1
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2024:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
2
|
Lee I, Lupfer CR. Lessons Learned From Clinical Trials of Immunotherapeutics for COVID-19. Immunol Rev 2024. [PMID: 39548889 DOI: 10.1111/imr.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus was arguably one of the worst public health disasters of the last 100 years. As many infectious disease experts were focused on influenza, MERS, ZIKA, or Ebola as potential pandemic-causing agents, SARS-CoV-2 appeared to come from nowhere and spread rapidly. As with any zoonotic agent, the initial pathogen was able to transmit to a new host (humans), but it was poorly adapted to the immune environment of the new host and resulted in a maladapted immune response. As the host-pathogen interaction evolved, subsequent variants of SARS-CoV-2 became less pathogenic and acquired immunity in the host provided protection, at least partial protection, to new variants. As the host-pathogen interaction has changed since the beginning of the pandemic, it is possible the clinical results discussed here may not be applicable today as they were at the start of the pandemic. With this caveat in mind, we present an overview of the immune response of severe COVID-19 from a clinical research perspective and examine clinical trials utilizing immunomodulating agents to further elucidate the importance of hyperinflammation as a factor contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Inyeong Lee
- R&D Department, QoolAbs, Carlsbad, California, USA
| | | |
Collapse
|
3
|
Cárdenas-Rodríguez N, Ignacio-Mejía I, Correa-Basurto J, Carrasco-Vargas H, Vargas-Hernández MA, Albores-Méndez EM, Mayen-Quinto RD, De La Paz-Valente R, Bandala C. Possible Role of Cannabis in the Management of Neuroinflammation in Patients with Post-COVID Condition. Int J Mol Sci 2024; 25:3805. [PMID: 38612615 PMCID: PMC11012123 DOI: 10.3390/ijms25073805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024] Open
Abstract
The post-COVID condition (PCC) is a pathology stemming from COVID-19, and studying its pathophysiology, diagnosis, and treatment is crucial. Neuroinflammation causes the most common manifestations of this disease including headaches, fatigue, insomnia, depression, anxiety, among others. Currently, there are no specific management proposals; however, given that the inflammatory component involves cytokines and free radicals, these conditions must be treated to reduce the current symptoms and provide neuroprotection to reduce the risk of a long-term neurodegenerative disease. It has been shown that cannabis has compounds with immunomodulatory and antioxidant functions in other pathologies. Therefore, exploring this approach could provide a viable therapeutic option for PCC, which is the purpose of this review. This review involved an exhaustive search in specialized databases including PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, and Clinical Trials. Phytocannabinoids, including cannabidiol (CBD), cannabigerol (CBG), and Delta-9-tetrahydrocannabinol (THC), exhibit significant antioxidative and anti-inflammatory properties and have been shown to be an effective treatment for neuroinflammatory conditions. These compounds could be promising adjuvants for PCC alone or in combination with other antioxidants or therapies. PCC presents significant challenges to neurological health, and neuroinflammation and oxidative stress play central roles in its pathogenesis. Antioxidant therapy and cannabinoid-based approaches represent promising areas of research and treatment for mitigating adverse effects, but further studies are needed.
