1
|
The exon junction complex senses energetic stress and regulates contractility and cell architecture in cardiac myocytes. Biosci Rep 2017; 37:BSR20170707. [PMID: 28566540 PMCID: PMC6434082 DOI: 10.1042/bsr20170707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
The exon junction complex (EJC) is the main mechanism by which cells select specific mRNAs for translation into protein. We hypothesized that the EJC is involved in the regulation of gene expression during the stress response in cardiac myocytes, with implications for the failing heart. In cultured rat neonatal myocytes, we examined the cellular distribution of two EJC components eukaryotic translation initiation factor 4A isoform 3 (eIF4A3) and mago nashi homologue (Mago) in response to metabolic stress. There was significant relocalization of eIF4A3 and Mago from the nucleus to cytoplasm following 18 h of hypoxia. Treating myocytes with 50 mM NaN3 for 4 h to mimic the metabolic stress induced by hypoxia also resulted in significant relocalization of eIF4A3 and Mago to the cytoplasm. To examine whether the effects of metabolic stress on the EJC proteins were dependent on the metabolic sensor AMP kinase (AMPK), we treated myocytes with 1 μM dorsomorphin (DM) in combination with NaN3 DM augmented the translocation of Mago and eIF4A3 from the nucleus to the cytoplasm. Knockdown of eIF4A3 resulted in cessation of cell contractility 96 h post-treatment and a significant reduction in the number of intact sarcomeres. Cell area was significantly reduced by both hypoxia and eIF4A3 knockdown, whilst eIF4A3 knockdown also significantly reduced nuclear size. The reduction in nuclear size is unlikely to be related to apoptosis as it was reversed in combination with hypoxia. These data suggest for the first time that eIF4A3 and potentially other EJC members play an important role in the myocyte stress response, cell contractility and morphology.
Collapse
|
2
|
Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation. Biochem Biophys Res Commun 2016; 476:267-272. [DOI: 10.1016/j.bbrc.2016.05.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 01/12/2023]
|
3
|
Lang F, Föller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels (Austin) 2013; 8:20-8. [PMID: 24366036 DOI: 10.4161/chan.27423] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K(+) channels, Na(+) channels, Ca(2+) release activated Ca(2+) channels, Cl(-) channels, gap junctional channels, glucose carriers, Na(+)/H(+)-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na(+)/Ca(2+)-exchanger, H(+)-ATPase and Na(+)/K(+)-ATPase. AMPK activates ubiquitin ligase Nedd4-2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology; University of Tübingen; Tübingen, Germany
| | - Michael Föller
- Department of Physiology; University of Tübingen; Tübingen, Germany
| |
Collapse
|
4
|
Dërmaku-Sopjani M, Almilaji A, Pakladok T, Munoz C, Hosseinzadeh Z, Blecua M, Sopjani M, Lang F. Down-regulation of the Na+-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase. Kidney Blood Press Res 2013; 37:547-56. [PMID: 24356547 DOI: 10.1159/000355735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The Na(+)-coupled phosphate transporter NaPi-IIa is the main carrier accomplishing renal tubular phosphate reabsorption. It is driven by the electrochemical Na(+) gradient across the apical cell membrane, which is maintained by Na(+) extrusion across the basolateral cell membrane through the Na(+)/K(+) ATPase. The operation of NaPi-IIa thus requires energy in order to avoid cellular Na(+) accumulation and K(+) loss with eventual decrease of cell membrane potential, Cl(-) entry and cell swelling. Upon energy depletion, early inhibition of Na(+)-coupled transport processes may delay cell swelling and thus foster cell survival. Energy depletion is sensed by the AMP-activated protein kinase (AMPK), a serine/threonine kinase stimulating several cellular mechanisms increasing energy production and limiting energy utilization. The present study explored whether AMPK influences the activity of NAPi-IIa. METHODS cRNA encoding NAPi-IIa was injected into Xenopus oocytes with or without additional expression of wild-type AMPK (AMPK(α1)-HA+AMPK(β1)-Flag+AMPK(γ1)-HA), of inactive AMPK(αK45R) (AMPK(α1K45R)+AMPK(β1)-Flag+AMPK(γ1)-HA) or of constitutively active AMPK(γR70Q) (AMPK(α1)-HA+AMPK(β1)-Flag+AMPKγ1(R70Q)). NaPi-IIa activity was estimated from phosphate-induced current in dual electrode voltage clamp experiments. RESULTS In NaPi-IIa-expressing, but not in water-injected Xenopus oocytes, the addition of phosphate (1 mM) to the extracellular bath solution generated a current (Ip), which was significantly decreased by coexpression of wild-type AMPK and of AMPK(γR70Q) but not of AMPK(αK45R). The phosphate-induced current in NaPi-IIa- and AMPK-expressing Xenopus ooocytes was significantly increased by AMPK inhibitor Compound C (20 µM). Kinetic analysis revealed that AMPK significantly decreased the maximal transport rate. CONCLUSION The AMP-activated protein kinase AMPK is a powerful regulator of NaPi-IIa and thus of renal tubular phosphate transport. © 2013 S. Karger AG, Basel.
