1
|
Shahidi S, Ramezani-Aliakbari K, Komaki A, Salehi I, Hashemi S, Asl SS, Habibi P, Ramezani-Aliakbari F. Effect of vitamin D on cardiac hypertrophy in D-galactose-induced aging model through cardiac mitophagy. Mol Biol Rep 2023; 50:10147-10155. [PMID: 37921981 DOI: 10.1007/s11033-023-08875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND Cardiac apoptosis plays a key role in increased morbidity associated with aging-induced-cardiac disorder. Mitochondria play an important role in cardiac apoptosis, and dynamin-related protein 1 (Drp1), as a main mediator of mitochondrial fission, can trigger the mitophagy process to sustain the mitochondrial quality. The present study was done to determine the effect of vitamin D (VitD) treatment on cardiac hypertrophy through mitophagy regulation in aged animals induced by D-galactose (D-GAL). METHODS AND RESULTS Male Wistar rats were randomly divided into four groups: control, D-GAL (aging group), D-GAL co-injected with VitD (D-GAL ± VitD), and D-GAL plus ethanol (D-GAL ± Ethanol). Aging was induced by an intraperitoneal (i.p.) administration of D-GAL at 150 mg/kg daily for eight weeks and also VitD (400 IU/kg) or ethanol was injected (i.p.) into aging rats. Then, the levels of cardiac mitophagy and cardiac apoptosis were determined by measuring the expression of tensin homologue (PTEN)-induced putative kinase 1 (PINK1), Drp1, Bcl2-Associated X (Bax), and B-cell lymphoma 2 (Bcl2) genes. Aging in rats was associated with a reduction in mitophagy and also an increase in apoptosis of the heart through down-regulation of Drp1, PINK1, and Bcl2 genes and also up-regulation of Bax. However, VitD improved cardiac hypertrophy through cardiac mitophagy in D-GAL-induced aging rats. CONCLUSION VitD can inhibit cardiac hypertrophy by an increase in mitophagy and a decrease in apoptosis in the aging heart. The illustration of the suggested mechanism underlying of Vitamin D in cardiac hypertrophy induced by aging.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
Li C, Jiang S, Wang H, Wang Y, Han Y, Jiang J. Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway. Biomed Pharmacother 2022; 151:113097. [PMID: 35609366 DOI: 10.1016/j.biopha.2022.113097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/15/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, exerts protective effects on various cardiac injuries, and also extends the lifespan of individuals. However, the cardioprotective effect of BBR on cardiac senescence remains unknown. This study investigated the effects of BBR on cardiac senescence and its underlying mechanism. Senescent H9c2 cells induced by doxorubicin (DOX) and naturally aged rats were used to evaluate the protective effects of BBR on cardiac senescence. The results showed that BBR protected H9c2 cells against DOX-induced senescence. Exogenous Klotho (KL) exerts similar effects to those of BBR. BBR significantly increased in protein expression of KL, while transfection with KL-specific siRNA (siKL) inhibited the protective effect of BBR against senescence. Both BBR and exogenous KL decreased the levels of reactive oxygen species, inhibited apoptosis, and alleviated mitochondrial dysfunction in these cells; and transfection with siKL attenuated these effects of BBR. In naturally aged rats, BBR indeed protected the animals from cardiac aging, at least partially, through lowering the levels of cardiac hypertrophy markers, and increased the expression of KL in cardiac tissue. Additionally, BBR markedly reversed downregulation of sirtuin1 (SIRTI) in the aged heart. In vitro experiments revealed that BBR and exogenous KL also increased the expression of SIRT1, whereas siKL limited this effect of BBR in senescent H9c2 cell. In summary, BBR upregulated KL expression and prevented heart from cardiac senescence through anti-oxidative and anti-apoptotic effects, as well as alleviation of mitochondrial dysfunction. These effects may be mediated via regulation of the Klotho/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Hengfei Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| |
Collapse
|
4
|