Collapse
Affiliation(s)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico;
| | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exal Manuel Albores-Méndez
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | | | - Reynita De La Paz-Valente
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Cindy Bandala
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| |
Collapse
|
4
|
Yu M, Zhu ZF, Yang F, Yuan YF, Liao SD, Liu ML, Cheng X. Different Anti-inflammatory Drugs on High-Sensitivity C-Reactive Protein in Patients After Percutaneous Coronary Intervention: A Pilot Randomized Clinical Trial. J Cardiovasc Pharmacol 2024; 83:234-242. [PMID: 37944130 DOI: 10.1097/fjc.0000000000001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
ABSTRACT Colchicine reduces atherothrombotic cardiovascular events in coronary artery disease because of its anti-inflammatory effect. However, the effects of the other anti-inflammatory drugs in coronary artery disease remain unclear. This study included 132 patients aged 18-80 years who completed the planned percutaneous coronary interventions and were treated with aggressive secondary prevention strategies for 4 weeks. The subjects were randomly assigned to 1 of the following treatment groups for 4 weeks: (1) control: no additional intervention; (2) colchicine: 0.5 mg once a day; (3) tranilast: 0.1 g thrice a day; or (4) oridonin: 0.5 g thrice a day. The primary outcome was the percentage change in high-sensitivity C-reactive protein (hsCRP) levels at the end of 4 weeks. In total, 109 patients completed the study. The mean age was 58.33 years, 81 (74.31%) were male, and 28 (25.69%) were female. The percentage changes in hsCRP after 4 weeks of treatment were -11.62%, -48.28%, -21.60%, and -7.81%, in the control, colchicine, tranilast, and the oridonin groups, respectively. Compared with the control group, only the colchicine group showed significantly greater reduction in hsCRP levels ( P = 0.022). In targeted proteomic analysis, proteins associated with neutrophil activation (azurocidin, myeloperoxidase, and myeloblastin), platelet aggregation (glycoprotein VI), and endothelial damage (galectin-3) were reduced with colchicine therapy. These results show that of 3 anti-inflammatory drugs only colchicine could reduce hsCRP in patients after percutaneous coronary interventions.
Collapse
Affiliation(s)
- Miao Yu
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Feng Zhu
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Yang
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Fan Yuan
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-De Liao
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Lin Liu
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Xiao C, Cao S, Li Y, Luo Y, Liu J, Chen Y, Bai Q, Chen L. Pyroptosis in microbial infectious diseases. Mol Biol Rep 2023; 51:42. [PMID: 38158461 DOI: 10.1007/s11033-023-09078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis is a gasdermins-mediated programmed cell death that plays an essential role in immune regulation, and its role in autoimmune disease and cancer has been studied extensively. Increasing evidence shows that various microbial infections can lead to pyroptosis, associated with the occurrence and development of microbial infectious diseases. This study reviews the recent advances in pyroptosis in microbial infection, including bacterial, viral, and fungal infections. We also explore potential therapeutic strategies for treating microbial infection-related diseases by targeting pyroptosis.
Collapse
Affiliation(s)
- Cui Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Saihong Cao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Yiyang Medical College, School of Public Health and Laboratory Medicine, Yiyang, Hunan, 421000, China
| | - Yunfei Li
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuchen Luo
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuyu Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University Infection-Associated Hemophagocytic Syndrome, Changsha, Hunan, 421000, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Riegler AN, Benson P, Long K, Leal SM. Differential activation of programmed cell death in patients with severe SARS-CoV-2 infection. Cell Death Discov 2023; 9:420. [PMID: 37985756 PMCID: PMC10662024 DOI: 10.1038/s41420-023-01715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe lower airway disease and death in a subset of patients. Knowledge on the relative contribution of programmed cell death (PCD) to lung pathology is limited to few human autopsy studies with small sample size/scope, in vitro cell culture, and experimental model systems. In this study, we sought to identify, localize, and quantify activation of apoptosis, ferroptosis, pyroptosis, and necroptosis in FFPE lung tissues from patients that died from severe SARS-CoV-2 infection (n = 28) relative to uninfected controls (n = 13). Immunofluorescence (IF) staining, whole-slide imaging, and Image J software was used to localize and quantify expression of SARS-CoV-2 nucleoprotein and the following PCD protein markers: cleaved Caspase-3, pMLKL, cleaved Gasdermin D, and CD71, respectively. IF showed differential activation of each PCD pathway in infected lungs and dichotomous staining for SARS-CoV-2 nucleoprotein enabling distinction between high (n = 9) vs low viral burden (n = 19). No differences were observed in apoptosis and ferroptosis in SARS-CoV-2 infected lungs relative to uninfected controls. However, both pyroptosis and necroptosis were significantly increased in SARS-CoV-2-infected lungs. Increased pyroptosis was observed in SARS-CoV-2 infected lungs, irrespective of viral burden, suggesting an inflammation-driven mechanism. In contrast, necroptosis exhibited a very strong positive correlation with viral burden (R2 = 0.9925), suggesting a direct SARS-CoV-2 mediated effect. These data indicate a possible novel mechanism for viral-mediated necroptosis and a potential role for both lytic programmed cell death pathways, necroptosis and pyroptosis, in mediating infection outcome.
