1
|
Mao S, Liu ZY, Liu ZY, Liu P, Lin LC, Zhang Y, Yang JJ, Zhao JY, Tao H. Phase separation of epigenetic landscape in cardiovascular diseases. Biomed Pharmacother 2024; 181:117654. [PMID: 39522265 DOI: 10.1016/j.biopha.2024.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenesis of cardiovascular diseases (CVDs) is intricate, with liquid-liquid phase separation (LLPS) considered a crucial regulatory mechanism. Epigenetics is closely intertwined with cardiovascular diseases, involving mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) that play pivotal roles in cardiovascular disease progression and regression. It is known that specific proteins and mRNAs associated with epigenetic modifications exhibit LLPS characteristics, influencing cardiovascular diseases. Consequently, targeting epigenetic modifications to modulate LLPS emerges as a promising strategy for cardiovascular diseases treatment. This review delves into the regulatory impact of liquid-liquid phase separation on cardiovascular diseases, with a specific focus on the epigenetic landscape. The current study sought to investigate the relationship between epigenetic landscape and phase separation in cardiovascular diseases development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Peng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
2
|
Jin G, Wang K, Zhao Y, Yuan S, He Z, Zhang J. Targeting histone deacetylases for heart diseases. Bioorg Chem 2023; 138:106601. [PMID: 37224740 DOI: 10.1016/j.bioorg.2023.106601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone or non-histone substrates, leading to the regulation of many biological functions, such as gene transcription, translation and remodeling chromatin. Targeting HDACs for drug development is a promising way for human diseases, including cancers and heart diseases. In particular, numerous HDAC inhibitors have revealed potential clinical value for the treatment of cardiac diseases in recent years. In this review, we systematically summarize the therapeutic roles of HDAC inhibitors with different chemotypes on heart diseases. Additionally, we discuss the opportunities and challenges in developing HDAC inhibitors for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Yaohui Zhao
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
3
|
Syed Abd Halim SA, Abd Rashid N, Woon CK, Abdul Jalil NA. Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals (Basel) 2023; 16:ph16050739. [PMID: 37242521 DOI: 10.3390/ph16050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review aimed to summarize the effects of natural products targeting phosphoinositide-3-kinases/serine/threonine kinase (PI3K/AKT) in myocardial ischemia-reperfusion injury (MIRI). The review details various types of natural compounds such as gypenoside (GP), gypenoside XVII (GP-17), geniposide, berberine, dihydroquercetin (DHQ), and tilianin which identified to reduce MIRI in vitro and in vivo by regulating the PI3K/AKT signaling pathway. In this study, 14 research publications that met the inclusion criteria and exclusion criteria were shortlisted. Following the intervention, we discovered that natural products effectively improved cardiac functions through regulation of antioxidant status, down-regulation of Bax, and up-regulation of Bcl-2 and caspases cleavage. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed if MIRI is associated with multiple pathological condition such as oxidative stress, ERS, mitochondrial injury, inflammation, and apoptosis. This brief review provides evidence to support the huge potential of natural products used in the treatment of MIRI due to their various biological activities and drug-like properties.
Collapse
Affiliation(s)
| | - Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
5
|
Yu Y, Wang M, Chen R, Sun X, Sun G, Sun X. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury. J Ginseng Res 2021; 45:642-653. [PMID: 34764719 PMCID: PMC8569261 DOI: 10.1016/j.jgr.2019.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17–induced cardioprotection are also explored. Methods Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Wang K, Li Y, Qiang T, Chen J, Wang X. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res 2021; 170:105743. [PMID: 34182132 DOI: 10.1016/j.phrs.2021.105743] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
Nowadays acute myocardial infarction (AMI) is a serious cardiovascular disease threatening the human life and health worldwide. The most effective treatment is to quickly restore coronary blood flow through revascularization. However, timely revascularization may lead to reperfusion injury, thereby reducing the clinical benefits of revascularization. At present, no effective treatment is available for myocardial ischemia/reperfusion injury. Emerging evidence indicates that epigenetic regulation is closely related to the pathogenesis of myocardial ischemia/reperfusion injury, indicating that epigenetics may serve as a novel therapeutic target to ameliorate or prevent ischemia/reperfusion injury. This review aimed to briefly summarize the role of histone modification, DNA methylation, noncoding RNAs, and N6-methyladenosine (m6A) methylation in myocardial ischemia/reperfusion injury, with a view to providing new methods and ideas for the research and treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Keyan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Yiping Li
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Tingting Qiang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Jie Chen
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China.
