1
|
Cui S, Kim E. Quorum sensing and antibiotic resistance in polymicrobial infections. Commun Integr Biol 2024; 17:2415598. [PMID: 39430726 PMCID: PMC11487952 DOI: 10.1080/19420889.2024.2415598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Quorum sensing (QS) is a critical bacterial communication system regulating behaviors like biofilm formation, virulence, and antibiotic resistance. This review highlights QS's role in polymicrobial infections, where bacterial species interactions enhance antibiotic resistance. We examine QS mechanisms, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria and autoinducing peptides (AIPs) in Gram-positive bacteria, and their impact on biofilm-associated antibiotic resistance. The challenges uniquely associated with polymicrobial infections, such as those found in cystic fibrosis lung infections, chronic wound infections, and medical device infections, are also summarized. Furthermore, we explore various laboratory models, including flow cells and dual-species culture models, used to study QS interactions in polymicrobial environments. The review also discusses promising quorum sensing inhibitors (QSIs), such as furanones and AHL analogs, which have demonstrated efficacy in reducing biofilm formation and virulence in laboratory and clinical studies. By addressing the interplay between QS and antibiotic resistance, this paper aims to advance therapeutic strategies that disrupt bacterial communication and improve antibiotic efficacy, ultimately mitigating the global challenge of antibiotic resistance in polymicrobial infections.
Collapse
Affiliation(s)
- Sunny Cui
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Esther Kim
- Arts and Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Fraiz GM, Bonifácio DB, Lacerda UV, Cardoso RR, Corich V, Giacomini A, Martino HSD, Echeverría SE, de Barros FAR, Milagro FI, Bressan J. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients 2024; 16:3186. [PMID: 39339787 PMCID: PMC11435194 DOI: 10.3390/nu16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Green tea kombucha (GTK) is a fermented beverage with promising health benefits, but few studies proved its impact on human health. Thus, we aimed to investigate the impact of GTK on weight loss, inflammation, and salivary microbiota in individuals with excess body weight. METHODS This is a randomized controlled clinical trial that lasted 10 weeks with two groups of individuals with excess body weight: control (CG; n = 29; caloric restriction) and kombucha (KG; n = 30; caloric restriction + 200 mL GTK). Body composition, anthropometry, saliva, and blood collection were performed in the beginning and end of the intervention. Plasma interleukins were determined by flow cytometry. Salivary microbiota was analyzed by 16S rRNA sequencing. RESULTS Both groups decreased weight, BMI, and body fat (p < 0.001) after the intervention, but there were no differences between groups. The KG reduced lipid accumulation product (LAP) (p = 0.029). Both groups decreased IL-1β and IL-8, but IL-6 increased in the CG (p = 0.023) compared to the kombucha group. Alpha and beta diversity of salivary microbiota increased in the KG. Moreover, the KG presented lower Bacillota/Bacteroidota ratio (p = 0.028), and BMI was positively associated with the Bacillota phylum. CONCLUSIONS GTK did not enhance weight loss, but it decreased the LAP. GTK helped in the inflammatory profile and induced positive changes in oral microbiota composition.
Collapse
Affiliation(s)
- Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
| | - Dandara Baia Bonifácio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| | - Udielle Vermelho Lacerda
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Rodrigo Rezende Cardoso
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Legnaro, Italy; (V.C.); (A.G.)
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Legnaro, Italy; (V.C.); (A.G.)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| | - Sergio Esteban Echeverría
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
| | | | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| |
Collapse
|
3
|
Aragão MGB, He X, Aires CP, Corona SAM. Epigallocatechin gallate reduces the virulence of cariogenic Streptococcus mutans biofilm by affecting the synthesis of biofilm matrix components. Arch Oral Biol 2024; 164:105990. [PMID: 38749386 DOI: 10.1016/j.archoralbio.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION There have been reports on the effects of epigallocatechin gallate (EGCG) against Streptococcus mutans viability and acidogenesis. However, the effects of EGCG on the virulence of S. mutans biofilm development have yet to be fully investigated using validated cariogenic biofilm models. OBJECTIVE Thus, this study aimed to evaluate the effects of EGCG on S. mutans biofilm virulence using a validated cariogenic model and clinically relevant treatment regimens, twice a day for 1.5 min. METHODS Effects of EGCG on bacterial viability, polyssacharide synthesis and biofilm acidogenesis were evaluated. The morphology and 3D structure of the biofilms were evaluated by scanning electron (SEM) and confocal laser scanning microscopy, respectively. RESULTS No significant change in S. mutans viability or culture medium pH were observed when comparing EGCG-treated and NaCl-treated biofilms. EGCG significantly reduced the accumulation of soluble and insoluble polysaccharides, resulting in the formation of a biofilm with interspaced exopolysaccharide-microcolony complexes unevenly distributed on enamel. The SEM images of the biofilm treated with EGCG depict multilayers of cells arranged in short chains of microorganisms adhered to an unstructured matrix, which is not continuous and does not enmesh or protect the microorganisms entirely. Importantly, confocal images demonstrated that treatment with EGCG affected the 3D structure and organization of S. mutans biofilm, which presented a biofilm matrix more confined to the location of the microcolonies. CONCLUSION In conclusion, EGCG lowered the virulence of S. mutans matrix-rich biofilm by reducing the synthesis of biofilm matrix components, altering the biofilm matrix structure, organization, and distribution.