Collapse
|
5
|
Mia S, Munoz C, Pakladok T, Siraskar G, Voelkl J, Alesutan I, Lang F. Downregulation of Kv1.5 K channels by the AMP-activated protein kinase. Cell Physiol Biochem 2012; 30:1039-50. [PMID: 23221389 DOI: 10.1159/000341480] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The voltage gated K(+) channel Kv1.5 participates in the repolarization of a wide variety of cell types. Kv1.5 is downregulated during hypoxia, which is known to stimulate the energy-sensing AMP-activated serine/threonine protein kinase (AMPK). AMPK is a powerful regulator of nutrient transport and metabolism. Moreover, AMPK is known to downregulate several ion channels, an effect at least in part due to stimulation of the ubiquitin ligase Nedd4- 2. The present study explored whether AMPK regulates Kv1.5. METHODS cRNA encoding Kv1.5 was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (α1 β 1γ1), of constitutively active (γR70Q)AMPK (α1 β 1γ1(R70Q)), of inactive mutant (αK45R)AMPK (α1(K45R)β1γ1), or of Nedd4-2. Kv1.5 activity was determined by two-electrode voltage-clamp. Moreover, Kv1.5 protein abundance in the cell membrane was determined by chemiluminescence and immunostaining with subsequent confocal microscopy. RESULTS Coexpression of wild-type AMPK(WT) and constitutively active AMPK(γR70Q), but not of inactive AMPK(αK45R) significantly reduced Kv1.5-mediated currents. Coexpression of constitutively active AMPKγR70Q further reduced Kv1.5 K(+) channel protein abundance in the cell membrane. Co-expression of Nedd4-2 similarly downregulated Kv1.5-mediated currents. CONCLUSION AMPK is a potent regulator of Kv1.5. AMPK inhibits Kv1.5 presumably in part by activation of Nedd4- 2 with subsequent clearance of channel protein from the cell membrane.
Collapse
Affiliation(s)
- Sobuj Mia
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Föller M, Jaumann M, Dettling J, Saxena A, Pakladok T, Munoz C, Ruth P, Sopjani M, Seebohm G, Rüttiger L, Knipper M, Lang F. AMP-activated protein kinase in BK-channel regulation and protection against hearing loss following acoustic overstimulation. FASEB J 2012; 26:4243-53. [PMID: 22767231 DOI: 10.1096/fj.12-208132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The energy-sensing AMP-activated serine/threonine protein kinase (AMPK) confers cell survival in part by stimulation of cellular energy production and limitation of cellular energy utilization. AMPK-sensitive functions further include activities of epithelial Na+ channel ENaC and voltage-gated K+ channel KCNE1/KCNQ1. AMPK is activated by an increased cytosolic Ca2+ concentration. The present study explored whether AMPK regulates the Ca2+-sensitive large conductance and voltage-gated potassium (BK) channel. cRNA encoding BK channel was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (AMPKα1+AMPKβ1+AMPKγ1), constitutively active AMPKγR70Q, or inactive AMPKαK45R. BK-channel activity was determined utilizing the 2-electrode voltage-clamp. Moreover, BK-channel protein abundance in the cell membrane was determined by confocal immunomicroscopy. As BK channels are expressed in outer hair cells (OHC) of the inner ear and lack of BK channels increases noise vulnerability, OHC BK-channel expression was examined by immunohistochemistry and hearing function analyzed by auditory brain stem response measurements in AMPKα1-deficient mice (ampk-/-) and in wild-type mice (ampk+/+). As a result, coexpression of AMPK or AMPKγR70Q but not of AMPKαK45R significantly enhanced BK-channel-mediated currents and BK-channel protein abundance in the oocyte cell membrane. BK-channel expression in the inner ear was lower in ampk-/- mice than in ampk+/+ mice. The hearing thresholds prior to and immediately after an acoustic overexposure were similar in ampk-/- and ampk+/+ mice. However, the recovery from the acoustic trauma was significantly impaired in ampk-/- mice compared to ampk+/+ mice. In summary, AMPK is a potent regulator of BK channels. It may thus participate in the signaling cascades that protect the inner ear from damage following acoustic overstimulation.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 2012; 52:347-54. [PMID: 22682960 DOI: 10.1016/j.ceca.2012.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