| |
Collapse
|
7
|
An J, Zhang X, Jia K, Zhang C, Zhu L, Cheng M, Li F, Zhao S, Hao J. Trichostatin A increases BDNF protein expression by improving XBP-1s/ATF6/GRP78 axis in Schwann cells of diabetic peripheral neuropathy. Biomed Pharmacother 2021; 133:111062. [PMID: 33378965 DOI: 10.1016/j.biopha.2020.111062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the common complication of diabetes mellitus. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) is reported to ameliorate the peripheral nerves degeneration of DPN. However, the exact mechanism is still not well elucidated. Here, we first revealed that TSA promoted nerve conduction and brain derived neurotrophic factor (BDNF) expression in the sciatic nerves of diabetic mice. In line, TSA also reversed high glucose-reduced mature BDNF expression in vitro cultured rat Schwann cells (RSC96). Then unexpectedly, the downstream targets of TSA HDAC1 and HDAC5 were not involved in TSA-improved BDNF expression. Furthermore, unfolded protein response (UPR) chaperone GRP78 was revealed to be downregulated with high glucose stimulation in RSC96 cells, which was avoided with TSA treatment. Also, GRP78 upregulation mediated TSA-improved mature BDNF expression in high glucose-cultured RSC96 cells by binding with BDNF. As well, TSA treatment enhanced the binding of GRP78 with BDNF in RSC96 cells. Again, UPR-associated transcription factors XBP-1s and ATF6 were involved in TSA-increased GRP78 expression in high glucose-stimulated RSC96 cells. Finally, conditioned medium from high glucose-cultured RSC96 cells delayed neuron SH-SY5Y differentiation and that from TSA-treated high glucose-cultured RSC96 cells promoted SH-SY5Y cell differentiation. Taken together, our findings suggested that TSA increased BDNF expression to ameliorate DPN by improving XBP-1s/ATF6/GRP78 axis in Schwann cells.
Collapse
Affiliation(s)
- Jiahui An
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Cuihong Zhang
- Department of Radiation Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
8
|
Wang X, Song T, Sun Y, Men L, Gu Y, Zhang S, Chen X. Proteomic Analysis Reveals the Effect of Trichostatin A and Bone Marrow-Derived Dendritic Cells on the Fatty Acid Metabolism of NIH3T3 Cells under Oxygen-Glucose Deprivation Conditions. J Proteome Res 2020; 20:960-971. [PMID: 33226813 DOI: 10.1021/acs.jproteome.0c00713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibroblasts mediate acute wound healing and long-term tissue remodeling with scarring after tissue injury. Following myocardial infarction (MI), necrotized cardiomyocytes become replaced by secreted extracellular matrix proteins produced by fibroblasts. Dendritic cells (DCs) can migrate from the bone marrow to the infarct areas and infarct border areas to mediate collagen accumulation after MI. Trichostatin A (TSA) is known to regulate apoptosis and proliferation in fibroblasts and affect the functions of DCs under oxygen-glucose deprivation (OGD) conditions. In this study, we used label-free quantitative proteomics to investigate the effects of TSA and bone marrow-derived dendritic cells (BMDCs) on NIH3T3 fibroblasts under OGD conditions. The results showed that the fatty acid degradation pathway was significantly upregulated in NIH3T3 cells under OGD conditions and that the fatty acid synthesis pathway was significantly downregulated in NIH3T3 cells treated with conditioned media (CM) from BMDCs treated with TSA under OGD conditions [BMDCs-CM(TSA)]. In addition, BMDCs-CM(TSA) significantly decreased the levels of triglycerides and free fatty acids and mediated fatty acid metabolism-related proteins in NIH3T3 cells under OGD conditions. In summary, this proteomics analysis showed that TSA and BMDCs affect fatty acid metabolism in NIH3T3 cells under OGD conditions.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Yunpeng Sun
- Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130000, China
| | - Lihui Men
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Yiwen Gu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
10
|
Li JF, Li YS, Zhang YY, Sun SF, Han TS, Li YH, Feng FM. Regulation of P300 and HDAC1 on endoplasmic reticulum stress in isoniazid-induced HL-7702 hepatocyte injury. J Cell Physiol 2019; 234:15299-15307. [PMID: 30786008 DOI: 10.1002/jcp.28175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