Collapse
Affiliation(s)
- Maria Gerusa Brito Aragão
- Department of Pediatric Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil; Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, United States.
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Carolina Patricia Aires
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Silmara Aparecida Milori Corona
- Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Avenida do Café S/N, Ribeirao Preto, São Paulo 14040-904, Brazil
| |
Collapse
|
4
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
5
|
Fan J, Liu S, Zhang Q, Qiao L, Chu Q. Association between flavonoids intake and dental caries in children and adolescents: a cross-sectional study from the NHANES database. BMC Oral Health 2024; 24:848. [PMID: 39060994 PMCID: PMC11282690 DOI: 10.1186/s12903-024-04567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Worldwide, dental caries is a bacterial biofilm-mediated condition with a high morbidity in children and adolescents. Flavonoids are a class of active natural products with antibacterial and anti-inflammatory effect. In vivo and in vitro studies have shown that they can promote tooth mineralization and reduce inflammation. However, the association of flavonoids intake and dental caries in children and adolescents remain unclear. AIM This study was to evaluated the association of flavonoid and its subclass intake and dental caries in children and adolescents. METHODS Data of participants aged 2-17 years were extracted from the National Health and Nutrition Examination Survey (NHANES) database (2017-2018). Dental caries was measured via the decayed or filled surfaces in primary teeth or permanent teeth (dfs/DFS) index. The weighted univariable and multivariable logistic regression models were utilized to explore the association of flavonoids intake with dental caries in children and adolescents, with odds ratios (ORs) with 95% confidence intervals (CIs). Subgroups analyses based on age, and overweight/obesity were further assessed the association. Subgroup analysis were further performed to explore whether the association between subclasses of anthocyanidins and catechins with dental caries was robust stratified by age and individual with overweight/obesity. RESULTS Among totally 1,818 children and adolescents, 786 (43.2%) had dental caries. High intake of anthocyanidins (OR=0.69, 95%CI: 0.52-0.92) and catechins (OR=0.64, 95%CI: 0.44-0.92) were associated with lower odds of dental caries. Similar results were discovered in individuals aged ≥6 years (anthocyanidins, OR=0.62, 95%CI: 0.43-0.90; catechins, OR=0.62, 95%CI: 0.40-0.96), and without overweight/obesity (anthocyanidins, OR=0.58, 95%CI: 0.37-0.90; catechins, OR=0.51, 95%CI: 0.31-0.84). Further investigation found that high intake of cyanidin, petunidin, malvidin, peonidin, (+)-Catechin, (-)-Epigallocatechin, and (-)-epicatechin were associated with lower odds of dental caries in children and adolescents. CONCLUSION High intake of anthocyanidins and catechins were associated with lower odds of dental caries in children and adolescents and are a promising intervention to be further explored in children and adolescents.
Collapse
Affiliation(s)
- Jianing Fan
- Department of Stomatology, Cangzhou People's Hospital, Intersection of Huanghe West Road and Qiushi South Road, Cangzhou, 061000, China
| | - Siqi Liu
- Department of Stomatology, Cangzhou People's Hospital, Intersection of Huanghe West Road and Qiushi South Road, Cangzhou, 061000, China
| | - Qian Zhang
- Department of Stomatology, Cangzhou People's Hospital, Intersection of Huanghe West Road and Qiushi South Road, Cangzhou, 061000, China
| | - Li Qiao
- Department of Stomatology, Cangzhou People's Hospital, Intersection of Huanghe West Road and Qiushi South Road, Cangzhou, 061000, China
| | - Qingsong Chu
- Department of Stomatology, Cangzhou People's Hospital, Intersection of Huanghe West Road and Qiushi South Road, Cangzhou, 061000, China.
