
- North Sichuan Medical College, Nanchong, China
| | - Kexin Luo
- North Sichuan Medical College, Nanchong, China
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Meihan Liu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China
- North Sichuan Medical College, Nanchong, China
| | - Long Chen
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China
- North Sichuan Medical College, Nanchong, China
| | - Xi Gao
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China
- North Sichuan Medical College, Nanchong, China
| | - Lijuan Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China
- North Sichuan Medical College, Nanchong, China
| | - Xianfu Li
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China.
- North Sichuan Medical College, Nanchong, China.
| | - Hongpan Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong City, 637000, Sichuan Province, People's Republic of China.
- North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
4
|
Wang Q, Meng D, Shen S, Cao Y, Zhang P, Liu Y, Du L, Li H, Shao C, Dong Q. P4HA3 promotes head and neck squamous cell carcinoma progression via the WNT/β-catenin signaling pathway. Pathol Res Pract 2024; 260:155481. [PMID: 39053135 DOI: 10.1016/j.prp.2024.155481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Here, we explored the role of Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3), the most recently identified member of the prolyl-4-hydroxylase (P4H) family, in head and neck squamous cell carcinoma (HNSCC) progression. P4HA3 is upregulated during cancer progression; however, its specific role in HNSCC progression remains elusive. Thus, this study aimed to elucidate the regulatory function of P4HA3 in HNSCC development and progression and to describe the underlying mechanisms. Initially, we analyzed the correlation between the expression of P4HA3 and the WNT pathway genes and clinicopathologic features in HNSCC based on microarray data from The Cancer Genome Atlas (TCGA). Next, we used Gene Oncology (GO) functional data to describe several potentially associated pathways in HNSCC. Then, we knocked down P4HA3 in SCC15 and SCC25 cells, two classic HNSCC cell lines, and assessed the resulting changes using RT-qPCR. Furthermore, we used Western blot to evaluate the regulatory role of P4HA3 in the epithelial-to-mesenchymal transition (EMT) and the WNT/β-catenin signaling pathway. To explore the effect of P4HA3 knockdown on tumor progression, in vivo experiments were conducted using a murine model. Immunohistochemistry assays were then employed to identify proteins associated with EMT and the WNT/β-catenin signaling pathway in tumor tissues. Upregulated P4HA3 in HNSCC patient tumor tissues was positively correlated with poor prognosis. Notably, P4HA3 knockdown significantly inhibited the proliferative and invasive abilities of HNSCC. The levels of genes and proteins associated with EMT and the WNT/β-catenin signaling pathway were also markedly reduced by P4HA3 knockdown. Importantly, the in vivo experiments demonstrated that P4HA3 can promote subcutaneous tumorigenesis in nude mice and knockdown of P4HA3 induce a significant ihibitation of EMT and WNT/β-catenin pathway detected by immunohistochemistry assay in tumor tissues. In summary, we demonstrated that P4HA3 is a promising diagnostic and therapeutic biomarker for HNSCC. As an oncogene, P4HA3 increases HNSCC proliferation by inducing the EMT and activating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Quannian Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Si Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengcheng Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ying Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hua Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300050, China.
| | - Changli Shao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| | - Qingyang Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
5
|
Guo X, Zhang Y, Peng L, Wang Y, He CW, Li K, Hao K, Li K, Wang Z, Huang H, Miao X. Collagen synthase P4HA3 as a novel biomarker for colorectal cancer correlates with prognosis and immune infiltration. Heliyon 2024; 10:e31695. [PMID: 38832271 PMCID: PMC11145334 DOI: 10.1016/j.heliyon.2024.e31695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Objective In this study, we aimed to determine whether proly4-hydroxylase-III (P4HA3) could be used as a biomarker for the diagnosis of colorectal cancer (CRC) as well as for determining prognosis. Methods We used The Cancer Genome Atlas (TCGA) database to analyze P4HA3 expression in CRC and further investigated the association between P4HA3 and clinicopathological parameters, immune infiltration, and prognosis of patients with CRC. Enrichment analysis was conducted to investigate the potential biological role of P4HA3 in CRC. To verify the results of TCGA analysis, we performed immunohistochemical staining of 180 clinical CRC tissue samples to probe into the relationship of P4HA3 expression with lymphocyte infiltration and immune checkpoints expression. Results The expression of P4HA3 was significantly higher in CRC tissues and associated with a higher degree of malignancy and poorer prognosis in CRC. The results of enrichment analysis indicated that P4HA3 may be associated with the epithelial-mesenchymal transition process and the immune response. Immunohistochemical staining results showed that high P4HA3 expression was associated with high infiltration levels of CD8+ and Foxp3+ TILs and high PD-1/PD- L1 expression. Lastly, patients with CRC co-expressing P4HA3 and PD-1 had a significantly worse prognosis. Conclusion High expression of P4HA3 is associated with adverse clinical features and immune cell infiltration in CRC, and has the potential to serve as a biomarker for predicting CRC prognosis.