P300 and HDAC1 can be involved in the development of various liver diseases by regulating gene transcription. Endoplasmic reticulum stress (ERS) is one of the main pathways of apoptosis and is activated during inflammatory responses, but the roles of P300 and HDAC1 in ERS in antituberculosis drug-induced liver injury (ADLI) are not clear. This study confirms that isoniazid can change the states of P300 and HDAC1 in HL-7702 hepatocyte metabolism and induce ERS, causing hepatocyte injury and apoptosis. When combined with C646, however, P300 can be reduced. HL-7702 cells were flattened, and the cytoplasm became crinkled. To a certain extent, ERS was relieved, but hepatocytes suffered worse damage, and the rate of cell apoptosis markedly increased. When MS-275 was applied, HDAC1 level was increased, cell fusion appeared, and fluorescence intensity of endoplasmic reticulum was weakened. In addition, ERS was aggravated, but liver injury was relieved, and the apoptosis rate significantly decreased. Therefore, alteration of P300 and HDAC1 status and ERS are involved in ADLI, and changes in P300 and HDAC1 can regulate ERS and then affect cell damage.
Collapse
Affiliation(s)
- Jin-Feng Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying-Shu Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yi-Yang Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shu-Feng Sun
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tie-Sheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu-Hong Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fu-Min Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
11
|
Luo M, Sun Q, Zhao H, Tao J, Yan D. Long noncoding RNA NEAT1 sponges miR‐495‐3p to enhance myocardial ischemia‐reperfusion injury via MAPK6 activation. J Cell Physiol 2019; 235:105-113. [PMID: 31347173 DOI: 10.1002/jcp.28791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Man Luo
- Department of Emergency The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Qingsong Sun
- Department of Emergency The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Hongmei Zhao
- Department of Emergency The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Jiali Tao
- Department of Emergency The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Dongsheng Yan
- Department of Gastroenterological Surgery The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| |
Collapse
|
12
|
Dai L, He G, Zhang K, Guan X, Wang Y, Zhang B. Trichostatin A induces p53-dependent endoplasmic reticulum stress in human colon cancer cells. Oncol Lett 2018; 17:660-667. [PMID: 30655814 DOI: 10.3892/ol.2018.9641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023] Open
Abstract
Trichostatin A (TSA) has been demonstrated to exhibit various anticancer effects that influence cell cycle arrest, cell proliferation and apoptosis of cancer cells. A potential association between TSA and endoplasmic reticulum (ER) function has been suggested but its anticancer mechanism involving the induction of ER stress is unknown. p53 has previously been demonstrated to regulate ER function in response to stress but its role involving TSA and ER stress in cancer cells is poorly understood. The current study identified that TSA induced ER stress in wild type (WT) HCT116 human colon cancer cells. Following TSA treatment, the ER stress markers GRP78 and GRP94 significantly increased without hyperacetylation of their promoter regions. The inositol-requiring enzyme 1 α (IRE1α)/X-box binding protein 1 (XBP1) pathway was implicated due to an association of phosphorylated IRE1α and spliced XBP1 with ER stress. However, luciferase reporter assay indicated that splicing events were attenuated in HCT116 TP53(-/-) cells. Furthermore, cell viability and apoptosis were revealed to depend on p53 during TSA treatment. Cell viability increased and the apoptosis rate decreased in HCT116 TP53(-/-) cells compared with WT HCT116 cells undergoing TSA treatment. In conclusion, the current study revealed that TSA may induce ER stress via a p53-dependent mechanism in colon cancer cells. This provides information that may assist the development of treatments that exploit the anticancer function of TSA.