| |
Collapse
|
6
|
Saikia AM, Sivasubramanian A, Muthu MS, Ganesh A, Chandrasekaran K, Kirubakaran R. Herbal Mouthrinses for Prevention of Dental Caries in Children and Adolescents: A Systematic Review. Int J Clin Pediatr Dent 2024; 17:S100-S111. [PMID: 39185265 PMCID: PMC11343992 DOI: 10.5005/jp-journals-10005-2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
The primary aim of this study was to evaluate the effectiveness of herbal mouthrinses (HMR) on caries prevention in children and adolescents. In addition, this systematic review assessed its effectiveness in remineralization of white spot lesions, reduction of halitosis, and improving gingival and periodontal health in orthodontic patients and patients with special healthcare needs (SHCN). A comprehensive bibliographic search was conducted in PubMed, Cochrane Central, EMBASE, AMED, ProQuest, CINAHL, AYUSH, Digital Helpline for Ayurveda Research Articles (DHARA), and Clinical Trial Gov databases. A total of 3,918 titles were identified during the initial search. Of these, 32 studies were selected for quality assessment. A total of 5,038 participants from 10 countries were thus included in this review, with 22 (66.7%) studies conducted in India. All included studies were published between 2004 and 2021. Included studies investigated the effect of HMR on caries increments, which record decayed, missing, filled (DMF) [International Caries Detection and Assessment System (ICDAS)], decayed, missing, filled teeth/surfaces (DMFT/S), and incipient caries. Changes in bacterial count (Streptococcus mutans and Lactobacillus) and alterations in levels of Candida albicans from saliva or plaque samples were also reported. The effect of HMR on gingival and plaque indices among adolescents undergoing orthodontic treatment and children with SHCN was reported in two studies. The variance in the HMR formula across studies, short follow-up period, and limiting grade of evidence do not allow for conclusive evidence of the efficacy of HMR. This warrants high-quality randomized controlled trials (RCTs) with longer intervention periods involving children under 6 years to yield more conclusive results. How to cite this article Saikia AM, Sivasubramanian A, MS M, et al. Herbal Mouthrinses for Prevention of Dental Caries in Children and Adolescents: A Systematic Review. Int J Clin Pediatr Dent 2024;17(S-1):S100-S111.
Collapse
Affiliation(s)
- Ankita M Saikia
- Department of Pediatric and Preventive Dentistry, Centre for Early Childhood Caries Research (CECCRe), Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research (SRIHER) (Deemed to be University), Chennai, Tamil Nadu, India
| | - Abirami Sivasubramanian
- Department of Pediatric and Preventive Dentistry, Centre for Early Childhood Caries Research (CECCRe), Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research (SRIHER) (Deemed to be University), Chennai, Tamil Nadu, India
| | - M S Muthu
- Department of Pediatric and Preventive Dentistry, Centre for Early Childhood Caries Research (CECCRe), Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research (SRIHER) (Deemed to be University), Chennai, Tamil Nadu, India
| | - Akila Ganesh
- Department of Public Health Dentistry, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Krithika Chandrasekaran
- Department of Oral Medicine and Radiology, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Richard Kirubakaran
- Department of Biostatistics, Centre for Biostatistics and Evidence‑Based Medicine, Vellore, Tamil Nadu; Department of Research, Narayana Dental College and Hospital, Nellore, Andhra Pradesh, India
| |
Collapse
|
7
|
Pan Y, Lv H, Feng X, Zhou S, Hu H, Chen S, Cheng Y, Fan F, Gong S, Chen P, Chu Q. Epigallocatechin gallate (EGCG) alleviates the inflammatory response and recovers oral microbiota in acetic acid-induced oral inflammation mice. Food Funct 2023; 14:10069-10082. [PMID: 37867423 DOI: 10.1039/d3fo03107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The oral microbiota, the second largest microbiome in the human body, plays an integral role in maintaining both the local oral and systemic health of the host. Oral microecological imbalances have been identified as a potential risk factor for numerous oral and systemic diseases. As a representative component of tea, epigallocatechin gallate (EGCG) has demonstrated inhibitory effects on most pathogens in single-microbial models. In this study, the regulatory effect of EGCG on more complex oral microbial systems was further explored through a mouse model of acetic acid-induced oral inflammation. Acetic acid induces histological damage in the cheek pouch, tongue, and throat, such as broken mucosa, submucosal edema, and muscular disorders. These detrimental effects were ameliorated significantly following EGCG treatment. Additionally, EGCG reduced the levels of the inflammatory cytokines interleukin-6 and tumor necrosis factor-α to alleviate the inflammation of the tongue, cheek pouch, and throat. According to the 16S rDNA gene sequencing data, EGCG treatment contributed to increased diversity of the oral microbiota and the reversal of oral microecological disorder. This study demonstrates the regulatory effect of EGCG on dysregulated oral microbiota, providing a potential option for the prevention and treatment of oral-microbiota-associated diseases.