Collapse
Affiliation(s)
- Ashleigh N Riegler
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul Benson
- Division of Anatomic Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Long
- Division of Infectious Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixto M Leal
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol 2023; 53:e2350382. [PMID: 37382218 DOI: 10.1002/eji.202350382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimolecular complex that plays a fundamental role in inflammation. Optimal activation of NLRP3 inflammasome is crucial for host defense against pathogens and the maintenance of immune homeostasis. Aberrant NLRP3 inflammasome activity has been implicated in various inflammatory diseases. Posttranslational modifications (PTMs) of NLRP3, a key inflammasome sensor, play critical roles in directing inflammasome activation and controlling the severity of inflammation and inflammatory diseases, such as arthritis, peritonitis, inflammatory bowel disease, atherosclerosis, and Parkinson's disease. Various NLRP3 PTMs, including phosphorylation, ubiquitination, and SUMOylation, could direct inflammasome activation and control inflammation severity by affecting the protein stability, ATPase activity, subcellular localization, and oligomerization of NLRP3 as well as the association between NLRP3 and other inflammasome components. Here, we provide an overview of the PTMs of NLRP3 and their roles in controlling inflammation and summarize potential anti-inflammatory drugs targeting NLRP3 PTMs.
Collapse
Affiliation(s)
- Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Houshmandfar S, Khodadadi A, Mahmoudian-Sani MR, Nashibi R, Rashno M. Comparing the expression of MiR-223-NLRP3-IL-1β axis and serum IL-1β levels in patients with severe COVID-19 and healthy individuals. Immunobiology 2023; 228:152710. [PMID: 37478686 DOI: 10.1016/j.imbio.2023.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIM The hyperactive nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor for cytokine storm, chronic inflammation, and mortality in infected patients. On the subject of the regulation of the NLRP3-inflammasome activation, micro-ribonucleic acid (RNA)-223 (miR-223), among the major RNA molecules, has been thus far investigated in some inflammatory diseases along with interleukin-1 beta (IL-1β) and NLRP3. Against this background, the present study aimed to compare healthy individuals and patients with severe COVID-19 with reference to the alterations in the expression of the miR-223, NLRP3, and IL-1β axis and the serum IL-1β levels. METHODS In total, 40 patients with severe COVID-19, admitted to the Infectious Ward of Razi Hospital, Ahvaz, Iran, who were homogenous in terms of age (40 years old) and gender, were selected based on the inclusion and exclusion criteria. The real-time polymerase chain reaction (RT-PCR) technique was then applied to assess the expression of the miR-223, NLRP3, and IL-1β genes, and enzyme-linked immunosorbent assay (ELISA) was then utilized to evaluate the serum IL-1β levels, using patients' blood samples. Moreover, inflammatory biochemical markers of the participants were collected and recorded RESULTS: According to the study results, the IL-1β expression was 3.9 times higher in the patients with COVID-19, compared with the control group (p = 0.0005). The NLRP3 expression was also 6.04 times greater in the infected patients, compared with the healthy individuals (p < 0.0001). On the other hand, the miR-223 expression was 5.37 times lower in the case group, compared with the controls (p = 0.04). CONCLUSION The study findings indicated the potential role of miR-223 and the dysregulation of NLRP3 inflammasome followed by IL-1β, as a regulatory factor in the pathogenesis of COVID-19, like that in other inflammatory diseases.