Collapse
Affiliation(s)
- Xiaohuan Guo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Lina Peng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaling Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cheng-Wen He
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kaixuan Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Hao
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaolin Miao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
6
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| |
Collapse
|
7
|
Greco F, Panunzio A, Tafuri A, Bernetti C, Pagliarulo V, Zobel BB, Scardapane A, Mallio CA. CT-Based Radiogenomics of P4HA3 Expression in Clear Cell Renal Cell Carcinoma. Acad Radiol 2024; 31:902-908. [PMID: 37537130 DOI: 10.1016/j.acra.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
RATIONALE AND OBJECTIVES The sequencing of the renal cell carcinoma (RCC) genome identified several mutations with prognostic significance. Genomic analysis, collected in The Cancer Genome Atlas Research Network, revealed several clear cell renal cell carcinoma (ccRCC) gene mutations and gene expressions. Radiogenomics is a new branch of diagnostic imaging based on the association between imaging phenotypes and genomics of diseases. P4HA3 expression has recently been shown to correlate with increased aggressiveness of ccRCC, with poor prognosis, proliferation, migration, invasion, and metastases, suggesting P4HA3 as a prognostic marker and therapeutic target in ccRCC. The aim of this study is to investigate the computed tomography (CT) imaging phenotype of P4HA3 expression in ccRCC patients. MATERIALS AND METHODS In this retrospective study we enrolled 196 ccRCC patients divided into two groups: ccRCC patients with P4HA3 expression (n = 13) and ccRCC patients without P4HA3 expression (n = 183). Several imaging features were evaluated on preoperative CT scan. The statistical significance threshold was set at P < .05. RESULTS A statistically significant association was found with larger primary tumor size (P = .033), tumor infiltration (P = .023), ill-defined tumor margins (P = .025), and advanced tumor stage American Joint Committee of Cancer (P = .014). CONCLUSION This study demonstrates CT imaging features associated with P4HA3 expression in ccRCC. These results could contribute to better understand P4HA3 expression with a noninvasive approach and could be applied to the development of targeted therapies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy (F.G.).
| | - Andrea Panunzio
- Department of Urology, "Vito Fazzi" Hospital, Lecce, Italy (A.P., A.T., V.P.)
| | - Alessandro Tafuri
- Department of Urology, "Vito Fazzi" Hospital, Lecce, Italy (A.P., A.T., V.P.)
| | - Caterina Bernetti
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy (C.B., B.B.Z., C.A.M.); Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy (C.B., B.B.Z., C.A.M.)
| | - Vincenzo Pagliarulo
- Department of Urology, "Vito Fazzi" Hospital, Lecce, Italy (A.P., A.T., V.P.)
| | - Bruno Beomonte Zobel
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy (C.B., B.B.Z., C.A.M.); Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy (C.B., B.B.Z., C.A.M.)
| | - Arnaldo Scardapane
- Dipartimento Interdisciplinare di Medicina, Sezione di Diagnostica per immagini, Università degli Studi di Bari "Aldo Moro", Bari, Italy (A.S.)
| | - Carlo Augusto Mallio
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy (C.B., B.B.Z., C.A.M.); Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy (C.B., B.B.Z., C.A.M.)