Collapse
Affiliation(s)
- Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Hao Hu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Shuxi Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yan Cheng
- Hangzhou Real Taste Tea Culture Development Co., Ltd., Hangzhou 311100, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Amanpour S, Akbari Javar M, Sarhadinejad Z, Doustmohammadi M, Moghadari M, Sarhadynejad Z. A systematic review of medicinal plants and herbal products' effectiveness in oral health and dental cure with health promotion approach. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2023; 12:306. [PMID: 38023092 PMCID: PMC10670971 DOI: 10.4103/jehp.jehp_1297_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2023]
Abstract
Medicinal plants and herbal drugs are being used increasingly as part of primary health care in most parts of the world. As important adjunctive and alternative treatments for oral health care, herbal products' use may continue to increase and become more widespread. The objective of this study is to present a comprehensive systematic review of the current published literature on the effectiveness of medicinal plants and herbal products employed to improve oral health in adolescents with a health promotion approach. The systematic review was conducted according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The keywords "herbal medicine," "herbal extract," "herbal supplements," "plant extract," "natural drug," "pulpitis," "dental caries," "oral viral diseases," and "abscess" were used in combination with the Boolean operators OR and AND. PubMed, Embase, Scopus, and Web of Science were searched. Quality assessment of the included studies was performed using the Cochrane Handbook for Systematic Reviews of Interventions. The search yielded 49 original research studies. A total of 22 studies had low or unclear risk bias. The geographical distribution of included studies was primarily concentrated on western countries. Overall, studies reported herbal product users' age, ranging from young adults aged 18 years to elderly people aged 75 years or older. Most studies reported multiple compounds, including herbal drugs and herbal extracts. Chamomile and Aloe vera were the most frequently reported herbal compounds. The most commonly described herbal products to treat oral diseases were gels, mouth rinses, and pastes. The studies included a range of people with oral diseases, including periodontal and gingival diseases, recurrent aphthous stomatitis, oral lichen planus, and oral candidiasis. Herbal product interventions were found to be effective and safe alternatives for oral health care. One of the most important goals of the World Health Organization (until 2015) is the oral health index, so it is important that dental services be followed up more seriously. Considering the problems in reaching this goal of the World Health Organization in our country, herbal products have the ability to improve clinical oral health outcomes in adolescents. Limited adverse side effects indicate the overall safety of these treatments for a wide range of oral diseases. Therefore, the use of medicinal plants as well as alternative medicine is one of the useful methods in achieving this important goal of public health.
Collapse
Affiliation(s)
- Sara Amanpour
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Akbari Javar
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Sarhadinejad
- Noncommunicable Disease Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mohammadmahdi Doustmohammadi
- Health in Disasters and Emergencies Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Moghadari
- Department of Persian Medicine, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zarrin Sarhadynejad
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Pharmacy, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Li A, Kou R, Liu H, Chen M, Wang J, Liu Q, Xing X, Zhang B, Dong L, Wang S. Multi-omics analyses reveal relationships among polyphenol-rich oolong tea consumption, gut microbiota, and metabolic profile: A pilot study. Food Chem 2023; 426:136653. [PMID: 37348398 DOI: 10.1016/j.foodchem.2023.136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Convincing evidence has suggested the health potentials of oolong tea (OT) on gut microbiota homeostasis; however, limited population-based studies exist regarding the effect of OT consumption on human gut microbial and metabolic profile. This pilot study explored gut microbial and metabolic changes in healthy adults with a 3-week oolong tea intake. Our findings showed that OT treatment significantly altered gut microbial diversity (Shannon index, 5.4±0.1 vs. 5.7±0.1 pre- and post-OT treatment), reorganized gut microbiota composition, enriched Bacteroides and Prevotella, decreased Megamonas, and improved gastrointestinal function. Also, gut microbes from overweight subjects with BMI >23.9 exhibited greater responses to OT treatment compared with normal-weight counterparts. Metabolomic analysis identified OT intake-induced 23 differential metabolites and 10 enriched metabolic pathways. This study may provide new insights into the association among OT intervention, host gut microbiome and metabolic profile, and improve the knowledge of clinical strategies and personalized nutrition.