Collapse
Affiliation(s)
- Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Gang He
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Kun Zhang
- Department of Pathogenic Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Yan Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Bo Zhang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
13
|
Wang Y, Ge C, Chen J, Tang K, Liu J. GSK-3β inhibition confers cardioprotection associated with the restoration of mitochondrial function and suppression of endoplasmic reticulum stress in sevoflurane preconditioned rats following ischemia/reperfusion injury. Perfusion 2018; 33:679-686. [PMID: 29987974 DOI: 10.1177/0267659118787143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Sevoflurane has been shown to protect against myocardial ischemia/reperfusion (I/R) injury in animals, while its cardioprotection is lost if the ischemic insult is too long. In this study, we proposed a prevailing hypothesis that GSK-3β inhibitor-mediated activation of GSK-3β/β-catenin signaling pathway provides additional cardioprotection in sevoflurane preconditioned rats following I/R injury. Methods: Rats were subjected to treatment with TDZD-8, a GSK-3β inhibitor, 5 minutes prior to sevoflurane preconditioning and 30-minute ischemia and 120-minute reperfusion. Furthermore, in order to find out whether this cardioprotection is linked with mitochondrial function and endoplasmic reticulum stress (ERS), we isolated mitochondria from rat hearts perfused with TDZD-8 and determined the alternations of ERS markers. Results: Sevoflurane preconditioning or GSK-3β inhibitor treatment prevented cardiomyocyte apoptosis, phosphorylated GSK-3β and accelerated total β-catenin expression levels, reduced mitochondrial permeability transition pore (MPTP) activity, promoted the recovery of mitochondrial membrane potential and decreased the expression levels of GRP78, caspase-12 and C/EBP homology protein (CHOP) in rats under I/R condition, suggesting sevoflurane preconditioning or TDZD-8 activate the GSK-3β/β-catenin signaling pathway, improve mitochondria function and suppress ERS occurrence. Conclusions: Taken together, the findings obtained from the study support the concept that sevoflurane preconditioning confers cardioprotection against myocardial I/R injury and GSK-3β/β-catenin signaling activation mediated by TDZD-8 as a novel target to prolong cardioprotection by sevoflurane anaesthesia.
Collapse
Affiliation(s)
- Yujia Wang
- Intensive Care Unit, Shanghai Jing’an District Shibei Hospital, Shanghai, 200040, China
| | - Chunlin Ge
- Department of Anesthesia, Xuhui Centre District Hospital, Shanghai, 200031, China
| | - Junfeng Chen
- Department of Anesthesia, Shanghai Jing’an District Shibei Hospital, Shanghai, 200040, China
| | - Kun Tang
- Department of Anesthesia, Shanghai Tongren Hospital, Shanghai, 200336, China
| | - Jianjun Liu
- Intensive Care Unit, Shanghai Jing’an District Shibei Hospital, Shanghai, 200040, China
| |
Collapse
|
14
|
Zhai C, Qian Q, Tang G, Han B, Hu H, Yin D, Pan H, Zhang S. MicroRNA-206 Protects against Myocardial Ischaemia-Reperfusion Injury in Rats by Targeting Gadd45β. Mol Cells 2017; 40:916-924. [PMID: 29237256 PMCID: PMC5750710 DOI: 10.14348/molcells.2017.0164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs are widely involved in the pathogenesis of cardiovascular diseases through regulating gene expression via translational inhibition or degradation of their target mRNAs. Recent studies have indicated a critical role of microRNA-206 in myocardial ischaemia-reperfusion (I/R) injury. However, the function of miR-206 in myocardial I/R injury is currently unclear. The present study was aimed to identify the specific role of miR-206 in myocardial I/R injury and explore the underlying molecular mechanism. Our results revealed that the expression level of miR-206 was significantly decreased both in rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation (H/R) compared with the corresponding control. Overexpression of miR-206 observably decreased infarct size and inhibited the cardiomyocyte apoptosis induced by I/R injury. Furthermore, bioinformatics analysis, luciferase activity and western blot assay proved that Gadd45β (growth arrest DNA damage-inducible gene 45β) was a direct target gene of miR-206. In addition, the expression of pro-apoptotic-related genes, such as p53, Bax and cleaved caspase3, was decreased in association with the down-regulation of Gadd45β. In summary, this study demonstrates that miR-206 could protect against myocardial I/R injury by targeting Gadd45β.