| |
Collapse
|
8
|
Katase N, Nishimatsu SI, Yamauchi A, Okano S, Fujita S. DKK3 expression is correlated with poorer prognosis in head and neck squamous cell carcinoma: A bioinformatics study based on the TCGA database. J Oral Biosci 2023; 65:334-346. [PMID: 37716425 DOI: 10.1016/j.job.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE We previously reported that dickkopf WNT signaling pathway inhibitor 3 (DKK3) expression is correlated with poorer prognosis in head and neck squamous cell carcinoma (HNSCC). Here we investigated DKK3 expression by using The Cancer Genome Atlas (TCGA) public database and bioinformatic analyses. METHODS We used the RNA sequence data and divided the tumor samples into "DKK3-high" and "DKK3-low" groups according to median DKK3 expression. The correlations between DKK3 expression and the clinical data were investigated. Differentially expressed genes (DEGs) were detected using DESEq2 and analyzed by ShinyGO 0.77. A gene set enrichment analysis (GSEA) was also performed using GSEA software. The DEGs were also analyzed with TargetMine to establish the protein-protein interaction (PPI) network. RESULTS DKK3 expression was significantly increased in cancer samples, and a high DKK3 expression was significantly associated with shorter overall survival. We identified 854 DEGs, including 284 up-regulated and 570 down-regulated. Functional enrichment analyses revealed several Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with extracellular matrix remodeling. The PPI network identified COL8A1, AGTR1, FN1, P4HA3, PDGFRB, and CEP126 as the key genes. CONCLUSIONS These results suggested the cancer-promoting ability of DKK3, the expression of which is a promising prognostic marker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Shin-Ichiro Nishimatsu
- Department of Natural Sciences, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama, 701-0192, Japan.
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama, 701-0192, Japan.
| | - Shinji Okano
- Department of Pathology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan; Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan.
| | - Shuichi Fujita
- Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, Nagasaki, 852-8588, Japan.
| |
Collapse
|
9
|
Li M, Bai M, Wu Y, Yang S, Zheng L, Sun L, Yu C, Huang Y. Transcriptome sequencing identifies prognostic genes involved in gastric adenocarcinoma. Mol Cell Biochem 2023; 478:2891-2906. [PMID: 36944795 DOI: 10.1007/s11010-023-04705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Gastric adenocarcinoma (GAC) is one of the world's most lethal malignant tumors. It has been established that the occurrence and progression of GAC are linked to molecular changes. However, the pathogenesis mechanism of GAC remains unclear. In this study, we sequenced 6 pairs of GAC tumor tissues and adjacent normal tissues and collected GAC gene expression profile data from the TCGA database. Analysis of this data revealed 465 differentially expressed genes (DEGs), of which 246 were upregulated and 219 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were observably enriched in ECM-receptor interaction, protein digestion and absorption, and gastric acid secretion pathways. Six key genes (MATN3, COL1A1, COL5A2, P4HA3, SERPINE1 and VCAN) associated with poor GAC prognosis were screened from the protein‒protein interaction (PPI) network by survival analysis, and P4HA3 and MATN3 have rarely been reported to be associated with GAC. We further analyzed the function of P4HA3 in the GAC cell line SGC-7901 by RT‒qPCR, MTT, flow cytometry, colony formation, wound healing, Transwell and western blot assays. We found that P4HA3 was upregulated in the SGC-7901 cell line versus normal control cells. The outcomes of the loss-of-function assay illustrated that P4HA3 significantly enhanced the ability of GAC cells to proliferate and migrate. This study provides a new basis for the selection of prognostic markers and therapeutic targets for GAC.
Collapse
Affiliation(s)
- Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, 121013, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Shuo Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
10
|
Huang J, Zhao P, Shi J, Ning J, Wang Z, Luo Y, Qin J, Huang X. Prognostic Value and Immunological Role of P4HA3 in Colon Adenocarcinoma. Int J Gen Med 2023; 16:1953-1971. [PMID: 37251280 PMCID: PMC10224728 DOI: 10.2147/ijgm.s407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) has been proven to participate in the occurrence and development of multiple cancers. However, the functional role of P4HA3 in the tumor immune microenvironment (TIME) of colon adenocarcinoma (COAD) and the prognosis of COAD patients has not been clarified. This study aimed to elucidate the immunological role and prognostic value of P4HA3 in COAD. Methods P4HA3 expression in COAD tissues was analyzed via experiments and a bioinformatics algorithm. Based on the COAD patients in The Cancer Genome Atlas database, we comprehensively evaluated whether the expression levels of P4HA3 affected clinical prognosis, TIME, and immunotherapy of COAD using the R platforms and several public databases, including GEPIA, TIMER, TISIDB, and TCIA. Results The results of the pan-cancer analysis indicated that P4HA3 expression was significantly different in most tumor tissues compared with normal tissues. P4HA3 was overexpressed in COAD tissues, and overexpression of P4HA3 was associated with a worse overall survival and a shorted progression-free interval in COAD patients. The expression of P4HA3 was positively correlated with pathological stage, T stage, N stage, perineural infiltration, and lymphatic infiltration. There were significant correlations of P4HA3 expression levels with immune cell infiltration and their makers, as well as immunomodulators, chemokines, and microsatellite status. Moreover, overexpression of P4HA3 was associated with a lower response rate to immunotherapy in the IMvigor210 cohort. Conclusion Overexpression of P4HA3 is closely related to the poor prognosis of COAD patients, and P4HA3 is a potential target for immunotherapy in COAD patients.