Collapse
Affiliation(s)
- Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Ruixin Kou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Mengshan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Xiaolong Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Oak A, Bachubhai Sapariya D, Nayak C, Kumar Reddy AS, Lakshmi RS, Dalal D. A Randomized Double-Blind Clinical Trial Evaluates the Efficacy of Alternative Herbal Mouthwashes. Cureus 2023; 15:e40394. [PMID: 37456435 PMCID: PMC10345606 DOI: 10.7759/cureus.40394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION The removal of dental plaque is the primary step in achieving good oral hygiene. Mechanical plaque removal measures have questionable efficacy in inaccessible areas and proximal aspects of the oral cavity. Out of the several types of mouthwash available, chlorhexidine (CHX) is regarded as the gold standard, but considering its adverse effects, herbal alternatives are being sought after. So, the aim of the study was to evaluate the efficacy of alternative herbal mouthwashes. MATERIALS AND METHODS In this randomized, double-blind study, 125 selected patients were divided into five groups. Group 1: negative control - distilled water (DW); group 2: positive control - hexidine mouthwash (ICPA, Gujarat, India); group 3: FeelFresh Herbal Mouthcare Gargle (Able Exports, Gujarat, India); group 4: HiOra mouthwash (Himalaya Wellness Company, Bengaluru, India); group 5: Colgate MaxFresh Fresh Tea mouthwash (Colgate-Palmolive, India). Plaque index (PI), gingival index (GI), and microbial count (CFU) were evaluated before and after the intervention. RESULTS The difference among the three types of herbal mouthwash was statistically non-significant. The lowest PI, GI, and CFU values were obtained in the subjects of group 4. CONCLUSION Herbal mouthwashes are a promising alternative and are effective in maintaining oral hygiene.
Collapse
Affiliation(s)
- Anjali Oak
- Department of Conservative Dentistry and Endodontics, College of Dental Sciences and Research Centre, Manipur, IND
| | | | - Chandni Nayak
- Department of Conservative Dentistry and Endodontics, World Dental Specialities, Mumbai, IND
| | - Av Sunil Kumar Reddy
- Department of Conservative Dentistry and Endodontics, All India Institute of Medical Sciences, Raipur, IND
| | - Regula Sri Lakshmi
- Department of Conservative Dentistry and Endodontics, MNR Dental College and Hospital, Hyderabad, IND
| | - Dhanashree Dalal
- Department of Paedodontics and Preventive Dentistry, Dr. D. Y. Patil Dental College and Hospital, Pune, IND
| |
Collapse
|
11
|
Garcia-Contreras R, Chavez-Granados PA, Jurado CA, Aranda-Herrera B, Afrashtehfar KI, Nurrohman H. Natural Bioactive Epigallocatechin-Gallate Promote Bond Strength and Differentiation of Odontoblast-like Cells. Biomimetics (Basel) 2023; 8:biomimetics8010075. [PMID: 36810406 PMCID: PMC9944806 DOI: 10.3390/biomimetics8010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The (-)-Epigallocatechin-gallate (EGCG) metabolite is a natural polyphenol derived from green tea and is associated with antioxidant, biocompatible, and anti-inflammatory effects. OBJECTIVE To evaluate the effects of EGCG to promote the odontoblast-like cells differentiated from human dental pulp stem cells (hDPSCs); the antimicrobial effects on Escherichia coli, Streptococcus mutans, and Staphylococcus aureus; and improve the adhesion on enamel and dentin by shear bond strength (SBS) and the adhesive remnant index (ARI). MATERIAL AND METHODS hDSPCs were isolated from pulp tissue and immunologically characterized. EEGC dose-response viability was calculated by MTT assay. Odontoblast-like cells were differentiated from hDPSCs and tested for mineral deposition activity by alizarin red, Von Kossa, and collagen/vimentin staining. Antimicrobial assays were performed in the microdilution test. Demineralization of enamel and dentin in teeth was performed, and the adhesion was conducted by incorporating EGCG in an adhesive system and testing with SBS-ARI. The data were analyzed with normalized Shapiro-Wilks test and ANOVA post hoc Tukey test. RESULTS The hDPSCs were positive to CD105, CD90, and vimentin and negative to CD34. EGCG (3.12 µg/mL) accelerated the differentiation of odontoblast-like cells. Streptococcus mutans exhibited the highest susceptibility < Staphylococcus aureus < Escherichia coli. EGCG increased (p < 0.05) the dentin adhesion, and cohesive failure was the most frequent. CONCLUSION (-)-Epigallocatechin-gallate is nontoxic, promotes differentiation into odontoblast-like cells, possesses an antibacterial effect, and increases dentin adhesion.