Physical performance level in sarcomeric mitochondria creatine kinase knockout mouse model throughout ageing. Exp Gerontol 2021; 146:111246. [PMID: 33515657 DOI: 10.1016/j.exger.2021.111246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE The objective of the present study was to establish the role of sarcomeric mitochondrial creatine kinase (Mt-CK) in muscle energy output during exercise in a murine model of ageing (the Mt-CK knock-out mouse, Mt-CK-/-). METHODS Three age groups of Mt-CK-/- mice and control male mice (6, 9, and 18 months of age) underwent incremental treadmill running tests. The maximum speed (Vpeak) and maximal oxygen consumption (VO2peak) values were recorded. Urine samples were analyzed using metabolomic techniques. The skeletal muscle (quadriceps) expression of proteins involved in mitochondria biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and dynamin-related GTPase mitofusin 2 (Mnf2) were quantified. RESULTS The VO2 peak (normalized to heart weight: HW) of 18-month-old (mo) Mt-CK-/- mice was 27% (p < 0.001) lower than in 18-mo control mice. The VO2peak/HW ratio was 29% (p < 0.001) lower in 18-mo Mt-CK-/- mice than in 6-mo (p < 0.001) and 32% (p < 0.001) than 9-mo Mt-CK-/- mice. With a 0° slope, Vpeak was 10% (p < 0.05) lower in 18-mo Mt-CK-/- mice than in 6-mo Mt-CK-/- mice but did not differ when comparing the 18-mo and 6-mo control groups. The skeletal muscles weight normalized on body weight in 6-mo Mt-CK-/- were 13 to 14% (p < 0.001, p < 0.05) lower versus the 6-mo control, in addition, the presence of branched-chain amino acids in the urine of 6-mo Mt-CK-/- mice suggests an imbalance in protein turnover (catabolism rather than anabolism) but we did not observe any age-related differences. The expression of PGC-1α and Mnf2 proteins in the quadriceps showed that age-related effects were more prominent than genotype effects. CONCLUSION The present study showed ageing is potentialized by Mt-CK deficiency with regard to VO2peak, Vpeak and mitochondrial protein expression. Our results support that Mt-CK-/- mice undergo physiological adaptations, enabling them to survive and to perform as well as wild-type mice. Furthermore, it is possible that these adaptations in Mt-CK-/- mice have a high energy cost and might trigger premature ageing.
Collapse
|
5
|
Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho Deficiency Causes Heart Aging via Impairing the Nrf2-GR Pathway. Circ Res 2020; 128:492-507. [PMID: 33334122 DOI: 10.1161/circresaha.120.317348] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Cardiac aging is an important contributing factor for heart failure, which affects a large population but remains poorly understood. OBJECTIVE The purpose of this study is to investigate whether Klotho plays a role in cardiac aging. METHODS AND RESULTS Heart function declined in old mice (24 months), as evidenced by decreases in fractional shortening, ejection fraction, and cardiac output. Heart size and weight, cardiomyocyte size, and cardiac fibrosis were increased in old mice, indicating that aging causes cardiac hypertrophy and remodeling. Circulating Klotho levels were dramatically decreased in old mice, which prompted us to investigate whether the Klotho decline may cause heart aging. We found that Klotho gene mutation (KL-/-) largely decreased serum klotho levels and impaired heart function. Interestingly, supplement of exogenous secreted Klotho prevented heart failure, hypertrophy, and remodeling in both old mice and KL (-/-) mice. Secreted Klotho treatment inhibited excessive cardiac oxidative stress, senescence and apoptosis in old mice and KL (-/-) mice. Serum phosphate levels in KL (-/-) mice were kept in the normal range, suggesting that Klotho deficiency-induced heart aging is independent of phosphate metabolism. Mechanistically, Klotho deficiency suppressed GR (glutathione reductase) expression and activity in the heart via inhibition of transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2). Furthermore, cardiac-specific overexpression of GR prevented excessive oxidative stress, apoptosis, and heart failure in both old and KL (-/-) mice. CONCLUSIONS Klotho deficiency causes cardiac aging via impairing the Nrf2-GR pathway. Supplement of exogenous secreted Klotho represents a promising therapeutic strategy for aging-associated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., S.W., Q.W.S., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., S.W., M.U., Z.S.)
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., S.W., Q.W.S., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., S.W., M.U., Z.S.)
| | - Qiwei Wilton Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., S.W., Q.W.S., B.Z., Z.S.)
| | - Bo Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., S.W., Q.W.S., B.Z., Z.S.)
| | - Mujib Ullah
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., S.W., M.U., Z.S.)