Collapse
Affiliation(s)
- Sheyda Houshmandfar
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
11
|
Riegler A, Benson P, Long K, Leal S. Differential Activation of Programmed Cell Death in Patients with Severe SARS-CoV-2 Infection. RESEARCH SQUARE 2023:rs.3.rs-3059466. [PMID: 37461686 PMCID: PMC10350212 DOI: 10.21203/rs.3.rs-3059466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
SARS-CoV-2 (SARS-2) causes severe lower airway disease and death in a subset of patients. Knowledge on the relative contribution of programmed cell death (PCD) to lung pathology is limited to few human autopsy studies with small sample size/scope, in vitro cell culture, and experimental model systems. In this study, we sought to identify, localize, and quantify activation of apoptosis, ferroptosis, pyroptosis, and necroptosis in FFPE lung tissues from patients that died from severe SARS-2 infection (n=28) relative to uninfected controls (n=13). Immunofluorescence (IF) staining, whole-slide imaging, and Image J software was used to localize and quantify expression of SARS-2 nucleoprotein and the following PCD protein markers: cleaved Caspase-3, pMLKL, cleaved Gasdermin D, and CD71, respectively. IF showed differential activation of each PCD pathway in SARS-2 infected lungs and dichotomous staining for SARS-2 nucleoprotein enabling distinction between high (n=9) vs low viral burden (n= 19). No differences were observed in apoptosis and ferroptosis in SARS-2 infected lungs relative to uninfected controls. However, both pyroptosis and necroptosis were significantly increased in SARS-2 infected lungs. Increased pyroptosis was observed in SARS-2 infected lungs, irrespective of viral burden, suggesting an inflammation-driven mechanism. In contrast, necroptosis exhibited a very strong positive correlation with viral burden (R2=0.9925), suggesting a direct SARS-2 mediated effect. These data indicate a possible novel mechanism for viral-mediated necroptosis and a potential role for both lytic programmed cell death pathways, necroptosis and pyroptosis, in mediating infection outcome.
Collapse
|
12
|
Bolesławska I, Kowalówka M, Bolesławska-Król N, Przysławski J. Ketogenic Diet and Ketone Bodies as Clinical Support for the Treatment of SARS-CoV-2-Review of the Evidence. Viruses 2023; 15:1262. [PMID: 37376562 PMCID: PMC10326824 DOI: 10.3390/v15061262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of β-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| |
Collapse
|
13
|
Wang M, Yu F, Chang W, Zhang Y, Zhang L, Li P. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology. Front Immunol 2023; 14:1185233. [PMID: 37251383 PMCID: PMC10213254 DOI: 10.3389/fimmu.2023.1185233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- *Correspondence: Man Wang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Man Wang, ; Peifeng Li,
| |
Collapse
|
14
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
15
|
Caballero-Herrero MJ, Jumilla E, Buitrago-Ruiz M, Valero-Navarro G, Cuevas S. Role of Damage-Associated Molecular Patterns (DAMPS) in the Postoperative Period after Colorectal Surgery. Int J Mol Sci 2023; 24:ijms24043862. [PMID: 36835273 PMCID: PMC9958549 DOI: 10.3390/ijms24043862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Anastomotic leakage (AL) is a defect of the intestinal wall at the anastomotic site and is one of the most severe complications in colorectal surgery. Previous studies have shown that the immune system response plays a significant role in the development of AL. In recent years, DAMPs (damage-associated molecular patterns) have been identified as cellular compounds with the ability to activate the immune system. The NLRP3 inflammasome plays an important role in the inflammatory responses which are mediated by DAMPs such as ATP, HSP proteins or uric acid crystals, when found in extracellular environments. Recent publications suggest that systemic concentration of DAMPs in patients with colorectal surgery may determine the inflammatory process and have a role in the occurrence of AL and other post-surgery complications. This review provides valuable knowledge about the current evidence supporting this hypothesis and highlights the possible role of these compounds in postoperative processes, which could open a new path to explore new strategies to prevent possible post-surgical complications.