Collapse
Affiliation(s)
- Rene Garcia-Contreras
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Carlos Alberto Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA
- Correspondence: (C.A.J.); (H.N.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Kelvin I. Afrashtehfar
- Clinical Sciences Department, College of Dentistry, Ajman University, Ajman City P.O. Box 346, United Arab Emirates
- Department of Reconstructive Dentistry & Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Hamid Nurrohman
- Missouri School of Dentistry & Oral Health, A. T. Still University, Kirksville, MO 63501, USA
- Correspondence: (C.A.J.); (H.N.)
| |
Collapse
|
12
|
Soni S, Paari KA. A review on the immunomodulatory properties of functional nutraceuticals as dietary interventions for children to combat COVID-19 related infections. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023; 5:17. [PMCID: PMC10076816 DOI: 10.1186/s43014-023-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
COVID-19 is a significant threat to humanity in the present day due to the rapid increase in the number of infections worldwide. While most children may be spared of the direct mortality effects of the disease, those with weak immune systems are prone to adverse effects. Child mortality increases due to the stress caused to the health care system that disrupts essential health care needs such as immunisation and antenatal care. The use of functional foods (FF) aids in disease-prevention as they are known to have protective effects against COVID-19 by boosting children’s cellular and humoral immunity. Plant components such as glycyrrhizin, epigallocatechin gallate, allicin, and fucoidan exhibit antiviral properties against various viruses, including SARS-CoV 2. Microbial foods that are made of probiotics, can enhance immunity against various respiratory viruses. Food enriched with additives such as lactoferrin, piperine, and zinc can boost immunity against COVID-19. With proper definitive drug therapy not available for treating COVID-19 and most of the disease management tools rely on symptoms and non-specific supportive care, developing a functional paediatric formulation will prevent further deterioration in infant health. It is wise to investigate the toxicological aspects of Functional Foods components especially when formulating for children. The safe limits of ingredients should be strictly followed during FFs formulation. Stronger regulations with advanced analytical techniques can help to formulate functional foods into the mainstream in child nutraceuticals. The purpose of this review is to compile collective information on the functional nutraceuticals specifically for infants and children up to the age of 10 years that could confer immunity against COVID-19 and other related viruses.
Collapse
Affiliation(s)
- Swati Soni
- Department of Life Sciences, CHRIST (Deemed to be) University, Central Campus, Hosur Road, Bangalore, Karnataka 560029 India
| | - Kuppusamy Alagesan Paari
- Department of Life Sciences, CHRIST (Deemed to be) University, Central Campus, Hosur Road, Bangalore, Karnataka 560029 India
| |
Collapse
|
13
|
Kong C, Zhang H, Li L, Liu Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. J Oral Microbiol 2022; 14:2131117. [PMID: 36212989 PMCID: PMC9542882 DOI: 10.1080/20002297.2022.2131117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For thousands of years, caries, periodontitis and mucosal diseases, which are closely related to oral microorganisms, have always affected human health and quality of life. These complex microbiota present in different parts of the mouth can cause chronic infections in the oral cavity under certain conditions, some of which can also lead to acute and systemic diseases. With the mutation of related microorganisms and the continuous emergence of drug-resistant strains, in order to prevent and treat related diseases, in addition to the innovation of diagnosis and treatment technology, the development of new antimicrobial drugs is also important. Catechins are polyphenolic compounds in green tea, some of which are reported to provide health benefits for a variety of diseases. Studies have shown that epigallocatechin-3-gallate (EGCG) is the most abundant and effective active ingredient in green tea catechins, which acts against a variety of gram-positive and negative bacteria, as well as some fungi and viruses. This review aims to summarize the research progress on the activity of EGCG against common oral disease-associated organisms and discuss the mechanisms of these actions, hoping to provide new medication strategies for the prevention and treatment of oral infectious diseases, the future research of EGCG and its translation into clinical practice are also discussed.