Collapse
Affiliation(s)
- Jun Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jialing Shi
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhen Wang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yihua Luo
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jingqian Qin
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
11
|
Zhang Z, Zhang Y, Zhang R. P4HA3 promotes clear cell renal cell carcinoma progression via the PI3K/AKT/GSK3β pathway. Med Oncol 2023; 40:70. [PMID: 36588128 DOI: 10.1007/s12032-022-01926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. P4HA3 is a key enzyme in collagen biosynthesis and has emerged as important molecules in regulation of proliferation, invasion, and metastasis in various tumor types. The role of P4HA3 in the development of ccRCC has remained to be elucidated. Genes expression, prognostic, and enrichment analyses were carried out with bioinformatics analysis. The efficiency of P4HA3 knockdown was confirmed by real-time quantitative PCR and Western blotting. The cellular functions were analyzed by CCK-8, EdU, wound healing, and transwell assays. The levels of related proteins expression were analyzed by Western blotting. P4HA3 was highly expressed in ccRCC compared with normal tissue samples from the TCGA database. Kaplan-Meier curves results showed that the expression level of P4HA3 was significantly negatively correlated with overall survival of patients. P4HA3 expression knockdown inhibited the proliferation, migration, and invasion of ccRCC cells, as demonstrated by in vitro experiments. In addition, GSEA results revealed that P4HA3 may be related to EMT and involved in the PI3K-AKT-GSK3β pathway in ccRCC; this was tentatively confirmed through Western blotting. P4HA3 may induce ccRCC progression via the PI3K-AKT-GSK3β signaling pathway and could represent a potential therapeutic target.
Collapse
Affiliation(s)
- Zhechuan Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, China
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, China.
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, China.
- Department of Urology, Chongqing University Central Hospital, Chongqing University, 1 Jiankang Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
12
|
Wu Y, Zhang B, Nong J, Rodrìguez RA, Guo W, Liu Y, Zhao S, Wei R. Systematic pan-cancer analysis of the potential tumor diagnosis and prognosis biomarker P4HA3. Front Genet 2023; 14:1045061. [PMID: 37035741 PMCID: PMC10073565 DOI: 10.3389/fgene.2023.1045061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) is implicated in several cancers' development. However, P4HA3 has not been reported in other cancers, and the exact mechanism of action is currently unknown. Materials and methods: First, the expression profile of P4HA3 was analyzed using a combination of the University of California Santa Cruz (UCSC) database, Cancer Cell Line Encyclopedia (CCLE) database, and Genotype-Tissue Expression (GTEx) database. UniCox and Kaplan-Meier were used to analyze the predictive value of P4HA3. The expression of P4HA3 was analyzed in clinical staging, immune subtypes, and Molecular subtypes. Secondly, the correlation of P4HA3 with immunomodulatory genes, immune checkpoint genes, RNA modification genes, immune cell infiltration, cancer-related functional status, tumor stemness index, DNA mismatch repair (MMR) genes and DNA Methyltransferase was examined. The role of P4HA3 in DNA methylation, copy number variation (CNV), mutational status, tumor mutational burden (TMB), and microsatellite instability (MSI) was also analyzed. In addition, gene set enrichment analysis (GSEA) was used to explore the potential functional mechanisms of P4HA3 in pan-cancer. Finally, P4HA3-related drugs were searched in CellMiner, Genomics of Drug Sensitivity in Cancer (GDSC), and Cancer Therapeutics Response Portal (CTRP) databases. Results: P4HA3 is significantly overexpressed in most cancers and is associated with poor prognosis. P4HA3 is strongly associated with clinical cancer stage, immune subtypes, molecular subtypes, immune regulatory genes, immune checkpoint genes, RNA modifier genes, immune cell infiltration, cancer-related functional status, tumor stemness index, MMR Gene, DNA Methyltransferase, DNA methylation, CNV, mutational status, TMB, and MSI are closely related. Available enrichment analysis revealed that P4HA3 is associated with the epithelial-mesenchymal transition and immune-related pathways. There are currently 20 drugs associated with P4HA3. Conclusion: In human pan-cancer, P4HA3 is associated with poor patient prognosis and multiple immune cells and may be a novel immunotherapeutic target. It may act on tumor progression through the epithelial-mesenchymal transition (EMT) pathway.