STIM and Orai isoforms orchestrate store operated Ca2+ entry (SOCE) and thus cytosolic Ca2+ fluctuations following stimulation by hormones, growth factors and further mediators. Orai1 is a target of Nedd4-2, an ubiquitin ligase preparing several plasma membrane proteins for degradation. Phosphorylation of Nedd4-2 by the serum and glucocorticoid inducible kinase SGK1 leads to the binding of Nedd4-2 to the protein 14-3-3 thus preventing its interaction with Orai1. Nedd4-2 is activated by the energy sensing AMP activated kinase AMPK. Thus, SGK1 disrupts and AMPK fosters degradation of Orai1. New synthesis of both, Orai1 and STIM1, is stimulated by the transcription factor NF-κB (nuclear factor kappa B), which binds to the respective promoter regions of the genes encoding STIM1 and Orai1. SGK1 upregulates and AMPK presumably downregulates NF-κB and thus de novo synthesis of Orai1 and STIM1 proteins. The regulation by SGK1 links SOCE to the signaling of a wide variety of hormones and growth factors, the AMPK dependent regulation of Orai1 and STIM1 may serve to limit inadequate activation of SOCE following energy depletion, which is otherwise expected to activate SOCE by depletion of intracellular Ca2+ stores due to impairment of the ATP consuming sarco/endoplasmatic reticulum Ca2+ ATPase SERCA.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
8
|
Munoz C, Sopjani M, Dërmaku-Sopjani M, Almilaji A, Föller M, Lang F. Downregulation of the osmolyte transporters SMIT and BGT1 by AMP-activated protein kinase. Biochem Biophys Res Commun 2012; 422:358-62. [DOI: 10.1016/j.bbrc.2012.04.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 11/29/2022]
|
9
|
Zhang Q, Zhang Y, Feng H, Guo R, Jin L, Wan R, Wang L, Chen C, Li S. High density lipoprotein (HDL) promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells. PLoS One 2011; 6:e23556. [PMID: 21886796 PMCID: PMC3158770 DOI: 10.1371/journal.pone.0023556] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3)H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.
Collapse
Affiliation(s)
- Qichun Zhang
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yun Zhang
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Haihua Feng
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Guo
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lai Jin
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rong Wan
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lina Wang
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Chen
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shengnan Li
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
10
|
Weisová P, Dávila D, Tuffy LP, Ward MW, Concannon CG, Prehn JHM. Role of 5'-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 2011; 14:1863-76. [PMID: 20712420 DOI: 10.1089/ars.2010.3544] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of cellular energy status. AMPK signaling regulates energy balance at the cellular, organ, and whole-body level. More recently, it has become apparent that AMPK plays also an important role in long-term decisions that determine cell fate, in particular cell cycle progression and apoptosis activation. Here, we describe the diverse mechanisms of AMPK activation and the role of AMPK in the regulation of cellular energy balance. We summarize recent studies implicating AMPK activation in the regulation of neuronal survival and as a key player during ischemic stroke. We also suggest that AMPK activation may have dual functions in the regulation of neuronal survival: AMPK provides a protective effect during transient energy depletion as exemplified in a model of neuronal Ca(2+) overloading, and this effect is partially mediated by the activation of neuronal glucose transporter 3. Prolonged AMPK activation, on the contrary, can lead to neuronal apoptosis via the transcriptional activation of the proapoptotic Bcl-2 family member, bim. Molecular switches that determine the protective versus cell death-inducing effects of AMPK activation are discussed.