Collapse
Affiliation(s)
- Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022; 27:1484. [PMID: 35268585 PMCID: PMC8911727 DOI: 10.3390/molecules27051484] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique de Rabat, Rabat 10106, Morocco;
- Agrobiosciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., 109316 Moscow, Russia;
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco;
| |
Collapse
|
15
|
Fernández CE, Luo TL, González-Cabezas C, Rickard AH. Unsweetened and Sucrose-Sweetened Black and Green Tea Modifies the Architecture of In vitro Oral Biofilms. Arch Oral Biol 2022; 135:105368. [DOI: 10.1016/j.archoralbio.2022.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/02/2022]
|
16
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front Neurosci 2021; 15:718188. [PMID: 34594185 PMCID: PMC8477582 DOI: 10.3389/fnins.2021.718188] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The accumulation of protein aggregates in human tissues is a hallmark of more than 40 diseases called amyloidoses. In seven of these disorders, the aggregation is associated with neurodegenerative processes in the central nervous system such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation occurs when certain soluble proteins lose their physiological function and become toxic amyloid species. The amyloid assembly consists of protein filament interactions, which can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these diseases among the elderly, the available treatments are limited and at best palliative, and new therapeutic approaches are needed. Among the many natural compounds that have been evaluated for their ability to prevent or delay the amyloidogenic process is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule present in green tea that has extensive biological activity. There is evidence for EGCG’s ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins, respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic therapeutic effect. Here, we describe several pre-clinical and clinical studies involving EGCG and neurodegenerative diseases and their related mechanisms.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thyago R Cardim-Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Stavroullakis AT, Goncalves LL, Levesque CM, Kishen A, Prakki A. Interaction of epigallocatechin-gallate and chlorhexidine with Streptococcus mutans stimulated odontoblast-like cells: Cytotoxicity, Interleukin-1β and co-species proteomic analyses. Arch Oral Biol 2021; 131:105268. [PMID: 34571395 DOI: 10.1016/j.archoralbio.2021.105268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The dentin therapeutic agent chlorhexidine has inflammatory and cytotoxic characteristics urging investigation of alternatives like the natural compound epigallocatechin-gallate. The aim is to verify the effect of epigallocatechin-gallate and chlorhexidine on viability, interleukin-1β (IL-1β) and differential protein expression of MDPC-23 odontoblast-like cells stimulated by Streptococcus mutans. DESIGN Cells were stimulated with heat-killed S. mutans at multiplicity of infection (MOI) of 100-1000 and subsequently treated with 100-1 µM of epigallocatechin-gallate. Cells with no treatment or chlorhexidine were controls. Combined stimulated/treated cells were tested for cytotoxicity (Alamar-Blue, N = 3, n = 3), total protein (N = 3, n = 3), IL-1β (ELISA, N = 3, n = 3), and differential protein expression by liquid chromatography-tandem mass spectrometry (LC-MS/MS, n = 2). RESULTS Cells stimulated at MOI 100/1000 and treated with 10 µM epigallocatechin-gallate and chlorhexidine did not present cytotoxicity. IL-1β significantly increased in both un-stimulated and stimulated chlorhexidine 10 µM groups when compared to un-treated control (p < 0.05). MOI 100 chlorhexidine 10 µM group significantly increased IL-1β compared to un-stimulated chlorhexidine 10 µM and epigallocatechin-gallate 10 µM groups, as well as to MOI 100 epigallocatechin-gallate 10 µM group (p < 0.05). LC-MS/MS revealed S. mutans and mammalian proteins, with tooth-specific proteins exhibiting different abundance levels, depending on the tested condition. CONCLUSIONS Odontoblast-like cells stimulated with S. mutans at different MOI combined with epigallocatechin-gallate treatment did not cause cytotoxicity. S. mutans stimulation combined with chlorhexidine 100 µM treatment decreased cell viability, while treatment with chlorhexidine 10 µM concentration significantly increased IL-1β. S. mutans stimulation and treatment of cells resulted in varied protein expression.