Collapse
Affiliation(s)
- María José Caballero-Herrero
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Esther Jumilla
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Manuel Buitrago-Ruiz
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
| | - Graciela Valero-Navarro
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
- Surgical Research in Health Area, Institute of Biosanitary Research Pascual Parrilla (IMIB), Department of Surgery, Pediatrics, Obstetrics and Gynecology, University of Murcia, 30100 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| |
Collapse
|
16
|
Li Z, Yao X, Zhang X, Mei H, Han J. Carboxylic Acid O-H Insertion Reaction of β-Ester Diazos Enabling Synthesis of β-Acyloxy Esters. J Org Chem 2022; 87:15483-15491. [PMID: 36354090 DOI: 10.1021/acs.joc.2c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Generation of non-stabilized β-ester diazos and their applications in carboxylic acid O-H insertion reactions have been reported, which afford β-acyloxy esters in excellent yield. Varieties of aryl- and alkyl-substituted diazos are well tolerated in this insertion reaction under mild and convenient conditions. Moreover, structural modification of the natural product and molecular drug can also be achieved in this reaction. This protocol not only realizes the reaction involving unstable β-ester diazos but also provides an efficient strategy for the synthesis of β-acyloxy esters.
Collapse
Affiliation(s)
- Ziyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Dagher D, Elmansi H, Nasr JJ, El-Enany N. Utility of a novel turn-off fluorescence probe for the determination of tranilast, an adjunctive drug for patients with severe COVID-19. RSC Adv 2022; 12:22044-22053. [PMID: 36043110 PMCID: PMC9361924 DOI: 10.1039/d2ra02239g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
Tranilast (TR) could be investigated as a suitable anti-inflammatory and NLRP3 inflammasome inhibitor medication for the treatment of COVID-19 acute patients. Owing to its importance, our study was constructed for the determination of TR using a new, fast, sensitive, and reliable green spectrofluorimetric method. TR was quantified in this study by forming a complex with the acriflavine (AC) reagent. The reaction between TR and AC quenched the fluorescence of AC through the formation of an ion-association complex and the response was measured at 493 nm after excitation at 263 nm. It was observed that the quenching of the fluorescence of AC was linear (r = 0.9998) with the concentration of TR in the range of 1.0–15.0 μg mL−1. The limit of detection was 0.224 μg mL−1, and the limit of quantification was 0.679 μg mL−1. The fluorescence quenching mechanism was carefully studied and was confirmed to be able to analyze TR in its pure form and its prepared pharmaceutical dosage form. To validate the method, the international conference of harmonization (ICH) Q2R1 guidelines were followed. The statistical assessment of the proposed and comparison methods revealed no significant differences between them. Moreover, the green criteria of the method were evaluated and confirmed. Tranilast (TR) could be investigated as an anti-inflammatory and NLRP3 inflammasome inhibitor medication using acriflavine.![]()
Collapse
Affiliation(s)
- Diaa Dagher
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Jenny Jeehan Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Nahed El-Enany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt .,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Mansoura University New Mansoura 7723730 Egypt
| |
Collapse
|
18
|
How to Restore Oxidative Balance That Was Disrupted by SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23126377. [PMID: 35742820 PMCID: PMC9223498 DOI: 10.3390/ijms23126377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus 2019 disease (COVID-19) is caused by different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in December of 2019. COVID-19 pathogenesis is complex and involves a dysregulated renin angiotensin system. Severe courses of the disease are associated with a dysregulated immunological response known as cytokine storm. Many scientists have demonstrated that SARS-CoV-2 impacts oxidative homeostasis and stimulates the production of reactive oxygen species (ROS). In addition, the virus inhibits glutathione (GSH) and nuclear factor erythroid 2-related factor 2 (NRF2)-a major antioxidant which induces expression of protective proteins and prevents ROS damage. Furthermore, the virus stimulates NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes which play a significant role in inducing a cytokine storm. A variety of agents with antioxidant properties have shown beneficial effects in experimental and clinical studies of COVID-19. This review aims to present mechanisms of oxidative stress induced by SARS-CoV-2 and to discuss whether antioxidative drugs can counteract detrimental outcomes of a cytokine storm.
Collapse
|