Collapse
Affiliation(s)
- Petronela Weisová
- Department of Physiology and Medical Physics, RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Neural circuits are especially vulnerable to metabolic stress. The locust (Locusta migratoria) responds to anoxia by entering a coma during which neural and muscular systems shut down. During anoxic coma, arrest of the ventilatory central pattern generator is tightly correlated with an abrupt spreading depression (SD)-like increase in extracellular potassium concentration within the metathoracic neuropile. We examined the role of the AMP-activated protein kinase (AMPK), an evolutionarily conserved sensor of cellular energy status, in anoxia-induced ventilatory arrest and SD-like events in the locust. Perfusion of sodium azide (NaN(3); mitochondrial toxin) induced SD, temporary coma, and profound changes in the ventilatory motor pattern characterized as a rapid rhythm before coma and a slower rhythm following recovery. AMPK activation using 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimicked the motor pattern changes induced by NaN(3) but did not induce SD and coma. The effects of NaN(3) on the ventilatory rhythm were reversed by perfusion of compound-C (AMPK inhibitor) or glucose, and the effects of AICAR were also reversed by compound-C, confirming the modulatory roles of AMPK and energy status. Ouabain-induced recurring SD was suppressed by inhibition of AMPK and exacerbated by its activation. We show that the motor pattern changes induced by metabolic stress are not the result of SD alone, but that AMPK is necessary and sufficient for these changes and that AMPK activity strongly influences susceptibility to SD.
Collapse
|
12
|
Alesutan I, Munoz C, Sopjani M, Dërmaku-Sopjani M, Michael D, Fraser S, Kemp BE, Seebohm G, Föller M, Lang F. Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochem Biophys Res Commun 2011; 408:505-10. [PMID: 21501591 DOI: 10.1016/j.bbrc.2011.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 11/18/2022]
Abstract
The inward rectifier K(+) channel Kir2.1 participates in the maintenance of the cell membrane potential in a variety of cells including neurons and cardiac myocytes. Mutations of KCNJ2 encoding Kir2.1 underlie the Andersen-Tawil syndrome, a rare disorder clinically characterized by periodic paralysis, cardiac arrhythmia and skeletal abnormalities. The maintenance of the cardiac cell membrane potential is decreased in ischaemia, which is known to stimulate the AMP-activated serine/threonine protein kinase (AMPK). This energy-sensing kinase stimulates energy production and limits energy utilization. The present study explored whether AMPK regulates Kir2.1. To this end, cRNA encoding Kir2.1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1+AMPKβ1+AMPKγ1), of the constitutively active (γR70Q)AMPK (α1β1γ1(R70Q)), of the kinase dead mutant (αK45R)AMPK (α1(K45R)β1γ1), or of the ubiquitin ligase Nedd4-2. Kir2.1 activity was determined in two-electrode voltage-clamp experiments. Moreover, Kir2.1 protein abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced Kir2.1-mediated currents and Kir2.1 protein abundance in the cell membrane. Expression of wild type Nedd4-2 or of Nedd4-2(S795A) lacking an AMPK phosphorylation consensus sequence downregulated Kir2.1 currents. The effect of wild type Nedd4-2 but not of Nedd4-2(S795A) was significantly augmented by additional coexpression of AMPK. In conclusion, AMPK is a potent regulator of Kir2.1. AMPK is at least partially effective through phosphorylation of the ubiquitin ligase Nedd4-2.
Collapse
Affiliation(s)
- Ioana Alesutan
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alesutan I, Sopjani M, Munoz C, Fraser S, Kemp BE, Föller M, Lang F. Inhibition of Connexin 26 by the AMP-Activated Protein Kinase. J Membr Biol 2011; 240:151-8. [DOI: 10.1007/s00232-011-9353-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/22/2011] [Indexed: 01/19/2023]
|
14
|
Alesutan I, Föller M, Sopjani M, Dërmaku-Sopjani M, Zelenak C, Fröhlich H, Velic A, Fraser S, Kemp BE, Seebohm G, Völkl H, Lang F. Inhibition of the heterotetrameric K+ channel KCNQ1/KCNE1 by the AMP-activated protein kinase. Mol Membr Biol 2011; 28:79-89. [PMID: 21231794 DOI: 10.3109/09687688.2010.520037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The heterotetrameric K(+)-channel KCNQ1/KCNE1 is expressed in heart, skeletal muscle, liver and several epithelia including the renal proximal tubule. In the heart, it contributes to the repolarization of cardiomyocytes. The repolarization is impaired in ischemia. Ischemia stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase, sensing energy depletion and stimulating several cellular mechanisms to enhance energy production and to limit energy utilization. AMPK has previously been shown to downregulate the epithelial Na(+) channel ENaC, an effect mediated by the ubiquitin ligase Nedd4-2. The present study explored whether AMPK regulates KCNQ1/KCNE1. To this end, cRNA encoding KCNQ1/KCNE1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1 + AMPKβ1 + AMPKγ1), of the constitutively active (γR70Q)AMPK (α1β1γ1(R70Q)), of the kinase dead mutant (αK45R)AMPK (α1(K45R)β1γ1), or of the ubiquitin ligase Nedd4-2. KCNQ1/KCNE1 activity was determined in two electrode voltage clamp experiments. Moreover, KCNQ1 abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced KCNQ1/KCNE1-mediated currents and reduced KCNQ1 abundance in the cell membrane. Similarly, Nedd4-2 decreased KCNQ1/KCNE1-mediated currents and KCNQ1 protein abundance in the cell membrane. Activation of AMPK in isolated perfused proximal renal tubules by AICAR (10 mM) was followed by significant depolarization. In conclusion, AMPK is a potent regulator of KCNQ1/KCNE1.