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., S.W., Q.W.S., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., S.W., M.U., Z.S.)
| |
Collapse
|
6
|
Valentine JM, Li ME, Shoelson SE, Zhang N, Reddick RL, Musi N. NFκB Regulates Muscle Development and Mitochondrial Function. J Gerontol A Biol Sci Med Sci 2020; 75:647-653. [PMID: 30423026 PMCID: PMC7328192 DOI: 10.1093/gerona/gly262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor (NF)κB is a transcription factor that controls immune and inflammatory signaling pathways. In skeletal muscle, NFκB has been implicated in the regulation of metabolic processes and tissue mass, yet its affects on mitochondrial function in this tissue are unclear. To investigate the role of NFκB on mitochondrial function and its relationship with muscle mass across the life span, we study a mouse model with muscle-specific NFκB suppression (muscle-specific IκBα super-repressor [MISR] mice). In wild-type mice, there was a natural decline in muscle mass with aging that was accompanied by decreased mitochondrial function and mRNA expression of electron transport chain subunits. NFκB inactivation downregulated expression of PPARGC1A, and upregulated TFEB and PPARGC1B. NFκB inactivation also decreased gastrocnemius (but not soleus) muscle mass in early life (1-6 months old). Lower oxygen consumption rates occurred in gastrocnemius and soleus muscles from young MISR mice, whereas soleus (but not gastrocnemius) muscles from old MISR mice displayed increased oxygen consumption compared to age-matched controls. We conclude that the NFκB pathway plays an important role in muscle development and growth. The extent to which NFκB suppression alters mitochondrial function is age dependent and muscle specific. Finally, mitochondrial function and muscle mass are tightly associated in both genotypes and across the life span.
Collapse
Affiliation(s)
- Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas
| | - Mengyao E Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas
- Joslin Diabetes Center, Boston, Massachusetts
| | | | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas
| | - Robert L Reddick
- Department of Pathology, University of Texas Health Science Center at San Antonio, Texas
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas
- San Antonio Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
7
|
Ruiz-Meana M, Boengler K, Garcia-Dorado D, Hausenloy DJ, Kaambre T, Kararigas G, Perrino C, Schulz R, Ytrehus K. Ageing, sex, and cardioprotection. Br J Pharmacol 2020; 177:5270-5286. [PMID: 31863453 DOI: 10.1111/bph.14951] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Translation of cardioprotective interventions aimed at reducing myocardial injury during ischaemia-reperfusion from experimental studies to clinical practice is an important yet unmet need in cardiovascular medicine. One particular challenge facing translation is the existence of demographic and clinical factors that influence the pathophysiology of ischaemia-reperfusion injury of the heart and the effects of treatments aimed at preventing it. Among these factors, age and sex are prominent and have a recognised role in the susceptibility and outcome of ischaemic heart disease. Remarkably, some of the most powerful cardioprotective strategies proven to be effective in young animals become ineffective during ageing. This article reviews the mechanisms and implications of the modulatory effects of ageing and sex on myocardial ischaemia-reperfusion injury and their potential effects on cardioprotective interventions. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - David Garcia-Dorado
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlinand Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Tepp K, Puurand M, Timohhina N, Aid-Vanakova J, Reile I, Shevchuk I, Chekulayev V, Eimre M, Peet N, Kadaja L, Paju K, Käämbre T. Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics. Biochim Biophys Acta Gen Subj 2020; 1864:129523. [PMID: 31935437 DOI: 10.1016/j.bbagen.2020.129523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency. METHODS Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy. RESULTS Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. CONCLUSIONS Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. GENERAL SIGNIFICANCE This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jekaterina Aid-Vanakova
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Margus Eimre
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Nadežda Peet
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Lumme Kadaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kalju Paju
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
9
|
Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C. Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 2019; 11:7307-7327. [PMID: 31498116 PMCID: PMC6756899 DOI: 10.18632/aging.102247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 04/11/2023]
Abstract
The prevalence rates of heart failure (HF) are greater than 10% in individuals aged >75 years, indicating an intrinsic link between aging and HF. It has been recognized that mitochondrial dysfunction contributes to the pathology of HF. Mitokines are a type of cytokines, peptides, or signaling pathways produced or activated by the nucleus or the mitochondria through cell non-autonomous responses during cellular stress. In addition to promoting the communication between the mitochondria and the nucleus, mitokines also exert a systemic regulatory effect by circulating to distant tissues. It is noteworthy that increasing evidence has demonstrated that mitokines are capable of reducing the metabolic-related HF risk factors and are associated with HF severity. Consequently, mitokines might represent a potential therapy target for HF.
Collapse
Affiliation(s)
- Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function. Int J Mol Sci 2018; 19:ijms19102933. [PMID: 30261663 PMCID: PMC6213097 DOI: 10.3390/ijms19102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.