Collapse
Affiliation(s)
- Alexander Terry Stavroullakis
- Department of Clinical Sciences - Restorative, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Lucelia Lemes Goncalves
- Department of Clinical Sciences - Restorative, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Restorative Dentistry, Institute of Science and Technology of São José dos Campos, Sao Paulo State University, São Paulo, Brazil
| | - Celine Marie Levesque
- Department of Biological and Diagnostic Sciences-Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anuradha Prakki
- Department of Clinical Sciences - Restorative, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
De Rossi A, Araújo Ferreira DC, Liévana FS, Vilela MM, Nelson-Filho P, da Silva RS, Moraes JCB, da Silva LAB. An Epigallocatechin-3-gallate Formulation Developed for Endodontic Use: A Physicochemical and Biological Evaluation. J Endod 2021; 47:1640-1650. [PMID: 34157344 DOI: 10.1016/j.joen.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Although epigallocatechin-3-gallate (EGCG) from green tea has been successfully used in the prevention and treatment of several infectious and immunoinflammatory diseases because of its proven anti-inflammatory, antioxidant, antimicrobial, and antiresorptive role, its use as an intracanal dressing has not been proposed. The aim of this study was to develop a formulation based on EGCG for endodontic use by assessing its physicochemical and biological properties. METHODS Initially, physicochemical characterization of EGCG was performed by ultraviolet-visible and fluorescence spectroscopy to evaluate if the properties were maintained in acidic pH and time (1-6, 24, and 27 hours). After that, biological studies evaluated the developed formulation of EGCG at different concentrations (1.25, 5, 10, and 20 mg/mL). The tissue compatibility with subcutaneous tissue of mice was evaluated by plasma leakage after 24 hours and the examination of macroscopic and microscopic features at 7, 21, and 63 days after the insertion of polyethylene tubes containing the formulations. The repair of experimentally induced periapical lesions in dog's teeth by radiographic and histopathologic analysis was also evaluated. The scores were statistically analyzed by the chi-square and Fisher exact test. Analysis of variance followed by the Tukey posttest were used for the quantitative analysis. The significance level was 5%. RESULTS The physicochemical characterization performed under ultraviolet-visible spectrophotometry showed that the EGCG properties remained unaltered in acid pH and function of time, keeping its wavelength to 274 nm. Macroscopic parameters evaluated at 7, 21, and 63 days showed that all concentrations presented no epithelial ulceration or presence of mild superficial tissue necrosis, edema, or vascularization with no significant difference in the control group. During all periods of microscopic examination, all groups presented the absence of abscess foci and edema and the presence of fibrous capsule and neovascularization. The presence of reparative tissue with a gentle presence of neutrophilic inflammatory cells was also observed for all groups, except for the calcium hydroxide paste group, which presented a more pronounced inflammation and tissue necrosis at days 7 and 21 (P < .001). At day 63, all groups presented an absence of inflammatory infiltrate and necrosis. The evaluation of dog teeth showed that treatment with the EGCG formulation provided a reduction of the periapical radiolucent area and allowed the repair of apical and periapical tissues (P > .05). CONCLUSIONS The developed formulation based on EGCG from green tea presented physicochemical stability and tissue compatibility and provided the repair of periapical lesions when used as an intracanal dressing.
Collapse
Affiliation(s)
- Andiara De Rossi
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Fernanda Souza Liévana
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marina Moscardini Vilela
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roberto Santana da Silva
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Lea Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Chelakkot AL, Vazhappilly CG. Plant polyphenols effect on gut microbiota: Recent advancements in clinical trials. EXCLI JOURNAL 2021; 20:1091-1095. [PMID: 34267618 PMCID: PMC8278224 DOI: 10.17179/excli2021-3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022]
Affiliation(s)
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
20
|
Han S, Abiko Y, Washio J, Luo Y, Zhang L, Takahashi N. Green Tea-Derived Epigallocatechin Gallate Inhibits Acid Production and Promotes the Aggregation of Streptococcus mutans and Non-Mutans Streptococci. Caries Res 2021; 55:205-214. [PMID: 34010838 DOI: 10.1159/000515814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/07/2021] [Indexed: 11/19/2022] Open
Abstract
It has been suggested that green tea-derived epigallocatechin gallate (EGCG), which has antimicrobial properties, might help prevent dental caries. However, the detailed properties of EGCG remain unclear. In this study, the antimicrobial properties of EGCG were evaluated by examining its bactericidal activity, its inhibitory effects against bacterial growth, acid production, acidic end-product formation, and sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system, PEP-PTS activity), and its effects on bacterial aggregation, using monocultured planktonic cells of Streptococcus mutans and non-mutans streptococci. Coincubating S. mutans with EGCG (1 mg/mL) for 4 h had no bactericidal effects, while it decreased the growth and acid production of S. mutans by inhibiting the activity of the PEP-PTS. EGCG (2 mg/mL) caused rapid bacterial cell aggregation and had reduced the optical density of S. mutans cell suspension by 86.7% at pH 7.0 and 90.7% at pH 5.5 after 2 h. EGCG also reduced the acid production of non-mutans streptococci, including S. sanguinis, S. gordonii, and S. salivarius, and promoted the aggregation of these non-mutans streptococci. Furthermore, these antimicrobial effects of short-term EGCG treatment persisted in the presence of saliva. These results suggest that EGCG might have short-term antibacterial effects on caries-associated streptococci in the oral cavity.
Collapse
Affiliation(s)
- Sili Han
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Cariology and Endodontics, Sichuan University West China School of Stomatology, Chengdu, China
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yufang Luo
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Cariology and Endodontics, Fujian Medical University School of Stomatology, Fuzhou, China
| | - Linglin Zhang
- Department of Cariology and Endodontics, Sichuan University West China School of Stomatology, Chengdu, China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
21
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|