Collapse
Affiliation(s)
- Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Föller M, Lang F. Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase. Mol Membr Biol 2010; 27:137-44. [PMID: 20334581 DOI: 10.3109/09687681003616870] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AMP-activated protein kinase (AMPK), a serine/threonine kinase activated upon energy depletion, stimulates energy production and limits energy utilization. It has previously been shown to enhance cellular glucose uptake through the GLUT family of facilitative glucose transporters. The present study explored the possibility that AMPK may regulate Na+-coupled glucose transport through SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with and without AMPK and electrogenic glucose transport determined by dual electrode voltage clamping experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or expressing constitutively active (gammaR70Q)AMPK (alpha1beta1gamma1(R70Q)) alone, the addition of glucose to the extracellular bath generated a current (I(g)), which was half maximal (K(M)) at approximately 650 microM glucose concentration. Coexpression of (gammaR70Q)AMPK did not affect K(M) but significantly enhanced the maximal current (approximately 1.7 fold). Coexpression of wild type AMPK or the kinase dead (alphaK45R)AMPK mutant (alpha1(K45R)beta1gamma1) did not appreciably affect I(g). According to confocal microscopy and Western Blotting, AICAR (1 mM), phenformin (1 mM) and A-769662 (10 microM) enhanced the SGLT1 protein abundance in the cell membrane of Caco2 cells suggesting that AMPK activity may increase membrane translocation of SGLT1. These observations support a role for AMPK in the regulation of Na+-coupled glucose transport.
Collapse
Affiliation(s)
- Mentor Sopjani
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Rotte A, Pasham V, Eichenmüller M, Bhandaru M, Föller M, Lang F. Upregulation of Na+/H+ exchanger by the AMP-activated protein kinase. Biochem Biophys Res Commun 2010; 398:677-82. [PMID: 20609358 DOI: 10.1016/j.bbrc.2010.06.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
Abstract
AMP-activated protein kinase (AMPK) is activated upon energy depletion and serves to restore energy balance by stimulating energy production and limiting energy utilization. Specifically, it enhances cellular glucose uptake by stimulating GLUT and SGLT1 and glucose utilization by stimulating glycolysis. During O(2) deficiency glycolytic degradation of glucose leads to formation of lactate and H(+), thus imposing an acid load to the energy-deficient cell. Cellular acidification inhibits glycolysis and thus impedes glucose utilization. Maintenance of glycolysis thus requires cellular H(+) export. The present study explored whether AMPK influences Na(+)/H(+) exchanger (NHE) activity and/or Na(+)-independent acid extrusion. NHE1 expression was determined by RT-PCR and Western blotting. Cytosolic pH (pH(i)) was estimated utilizing BCECF fluorescence and Na(+)/H(+) exchanger activity from the Na(+)-dependent re-alkalinization (DeltapH(i)) after an ammonium pulse. As a result, human embryonic kidney (HEK) cells express NHE1. The pH(i) and DeltapH(i) in those cells were significantly increased by treatment with AMPK stimulator AICAR (1mM) and significantly decreased by AMPK inhibitor compound C (10 microM). The effect of AICAR on pH(i) and DeltapH(i) was blunted in the presence of the Na(+)/H(+) exchanger inhibitor cariporide (10microM), but not by the H(+) ATPase inhibitor bafilomycin (10nM). AICAR significantly enhanced lactate formation, an effect significantly blunted in the presence of cariporide. These observations disclose a novel function of AMPK, i.e. regulation of cytosolic pH.