Collapse
|
11
|
Sobolev AP, Mannina L, Costanzo M, Cisterna B, Malatesta M, Zancanaro C. Age-related changes in skeletal muscle composition: A pilot nuclear magnetic resonance spectroscopy study in mice. Exp Gerontol 2017; 92:23-27. [DOI: 10.1016/j.exger.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
|
12
|
Forman DE, Arena R, Boxer R, Dolansky MA, Eng JJ, Fleg JL, Haykowsky M, Jahangir A, Kaminsky LA, Kitzman DW, Lewis EF, Myers J, Reeves GR, Shen WK. Prioritizing Functional Capacity as a Principal End Point for Therapies Oriented to Older Adults With Cardiovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2017; 135:e894-e918. [PMID: 28336790 PMCID: PMC7252210 DOI: 10.1161/cir.0000000000000483] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adults are living longer, and cardiovascular disease is endemic in the growing population of older adults who are surviving into old age. Functional capacity is a key metric in this population, both for the perspective it provides on aggregate health and as a vital goal of care. Whereas cardiorespiratory function has long been applied by cardiologists as a measure of function that depended primarily on cardiac physiology, multiple other factors also contribute, usually with increasing bearing as age advances. Comorbidity, inflammation, mitochondrial metabolism, cognition, balance, and sleep are among the constellation of factors that bear on cardiorespiratory function and that become intricately entwined with cardiovascular health in old age. This statement reviews the essential physiology underlying functional capacity on systemic, organ, and cellular levels, as well as critical clinical skills to measure multiple realms of function (eg, aerobic, strength, balance, and even cognition) that are particularly relevant for older patients. Clinical therapeutic perspectives and patient perspectives are enumerated to clarify challenges and opportunities across the caregiving spectrum, including patients who are hospitalized, those managed in routine office settings, and those in skilled nursing facilities. Overall, this scientific statement provides practical recommendations and vital conceptual insights.
Collapse
|
13
|
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem 2017; 432:141-158. [PMID: 28293876 DOI: 10.1007/s11010-017-3005-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Abstract
The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
14
|
Niel R, Ayachi M, Mille-Hamard L, Le Moyec L, Savarin P, Clement MJ, Besse S, Launay T, Billat VL, Momken I. A new model of short acceleration-based training improves exercise performance in old mice. Scand J Med Sci Sports 2016; 27:1576-1587. [PMID: 28000342 DOI: 10.1111/sms.12809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
In order to identify a more appealing exercise strategy for the elderly, we studied a mouse model to determine whether a less time-consuming training program would improve exercise performance, enzyme activities, mitochondrial respiration, and metabolomic parameters. We compared the effects of short-session (acceleration-based) training with those of long-session endurance training in 23-month-old mice. The short-session training consisted of five acceleration-based treadmill running sessions over 2 weeks (the acceleration group), whereas the endurance training consisted of five-one-hour treadmill sessions per week for 4 weeks (the endurance group). A control group of mice was also studied. In the acceleration group, the post-training maximum running speed and time to exhaustion were significantly improved, relative to pretraining values (+8% for speed, P<.05; +10% for time to exhaustion, P<.01). The post-training maximum running speed was higher in the acceleration group than in the endurance group (by 23%; P<.001) and in the control group (by 15%; P<.05). In skeletal muscle samples, the enzymatic activities of citrate synthase, lactate dehydrogenase, and creatine kinase were significantly higher in the acceleration group than in the endurance group. Furthermore, mitochondrial respiratory activity in the gastrocnemius was higher in the acceleration group than in the control group. A metabolomic urine analysis revealed a higher mean taurine concentration and a lower mean branched amino acid concentration in the acceleration group. In old mice, acceleration-based training appears to be an efficient way of increasing performance by improving both aerobic and anaerobic metabolism, and possibly by enhancing antioxidant defenses and maintaining muscle protein balance.
Collapse
Affiliation(s)
- R Niel
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France
| | - M Ayachi
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France
| | - L Mille-Hamard
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France
| | - L Le Moyec
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France
| | - P Savarin
- Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244, Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB), Université Paris 13, Bobigny, France
| | - M-J Clement
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, France
| | - S Besse
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France.,Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
| | - T Launay
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France.,Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
| | - V L Billat
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France
| | - I Momken
- Unité de Biologie Intégrative des Adaptations à l'Exercice (EA7362), Université Evry-Val d'Essonne, Evry, France
| |
Collapse
|
15
|
Yang HQ, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular K ATP channels and advanced aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32517. [PMID: 27733235 PMCID: PMC5061878 DOI: 10.3402/pba.v6.32517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA
| | | | - Ravichandran Ramasamy
- Department of Medicine, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY, USA;
| |
Collapse
|