Collapse
Affiliation(s)
- Changlin Zhai
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665# Kongjiang Road, Yangpu district, Shanghai 200092,
P.R. China
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Qang Qian
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Guanmin Tang
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Bingjiang Han
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Huilin Hu
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Dong Yin
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Haihua Pan
- Department of Cardiovascular Diseases, The Frist Affiliated Hospital of Jiaxing University, Jiaxing 314000,
P.R China
| | - Song Zhang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665# Kongjiang Road, Yangpu district, Shanghai 200092,
P.R. China
| |
Collapse
|
15
|
Guo Y, Li Z, Shi C, Li J, Yao M, Chen X. Trichostatin A attenuates oxidative stress-mediated myocardial injury through the FoxO3a signaling pathway. Int J Mol Med 2017; 40:999-1008. [PMID: 28849190 PMCID: PMC5593460 DOI: 10.3892/ijmm.2017.3101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
Trichostatin A (TSA), a histone deacetylase inhibitor, is widely used as an anticancer drug. Recently, TSA has been shown to exert a protective effect on ischemia/reperfusion (I/R) injury; however, the underlying mechanisms remain unclear. Forkhead box O3a (FoxO3a), a unique FoxO family member, has been shown to attenuate myocardial injury by increasing resistance to oxidative stress in mice. The present study aimed to investigate whether TSA exerts its cardioprotective effects through the FoxO3a signaling pathway. For this purpose, healthy male Wistar rats were pre-treated with TSA for 5 days before they were subjected to ligation/relaxation of the left anterior descending branch of the coronary artery and to 30 min of ischemia, followed by 24 h of reperfusion. The activities of creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and superoxide diamutase (SOD), as well as the malondialdehyde (MDA) levels were examined. The H9c2 rat myocardial cell line was cultured in 10% FBS-containing DMEM for 24 h. The cells were incubated with/without TSA (50 nmol/l) for 1 h and then incubated with/without H2O2 (400 µM) for 2 h. Reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) were measured by probe staining in the H9c2 cells. The expression of FoxO3a, mitochondrial SOD2 and catalase was quantified by western blot analysis. The levels of H3 and H4 acetylation of the FoxO3a promoter region were examined by chromatin immunoprecipitation assay. TSA significantly reduced the myocardial infarct size and the activities of serum LDH, AST and CK in the rats. TSA also decreased the levels of MDA and increased the activities of SOD in the myocardial tissue of the rats. Consistent with the reduced injury to the TSA-treated rats, TSA significantly reduced the H2O2-induced levels of ROS and increased Δψm. In addition, TSA increased the expression of FoxO3a, SOD2 and catalase, which may be related to increasing the level of H4 acetylation of the FoxO3a promoter region. Our results thus revealed that TSA protected the myocardium from oxidative stress-mediated damage by increasing H4 acetylation of the FoxO3a promoter region, and the expression of FoxO3a, SOD2 and catalase.
Collapse
Affiliation(s)
- Yunhui Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiping Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Canxia Shi
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meng Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
16
|
Wang Z, Wu G, Liu H, Xing N, Sun Y, Zhai Y, Yang B, Kong ANT, Kuang H, Wang Q. Cardioprotective effect of the xanthones from Gentianella acuta against myocardial ischemia/reperfusion injury in isolated rat heart. Biomed Pharmacother 2017; 93:626-635. [PMID: 28686977 DOI: 10.1016/j.biopha.2017.06.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Gentianella acuta (Michx.) Hulten is widely used for the treatment of arrhythmia and coronary heart disease in Ewenki Folk Medicinal Plants and Mongolian Medicine, popularly known as "Wenxincao" in China. To investigate the potential protective role of the xanthones from G. acuta against myocardial I/R injury in isolated rat heart and its possible related mechanism. The protective role of xanthones on myocardial I/R injury was studied on Langendorff apparatus. The hemodynamic parameters including the left ventricular developed pressure (LVDP), the maximum rate of up/down left intraventricular pressure (±dp/dtmax), coronary flow (CF) and heart rate (HR) were recorded during the perfusion. The results demonstrated that the xanthones from G. acuta treatment significantly improved myocardial function (LVDP, ±dp/dtmax and CF), increased the levels of superoxide dismutase (SOD) and catalase (CAT), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), ATP and the ratio of glutathione and glutathione disulfide (GSH/GSSG), whereas suppressed the levels of Lactate dehydrogenase (LDH), creatine kinase (CK) and malondialdehyde (MDA). Furthermore, the xanthones upregulate the level of Bcl-2 protein and downregulate the level of Bax protein. These results indicated that xanthones from G. acuta exhibited cardioprotective effects on myocardial I/R injury through its activities of anti-oxidative effect and anti-apoptosis effect.