Collapse
Affiliation(s)
- Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Zhang
- Department of Trauma Hand Surgery, The Second Nanning People’s Hospital, Nanning, Guangxi, China
| | - Juan Nong
- Department of Joint Surgery, The Second Nanning People’s Hospital, Nanning, Guangxi, China
| | | | - Wenliang Guo
- Department of Rehabilitation Medicine, Guigang City People’s Hospital, Guigang, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan, China
- *Correspondence: Ruqiong Wei, ; Shijian Zhao,
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Ruqiong Wei, ; Shijian Zhao,
| |
Collapse
|
13
|
A Genome-Wide Search for Candidate Genes of Meat Production in Jalgin Merino Considering Known Productivity Genes. Genes (Basel) 2022; 13:genes13081337. [PMID: 35893074 PMCID: PMC9331477 DOI: 10.3390/genes13081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a group of Jalgin merino rams with no significant influence on the dispersion of the phenotypes of known productivity genes (MSTN, MEF2B, FABP4, etc.), a genome-wide search for associations of individual polymorphisms with intravital indicators of meat productivity was performed. Using the Ovine Infinium HD BeadChip 600K, 606,000 genome loci were evaluated. Twenty-three substitutions were found to be significantly associated with external measurements of the body and ultrasonic parameters. This made it possible to describe 14 candidate genes, the structural features of which can cause changes in animal phenotypes. No closely spaced genes were found for two substitutions. The identified polymorphisms were found in the exons, introns, and adjacent regions of the following genes and transcripts: CDCA2, ENSOARG00000014477, C4BPA, RIPOR2, ENSOARG00000007198, ENSOARG00000026965 (LincRNA), ENSOARG00000026436 (LincRNA), ENSOARG00000026782 (LincRNA), TENM3, RTL8A, MOSPD1, RTL8С, RIMS2, and P4HA3. The detected genes affect the metabolic pathways of cell differentiation and proliferation and are associated with the regulation of the immune system. This confirms their possible participation in the formation of the phenotypes of productivity parameters in animals and indicates the need for further study of the structure of candidate genes in order to identify their internal polymorphisms.
Collapse
|
14
|
Niu X, Ren L, Wang S, Gao D, Ma M, Hu A, Qi H, Zhang S. High Prolyl 4-Hydroxylase Subunit Alpha 3 Expression as an Independent Prognostic Biomarker and Correlated With Immune Infiltration in Gastric Cancer. Front Genet 2022; 13:952335. [PMID: 35846138 PMCID: PMC9283575 DOI: 10.3389/fgene.2022.952335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Gastric cancer (GC) has a high mortality rate and is particularly prevalent in China. The extracellular matrix protein, prolyl 4-hydroxylase subunit alpha 3 (P4HA3), has been implicated in various cancers. We aimed to assess the diagnostic and prognostic value of P4HA3 in GC and investigate its correlation with immune cell infiltration. Methods: The present study used microarray data from the Cancer Genome Atlas (TCGA) to analyze the association of P4HA3 expression with clinicopathological features. Data from the Gene Expression Omnibus (GEO) were used for validation. Receiver operating characteristic (ROC) and Kaplan–Meier curves were constructed to determine the diagnostic and prognostic value of P4HA3 in GC. Univariate and multivariate regression analyses were performed to assess the impact of P4HA3 on overall survival (OS) rates. A protein–protein interaction (PPI) network was generated and functional enrichment evaluated. Single-sample gene set enrichment analysis (ssGSEA) was conducted to correlate P4HA3 expression with immune cell infiltration. The correlation between P4HA3 and immune check point genes was studied. Results: P4HA3 was over-expressed in GC, along with 15 other types of cancer, including breast invasive carcinoma and cholangiocarcinoma. P4HA3 showed high diagnostic and prognostic value in GC and was an independent prognostic factor. P4HA3, TNM (tumor, node, metastases) stage, pathological stage and age all correlated with OS rates. Genes related to P4HA3 were enriched in the lumen of the endoplasmic reticulum and included procollagen-proline 3-dioxygenase activity. P4HA3 expression correlated with numbers of macrophages, natural killer (NK) cells, immature dendritic cells (iDC), mast cells, eosinophils, effective memory T cells (Tem), T-helper 1 (Th1) cells and dendritic cells (DC). P4HA3 was positively correlated with hepatitis A virus cellular receptor 2 (HAVCR2) and programmed cell death 1 ligand 2 (PDCD1LG2). Conclusion: P4HA3 is a potential independent biomarker for prognosis of GC and may be an immunotherapy target in the treatment of GC.