Collapse
Affiliation(s)
- Anand Rotte
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, D72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Sopjani M, Alesutan I, Dërmaku-Sopjani M, Fraser S, Kemp BE, Föller M, Lang F. Down-regulation of Na+-coupled glutamate transporter EAAT3 and EAAT4 by AMP-activated protein kinase. J Neurochem 2010; 113:1426-35. [PMID: 20218975 DOI: 10.1111/j.1471-4159.2010.06678.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glutamate transporters EAAT3 and EAAT4 are expressed in neurons. They contribute to the cellular uptake of glutamate and aspartate and thus to the clearance of the excitatory transmitters from the extracellular space. During ischemia, extracellular accumulation of glutamate may trigger excitotoxicity. Energy depletion leads to activation of the AMP-activated protein kinase (AMPK), a kinase enhancing energy production and limiting energy expenditure. The present study thus explored the possibility that AMPK regulates EAAT3 and/or EAAT4. To this end, EAAT3 or EAAT4 were expressed in Xenopus oocytes with or without AMPK and electrogenic glutamate transport determined by dual electrode voltage clamp. In EAAT3- and in EAAT4-expressing oocytes glutamate generated a current (I(g)), which was half maximal (K(M)) at 74 microM (EAAT3) or at 4 microM (EAAT4) glutamate. Co-expression of constitutively active (gammaR70Q)AMPK or of wild type AMPK did not affect K(M) but significantly decreased the maximal I(g) in both EAAT3- (by 34%) and EAAT4- (by 49%) expressing oocytes. Co-expression of the inactive mutant (alphaK45R)AMPK [alpha1(K45R)beta1gamma1] did not appreciably affect I(g). According to confocal microscopy and chemiluminescence co-expression of (gammaR70Q)AMPK or of wild type AMPK reduced the membrane abundance of EAAT3 and EAAT4. The observations show that AMPK down-regulates Na(+)-coupled glutamate transport.
Collapse
Affiliation(s)
- Mentor Sopjani
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Anti-hypoxic effect of ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharmacol Sin 2009; 30:396-403. [PMID: 19305424 DOI: 10.1038/aps.2009.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM The aim of this study was to investigate whether Gs-Rbl relieves the CoCl(2)-induced apoptosis of hypoxic neonatal rat cardiomyocytes and in which the role of glucose transporter-4 (GLUT-4). METHODS Gs-Rbl (0, 10, 50, 100, 200, 400, and 500 micromol/L), adenine 9-beta-D-arabinofuranoside (ara A, 500 micromol/L; AMPK inhibitor) and wortmannin (0.5 micromol/L; PI3K inhibitor) only in combination with 200 micromol/L Gs-Rbl were administered in hypoxic cardiomyocytes, which were induced by 500 micromol/L CoCl(2) for 12 h. Then, the apoptotic rate (AR), 2-[(3)H]-deoxy-D-glucose (2-[(3)H]-DG) uptake, and the expression of GLUT-4 (including in plasma membrane, PM), phospho-AMPKalpha (Thr172), AMPKalpha and Akt in cells were assayed. RESULTS Compared with simple hypoxia (0 micromol/L Gs-Rbl), Gs-Rb1 greater than 10 micromol/L significantly decreased the apoptotic rate (P<0.01) and significantly increased 2-[(3)H]-DG uptake (P<0.01), GLUT-4 content in cells and PM (P<0.01), AMPK activity (P<0.01) and Akt (P<0.01) levels in a dose-dependent manner. AMPK activity was completely suppressed by ara-A, just as Akt was suppressed by wortmannin. The AR, glucose uptake and GLUT-4 levels in cells and PM were partly down-regulated by ara-A or wortmannin. CONCLUSION Gs-Rb1 may protect neonatal rat cardiomyocytes from apoptosis induced by CoCl(2). The anti-apoptotic effect of Gs-Rb1 may occur by improving glucose uptake, in which GLUT-4 translocation and expression played a key role. Both the AMPK and the PI3K/Akt pathways may take part in the anti-hypoxic efficacy of Gs-Rb1.
Collapse
|