Collapse
Affiliation(s)
- Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China; Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gaosong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Hua Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yadong Zhai
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Ah-Ng Tony Kong
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China.
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Outer Ring Road, University Town, Guangzhou 510006, China.
| |
Collapse
|
17
|
TSA protects H9c2 cells against thapsigargin-induced apoptosis related to endoplasmic reticulum stress-mediated mitochondrial injury. Saudi Pharm J 2017; 25:595-600. [PMID: 28579897 PMCID: PMC5447435 DOI: 10.1016/j.jsps.2017.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. Recently, TSA has shown protective effects on ERS and its mechanisms related to ER pathway has been previously characterized. However, whether TSA exerts its protective role via metabolic events remain largely undefined. Objectives: To explore the possible involvement of the metabolic changes during ERS and to better understand how TSA influence mitochondrial function to facilitate cellular adaptation. Results: TSA is an inhibitor of histone deacetylase which could significantly inhibit H9c2 cell apoptosis induced by Thapsigargin (TG). It also intervene the decrease of mitochondrial membrane potential. By immunofluorescence staining, we have shown that GRP78 was concentrated in the perinuclear region and co-localized with ER. However, treatments with TG and TSA could let it overlap with the mitochondrial marker MitoTracker. Cellular fractionation also confirmed the location of GRP78 in mitochondrion. CONCLUSIONS TSA decreases ERS-induced cell apoptosis and mitochondrial injury may related to enhance the location of GRP78 in mitochondrion.
Collapse
|
18
|
Wu Y, Leng Y, Meng Q, Xue R, Zhao B, Zhan L, Xia Z. Suppression of Excessive Histone Deacetylases Activity in Diabetic Hearts Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondria Apoptosis Pathway. J Diabetes Res 2017; 2017:8208065. [PMID: 28191472 PMCID: PMC5278197 DOI: 10.1155/2017/8208065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background. Histone deacetylases (HDACs) play a pivotal role in signaling modification and gene transcriptional regulation that are essential for cardiovascular pathophysiology. Diabetic hearts with higher HDACs activity were more vulnerable to myocardial ischemia/reperfusion (MI/R) injury compared with nondiabetic hearts. We are curious about whether suppression of excessive HDACs activity in diabetic heart protects against MI/R injury. Methods. Diabetic rats were subjected to 45 min of ischemia, followed by 3 h of reperfusion. H9C2 cardiomyocytes were exposed to high glucose for 24 h, followed by 4 h of hypoxia and 2 h of reoxygenation (H/R). Results. Both MI/R injury and diabetes mellitus elevated myocardium HDACs activity. MI/R induced apoptotic cell death was significantly decreased in diabetic rats treated with HDACs inhibitor trichostatin A (TSA). TSA administration markedly moderated dissipation of mitochondrial membrane potential, protected the integrity of mitochondrial permeability transition pore (mPTP), and decreased cell apoptosis. Notably, cotreatment with Akt inhibitor partly or absolutely inhibited the protective effect of TSA in vivo and in vitro. Furthermore, TSA administration activated Akt/Foxo3a pathway, leading to Foxo3a cytoplasm translocation and attenuation proapoptosis protein Bim expression. Conclusions. Both diabetes mellitus and MI/R injury increased cardiac HDACs activity. Suppression of HDACs activity triggered protective effects against MI/R and H/R injury under hyperglycemia conditions through Akt-modulated mitochondrial apoptotic pathways via Foxo3a/Bim.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Rui Xue
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Liying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
- *Zhongyuan Xia:
| |
Collapse
|
19
|
Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats. Biosci Rep 2016; 36:BSR20160082. [PMID: 27780890 PMCID: PMC5137536 DOI: 10.1042/bsr20160082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023] Open
Abstract