Collapse
Affiliation(s)
- Xiaoji Niu
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liman Ren
- Department of Endocrinology, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
| | - Shoumei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Gao
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
| | - Mingyue Ma
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiyan Hu
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjun Qi
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
- *Correspondence: Hongjun Qi, ; Shuhui Zhang,
| | - Shuhui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hongjun Qi, ; Shuhui Zhang,
| |
Collapse
|
15
|
miR-1266-3p Suppresses Epithelial-Mesenchymal Transition in Colon Cancer by Targeting P4HA3. Anal Cell Pathol (Amst) 2022; 2022:1542117. [PMID: 35433237 PMCID: PMC9010195 DOI: 10.1155/2022/1542117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have been conducted to demonstrate that miRNA is strongly related to colon cancer progression. Nevertheless, there are few studies regarding the function for miR-1266-3p in colon cancer, and the molecular mechanism remains poorly know. Our study was designed to examine the level of miR-1266-3p expression among the colon cancer tissue and cell and to study the role and regulatory mechanism for miR-1266-3p among colon cancer's malignant biologic behavior. First, we found that miR-1266-3p expression was distinctly lower in colonic carcinoma tissues and cells than in nontumor ones, and the prognosis of low miR-1266-3p patients was distinctly worse than that of high miR-1266-3p patients. Second, we predicted that the target gene of miR-1266-3p was prolyl 4-hydroxylase subunit alpha 3 (P4HA3) through bioinformatics, and the targeting relationship between the two was verified by a dual luciferase assay report. Furthermore, miR-1266-3p inhibited the growth and metastasis of colon cancer in vitro as well as in vivo, and this effect could be alleviated by overexpressing P4HA3. Even more importantly, our study demonstrated that miR-1266-3p inhibited epithelial-mesenchymal transition (EMT) by targeting P4HA3. In conclusion, miR-1266-3p could inhibit growth, metastasis, and EMT in colon cancer by targeting P4HA3. Our discoveries might offer a novel target for colon cancer diagnosis and treatment.
Collapse
|
16
|
Niu X, Ren L, Hu A, Zhang S, Qi H. Identification of Potential Diagnostic and Prognostic Biomarkers for Gastric Cancer Based on Bioinformatic Analysis. Front Genet 2022; 13:862105. [PMID: 35368700 PMCID: PMC8966486 DOI: 10.3389/fgene.2022.862105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is one of the most prevalent cancers all over the world. The molecular mechanisms of GC remain unclear and not well understood. GC cases are majorly diagnosed at the late stage, resulting in a poor prognosis. Advances in molecular biology techniques allow us to get a better understanding of precise molecular mechanisms and enable us to identify the key genes in the carcinogenesis and progression of GC. Methods: The present study used datasets from the GEO database to screen differentially expressed genes (DEGs) between GC and normal gastric tissues. GO and KEGG enrichments were utilized to analyze the function of DEGs. The STRING database and Cytoscape software were applied to generate protein–protein network and find hub genes. The expression levels of hub genes were evaluated using data from the TCGA database. Survival analysis was conducted to evaluate the prognostic value of hub genes. The GEPIA database was involved to correlate key gene expressions with the pathological stage. Also, ROC curves were constructed to assess the diagnostic value of key genes. Results: A total of 607 DEGs were identified using three GEO datasets. GO analysis showed that the DEGs were mainly enriched in extracellular structure and matrix organization, collagen fibril organization, extracellular matrix (ECM), and integrin binding. KEGG enrichment was mainly enriched in protein digestion and absorption, ECM-receptor interaction, and focal adhesion. Fifteen genes were identified as hub genes, one of which was excluded for no significant expression between tumor and normal tissues. COL1A1, COL5A2, P4HA3, and SPARC showed high values in prognosis and diagnosis of GC. Conclusion: We suggest COL1A1, COL5A2, P4HA3, and SPARC as biomarkers for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Xiaoji Niu
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liman Ren
- Department of Endocrinology, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
| | - Aiyan Hu
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuhui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shuhui Zhang, ; Hongjun Qi,