Pulsed electromagnetic field (PEMF) treatment protected ischaemia/reperfusion (I/R) injury from apoptosis via B-cell lymphoma 2 (Bcl-2), Bax and nitric oxide (NO) releasing. Extracorporeal pulsed electromagnetic field (PEMF) has shown the ability to regenerate tissue by promoting cell proliferation. In the present study, we investigated for the first time whether PEMF treatment could improve the myocardial ischaemia/reperfusion (I/R) injury and uncovered its underlying mechanisms. In our study, we demonstrated for the first time that extracorporeal PEMF has a novel effect on myocardial I/R injury. The number and function of circulating endothelial progenitor cells (EPCs) were increased in PEMF treating rats. The in vivo results showed that per-treatment of PEMF could significantly improve the cardiac function in I/R injury group. In addition, PEMF treatment also reduced the apoptosis of myocardial cells by up-regulating the expression of anti-apoptosis protein B-cell lymphoma 2 (Bcl-2) and down-regulating the expression of pro-apoptosis protein (Bax). In vitro, the results showed that PEMF treatment could significantly reduce the apoptosis and reactive oxygen species (ROS) levels in primary neonatal rat cardiac ventricular myocytes (NRCMs) induced by hypoxia/reoxygenation (H/R). In particular, PEMF increased the phosphorylation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS), which might be closely related to attenuated cell apoptosis by increasing the releasing of nitric oxide (NO). Therefore, our data indicated that PEMF could be a potential candidate for I/R injury.
Collapse
|
20
|
Mo WL, Chai CZ, Kou JP, Yan YQ, Yu BY. Sheng-Mai-San attenuates contractile dysfunction and structural damage induced by chronic intermittent hypoxia in mice. Chin J Nat Med 2016; 13:743-50. [PMID: 26481374 DOI: 10.1016/s1875-5364(15)30074-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 12/17/2022]
Abstract
Sheng-Mai-San (SMS), a well-known Chinese medicinal plant formula, is widely used for the treatment of cardiac diseases characterized by deficiency of Qi and Yin syndrome. A mouse chronic intermittent hypoxia (CIH) model was established to mimic the primary clinical features of deficiency of Qi and Yin syndrome. Mice experienced CIH for 28 days (nadir 7% to peak 8% oxygen, 20 min per day), resulting in left ventricle (LV) dysfunction and structure abnormalities. After administration of SMS (0.55, 1.1, and 5.5 g·kg(-1)·d(-1)) for four weeks, improved cardiac function was observed, as indicated by the increase in the ejection fraction from the LV on echocardiography. SMS also preserved the structural integrity of the LV against eccentric hypotrophy, tissue vacuolization, and mitochondrial injury as measured by histology, electron microscopy, and ultrasound assessments. Mechanistically, the antioxidant effects of SMS were demonstrated; SMS was able to suppress mitochondrial apoptosis as indicated by the reduction of several pro-apoptotic factors (Bax, cytochrome c, and cleaved caspase-3) and up-regulation of the anti-apoptosis factor Bcl-2. In conclusion, these results demonstrate that SMS treatment can protect the structure and function of the LV and that the protective effects of this formula are associated with the regulation of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Wei-Lan Mo
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng-Zhi Chai
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Jun-Ping Kou
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Yong-Qing Yan
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Huang CH, Ciou JS, Chen ST, Kok VC, Chung Y, Tsai JJP, Kurubanjerdjit N, Huang CYF, Ng KL. Identify potential drugs for cardiovascular diseases caused by stress-induced genes in vascular smooth muscle cells. PeerJ 2016; 4:e2478. [PMID: 27703845 PMCID: PMC5045879 DOI: 10.7717/peerj.2478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Abnormal proliferation of vascular smooth muscle cells (VSMC) is a major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular injury triggers VSMC dedifferentiation, which results in VSMC changes from a contractile to a synthetic phenotype; however, the underlying molecular mechanisms are still unclear. METHODS In this study, we examined how VSMC responds under mechanical stress by using time-course microarray data. A three-phase study was proposed to investigate the stress-induced differentially expressed genes (DEGs) in VSMC. First, DEGs were identified by using the moderated t-statistics test. Second, more DEGs were inferred by using the Gaussian Graphical Model (GGM). Finally, the topological parameters-based method and cluster analysis approach were employed to predict the last batch of DEGs. To identify the potential drugs for vascular diseases involve VSMC proliferation, the drug-gene interaction database, Connectivity Map (cMap) was employed. Success of the predictions were determined using in-vitro data, i.e. MTT and clonogenic assay. RESULTS Based on the differential expression calculation, at least 23 DEGs were found, and the findings were qualified by previous studies on VSMC. The results of gene set enrichment analysis indicated that the most often found enriched biological processes are cell-cycle-related processes. Furthermore, more stress-induced genes, well supported by literature, were found by applying graph theory to the gene association network (GAN). Finally, we showed that by processing the cMap input queries with a cluster algorithm, we achieved a substantial increase in the number of potential drugs with experimental IC50 measurements. With this novel approach, we have not only successfully identified the DEGs, but also improved the DEGs prediction by performing the topological and cluster analysis. Moreover, the findings are remarkably validated and in line with the literature. Furthermore, the cMap and DrugBank resources were used to identify potential drugs and targeted genes for vascular diseases involve VSMC proliferation. Our findings are supported by in-vitro experimental IC50, binding activity data and clinical trials. CONCLUSION This study provides a systematic strategy to discover potential drugs and target genes, by which we hope to shed light on the treatments of VSMC proliferation associated diseases.
Collapse
Affiliation(s)
- Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, Yun-Lin, Taiwan
| | - Jin-Shuei Ciou
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Shun-Tsung Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Victor C. Kok
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
| | - Yi Chung
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jeffrey J. P. Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Sun XY, Qin HJ, Zhang Z, Xu Y, Yang XC, Zhao DM, Li XN, Sun LK. Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress‑induced apoptosis. Mol Med Rep 2015; 13:661-8. [PMID: 26647757 PMCID: PMC4686073 DOI: 10.3892/mmr.2015.4580] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
Previous studies have suggested that endoplasmic reticulum stress (ERS) is one of the mechanisms responsible for the pathogenesis of diabetic nephropathy (DN). Histone acetylation modification can regulate the transcription of genes and is involved in the regulation of ERS. Valproate (VPA), a nonselective histone deacetylase inhibitor, has been reported to have a protective role in kidney tissue injury, however, whether VPA can prevent DN remains to be elucidated. In the present study, it was found that VPA increases the expression of glucose-regulated protein (GRP78) and reduces the protein expression of C/EBP-homologous protein (CHOP), growth arrest and DNA-damage-inducible gene 153 and caspase-12 in a rat model of DN. VPA can reduce renal cell apoptosis and alleviate proteinuria and alterations in serum creatinine. VPA also upregulates the acetylation level of histone H4 in the promoter of GRP78 and downregulates the acetylation level of histone H4 in the promoter of CHOP. Collectively, the data indicate that VPA can relieve ERS and reduce renal cell apoptosis, and thus attenuate renal injury in a rat model of DN by regulating the acetylation level of histone H4 in ERS-associated protein promoters.
Collapse
Affiliation(s)
- Xin-Yi Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Han-Jiao Qin
- Department of Endocrinology and Metabolism, First Clinical Hospital of Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ze Zhang
- Department of Clinical Medicine, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Xu
- Department of Histology and Embryology, Medical Research Laboratory, Jilin Medical College, Changchun, Jilin 132013, P.R. China
| | - Xiao-Chun Yang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dong-Ming Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Beihua University, Changchun, Jilin 132011, P.R. China
| | - Xiao-Ning Li
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lian-Kun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
Melatonin modulates endoplasmic reticulum stress and Akt/GSK3-beta signaling pathway in a rat model of renal warm ischemia reperfusion. Anal Cell Pathol (Amst) 2015; 2015:635172. [PMID: 26229743 PMCID: PMC4502281 DOI: 10.1155/2015/635172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022] Open
Abstract
Melatonin (Mel) is widely used to attenuate ischemia/reperfusion (I/R) injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER) stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg) was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.
Collapse
|
24
|
Ma XH, Gao Q, Jia Z, Zhang ZW. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats. Int J Neurosci 2014; 125:140-6. [DOI: 10.3109/00207454.2014.912217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|