| | - Hongjun Qi
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
- *Correspondence: Shuhui Zhang, ; Hongjun Qi,
| |
Collapse
|
17
|
Zhou H, Zou J, Shao C, Zhou A, Yu J, Chen S, Xu C. Prolyl 4-hydroxylase subunit alpha 3 facilitates human colon cancer growth and metastasis through the TGF-β/Smad signaling pathway. Pathol Res Pract 2022; 230:153749. [PMID: 34959098 DOI: 10.1016/j.prp.2021.153749] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) has been known to be associated with a variety of human cancers. However, the role of P4HA3 on colon cancer growth and metastasis is unclear. In this study, we investigated the effect of P4HA3 on the growth and metastasis of colon cancer and its possible molecular mechanism. First of all, we demonstrated that P4HA3 expression was greatly higher in cells and tissues of colon cancer than that in non-tumor tissues and cells, and the prognosis of patients who had higher P4HA3 was distinctively poorer than patients who had lower level of P4HA3. Second, it was shown that P4HA3 knockdown strongly inhibited the migration, proliferation and invasion ability of colon cancer cells. However, P4HA3 over-expression accelerated the abilities. Meanwhile, P4HA3 could promote subcutaneous tumorigenesis in nude mice in vivo. In addition, P4HA3 knockdown significantly decreased mesenchymal markers Vimentin, N-cadherin and Snail expression and increased epithelial marker E-cadherin expression. And conversely, over-expression of P4HA3 produced the opposite effects. In the current study, there was further evidence that down-regulating P4HA3 significantly reduced both TGF-β and its following molecules including p-Smad2 as well as p-Smad3. However, overexpression of P4HA3 showed the opposite effect. In conclusion, this study shows that P4HA3 promotes the human colon cancer growth and metastasis by affecting TGF-β/Smad signaling pathway. P4HA3 may become a new target for early diagnosis, treatment and prognosis assessment of colon cancer.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China; Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu 223400, PR China
| | - Junwei Zou
- Department of General Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Changjiang Shao
- Department of Gastroenterology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, PR China
| | - Aijun Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu 223400, PR China
| | - Jiufeng Yu
- Department of Traditional Chinese Medicine, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu 223400, PR China
| | - Song Chen
- The Institute of Life Sciences, Jiangsu College of Nursing,Huaian, Jiangsu 223300, PR China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
18
|
Bobeff EJ, Bukowiecka-Matusiak M, Stawiski K, Wiśniewski K, Burzynska-Pedziwiatr I, Kordzińska M, Kowalski K, Sendys P, Piotrowski M, Szczesna D, Stefańczyk L, Wozniak LA, Jaskólski DJ. Plasma Amino Acids May Improve Prediction Accuracy of Cerebral Vasospasm after Aneurysmal Subarachnoid Haemorrhage. J Clin Med 2022; 11:jcm11020380. [PMID: 35054073 PMCID: PMC8779950 DOI: 10.3390/jcm11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhages (aSAH) account for 5% of strokes and continues to place a great burden on patients and their families. Cerebral vasospasm (CVS) is one of the main causes of death after aSAH, and is usually diagnosed between day 3 and 14 after bleeding. Its pathogenesis remains poorly understood. To verify whether plasma concentration of amino acids have prognostic value in predicting CVS, we analysed data from 35 patients after aSAH (median age 55 years, IQR 39-62; 20 females, 57.1%), and 37 healthy volunteers (median age 50 years, IQR 38-56; 19 females, 51.4%). Fasting peripheral blood samples were collected on postoperative day one and seven. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was performed. The results showed that plasma from patients after aSAH featured a distinctive amino acids concentration which was presented in both principal component analysis and direct comparison. No significant differences were noted between postoperative day one and seven. A total of 18 patients from the study group (51.4%) developed CVS. Hydroxyproline (AUC = 0.7042, 95%CI 0.5259-0.8826, p = 0.0248) and phenylalanine (AUC = 0.6944, 95%CI 0.5119-0.877, p = 0.0368) presented significant CVS prediction potential. Combining the Hunt-Hess Scale and plasma levels of hydroxyproline and phenylalanine provided the model with the best predictive performance and the lowest leave-one-out cross-validation of performance error. Our results suggest that plasma amino acids may improve sensitivity and specificity of Hunt-Hess scale in predicting CVS.
Collapse
Affiliation(s)
- Ernest Jan Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
- Correspondence: ; Tel.: +48-42-677-6770; Fax: +48-42-677-6781
| | - Malgorzata Bukowiecka-Matusiak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 Street, 92-215 Lodz, Poland;
| | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Izabela Burzynska-Pedziwiatr
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Magdalena Kordzińska
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Konrad Kowalski
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Przemyslaw Sendys
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Michał Piotrowski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Dorota Szczesna
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Ludomir Stefańczyk
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Lucyna Alicja Wozniak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Dariusz Jan Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| |
Collapse
|
19
|
Shi R, Gao S, Zhang J, Xu J, Graham LM, Yang X, Li C. Collagen prolyl 4-hydroxylases modify tumor progression. Acta Biochim Biophys Sin (Shanghai) 2021; 53:805-814. [PMID: 34009234 DOI: 10.1093/abbs/gmab065] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Collagen is the main component of the extracellular matrix. Hydroxylation of proline residues on collagen, catalyzed by collagen prolyl 4-hydroxylase (C-P4H), is essential for the stability of the collagen triple helix. Vertebrate C-P4H is an α2β2 tetramer with three isoenzymes differing in the catalytic α-subunits, which are encoded by P4HA1, P4HA2, and P4HA3 genes. In contrast, β-subunit is encoded by a single gene P4HB. The expressions of P4HAs and P4HB are regulated by multiple cellular factors, including cytokines, transcription factors, and microRNAs. P4HAs and P4HB are highly expressed in many tumors and participate in cancer progression. Several inhibitors of P4HAs and P4HB have been confirmed to have anti-tumor effects, suggesting that targeting C-P4H is a feasible strategy for cancer treatment. Here, we summarize recent progresses on the function and expression of regulatory mechanisms of C-P4H in cancer progression and point out the potential development of therapeutic strategies in targeting C-P4H in the future.
Collapse
Affiliation(s)
- Run Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Shanshan Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Jiang Xu
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832008, China
| | - Linda M Graham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaowen Yang
- Department of the First Abdominal Surgery, The Affiliated Tumor Hospital of Nanchang University, Jiangxi Cancer Center, Nanchang 330029, China
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| |
Collapse
|
20
|
Xiao Z, Reddy DPK, Xue C, Liu X, Chen X, Li J, Ling X, Zheng S. Profiling of miR-205/P4HA3 Following Angiotensin II-Induced Atrial Fibrosis: Implications for Atrial Fibrillation. Front Cardiovasc Med 2021; 8:609300. [PMID: 33981730 PMCID: PMC8107220 DOI: 10.3389/fcvm.2021.609300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: Atrial fibroblasts are the main component of atrial fibrosis. Data in previous studies proved the implication of miRNAs in AF progression and the association of miR-205 with cancer associated-fibroblasts, while no evidence supported the implication of miR-205 in atrial fibrosis. Therefore, this study aims to explore the effect and mechanism of miR-205/P4HA3 axis on atrial fibrosis. Methods: Angiotensin II (Ang II) was used to induce atrial fibrosis model in rats, which was verified by H&E staining and Masson staining. qRT-PCR and Western blot were applied to measure the expressions of miR-205, P4HA3, collagen I, and α-SMA. The rat atrial fibroblasts were isolated and then subjected to Ang II treatment or cell transfection for determination of cell biological functions using CCK-8, BrdU assay, TUNEL staining, and cell scratch assay. qRT-PCR and Western blot was applied to analyze the expressions of miR-205, P4HA3, collagen I, α-SMA, JNK, and p-JNK in atrial fibroblasts. Dual-luciferase reporter gene assay and RNA immune-precipitation experiment was employed to verify the binding relationship between miR-205 and P4HA3. Results: Ang II induced rats had disordered arrangement of atrial muscles with uneven nuclear sizes and necrotic atrial myocytes, and increased collagen deposition, in which elevated expressions of P4HA3, collagen I, and α-SMA as well as suppressed expression level of miR-205 were found. In vitro, Ang II treatment in atrial fibroblasts with overexpression of P4HA3 facilitated cellular migration and proliferation, with the induction of JNK signaling pathway. However, these trends were reversed after transfection with miR-205 mimic. P4HA3 is a target gene of miR-205. Conclusion: The miR-205/P4HA3 axis is implicated in atrial fibrosis by inhibition of rat fibroblast proliferation and migration and the inactivation of JNK signaling pathway.
Collapse
Affiliation(s)
- Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Desai Pavan Kumar Reddy
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuqing Xue
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiong Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|